Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215

GROUNDWATER MONITORING NETWORK EVALUATION

BIG SANDY BOTTOM ASH PONDS

LOUISA, KENTUCKY

Prepared by

8217 Shoal Creek Blvd, Suite 200 Austin, TX 78757

Geosyntec Project No.: TXL0510

December 2016

GROUNDWATER MONITORING NETWORK EVALUATION BIG SANDY BOTTOM ASH PONDS LOUISA, KENTUCKY

TABLE OF CONTENTS

1.		OBJ	ECTIVE1-1
	1.1	Pur	pose
	1.2	Org	anization of Report1-1
	1.3	Coo	ordinate System and Datum1-1
2.		BAC	KGROUND INFORMATION2-2
	2.1	Fac	ility Location Description
	2.2	Des	cription of CCR Unit
	2.2	2.1	Embankment Configuration
	2.2	2.2	Area and Volume of CCR Units
	2.2	2.3	Construction and Operational History
	2.2	2.4	Surface Water Control
	2.3	Pre	vious Investigations
	2.4		lrogeologic Setting
	2	4.1	Climate and Water Budget
		4.2	Regional and Local Geologic Setting
	2.4	4.3	Regional and Local Hydrogeologic Setting
	2.4	4.4	Surface Water and Surface Water-Groundwater Interactions
	2.4	4.5	Water Users
3.		MON	NITORING NETWORK EVALUATION
	3.1	Нус	drostratigraphic Units
	3.	1.1	Horizontal and Vertical Position Relative to CCR Unit
	3.	1.2	Overall Flow Conditions
	3.2	Upp	permost Aquifer
	3.	2.1	CCR Rule Definition
	3.2	2.2	Identified Onsite Hydrostratigraphic Unit
	3.3		erview of Groundwater Monitoring System Regulatory Requirements
	3.4	Rev	view of Existing Monitoring Network

3.4.1	Overview	3-3
3.4.2	Compliance Assessment	3-3

LIST OF TABLES

Table 2-1	Summary of Nearby Groundwater Withdrawal Wel	ls
-----------	--	----

 Table 3-1
 Monitoring Network Well Construction Summary

LIST OF FIGURES

- Figure 2-1 Site Location Map
- Figure 2-2 Plant and CCR Unit Location Map
- Figure 2-3 CCR Unit Layout and Boring, Piezometer and Monitoring Well Locations
- Figure 2-4 Surface Geology Map
- Figure 2-5 Nearby Groundwater Withdrawal Wells
- Figure 3-1 Potentiometric Surface Map Uppermost Aquifer 14 July 2016
- Figure 3-2 Groundwater Monitoring Well Network

LIST OF APPENDICES

Appendix A References

Appendix B Supplemental Documentation

- AEP (1975)
 - o DWG No. 12-3642-6
- Stantec (2010)
 - DWG No. 39021B-101-BL1 Geotechnical Exploration Boring Layout

Bottom Ash Storage Area

Geotechnical Exploration Stability Sec. A-A'

Geotechnical Exploration Stability Sec. A-A'

Geotechnical Exploration Stability Sec. B-B'

Geotechnical Exploration Stability Sec. C-C'

- DWG No. 39021B-302-A-ASH With and Without Bottom Ash
- DWG No. 39021B-303-A-DD1 Rapid Drawdown
- DWG No. 39021B-304-B-ASH With and Without Bottom Ash
- DWG No. 39021B-305-C-ASH
- Appendix C Geologic Cross Sections

Appendix D Boring Logs and Monitoring Well Construction Diagrams

LIST OF ACRONYMS

AEP	American Electric Power
BAC	Bottom Ash Complex
BAP	Bottom Ash Pond
bgs	below ground surface
BSFAP	Big Sandy Fly Ash Pond
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
cfs	cubic feet per second
CWP	Clear Water Pond
FEMA	Federal Emergency Management Agency
FIRM	Flood Insurance Rate Map
ft, MSL	Feet above mean sea level
gpm	gallons per minute
KAR	Kentucky Administrative Regulation
KRS	Kentucky Revised Statutes
KPDES	Kentucky Pollutant Discharge Elimination System
KYDEP - DWM	Kentucky Department for Environmental Protection – Division of Waste Management
KYPCo	Kentucky Power Company
MCL	Maximum Contaminant Level
MW	Megawatt
NAD83	North American Datum of 1983
NAVD 88	North American Vertical Datum of 1988
PE	Professional Engineer
PG	Professional Geologist
PVC	Polyvinyl Chloride
RWP	Reclaim Water Pond
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

1. OBJECTIVE

1.1 <u>Purpose</u>

The purpose of this report is to provide an assessment of the groundwater monitoring network associated with the Bottom Ash Ponds (BAPs) at the American Electric Power (AEP) Big Sandy Power Plant with respect to compliance with the United States Environmental Protection Agency's (USEPA's) Coal Combustion Residual (CCR) Rule (Title 40 Code of Federal Regulations (CFR) Section (§) 257.91.

This report was prepared by Mr. Dawit Yifru, geologist. The geology and hydrogeology information evaluated and discussed in this report was prepared under the direction of Mr. Jimmy Whitmer, PG (Kentucky licensed professional geologist (PG) No. 2287). The overall groundwater monitoring network evaluation contained herein was performed by Mr. Scott M. Graves, PE (Kentucky licensed professional engineer (PE) No. 21274). The report was reviewed by Mr. John Seymour, PE (Illinois), in accordance with Geosyntec's senior peer review policies.

1.2 Organization of Report

This report is organized as follows:

- Section 2 presents background information on the power plant and the CCR unit;
- Section 3 presents an evaluation of the existing monitoring well network; and
- Section 4 provides a certification from a qualified PE.

A list of references that are cited in this report is provided in Appendix A. Supporting documentation is provided in Appendices B through D.

1.3 <u>Coordinate System and Datum</u>

The horizontal coordinate values provided in this report are based upon the North American Datum of 1983 (NAD83), Kentucky North Zone. The vertical datum utilized for reporting the elevations within this report is North American Vertical Datum of 1988 (NAVD 88).

2. BACKGROUND INFORMATION

2.1 Facility Location Description

The Kentucky Power Company (KYPCo), a business unit of AEP, operates the Big Sandy Plant – a former 1,060 megawatt (MW) coal-fired power generating station located in Lawrence County, Kentucky, approximately 4.5 miles north of Louisa, Kentucky (Figure 2-1). The Big Sandy Plant is located along the Kentucky side of the Big Sandy River that forms the border with West Virginia.

AEP permanently ceased burning coal at the Big Sandy Plant in November 2015 and transitioned to a 278 MW natural-gas-fired power plant facility. The Bottom Ash Pond is currently in service for wastewater management for the natural gas operations. The Bottom Ash Pond will be closed by removal of CCR and a liner system installed and the pond repurposed as a non-CCR wastewater pond. The closure by removal and repurposing as a non-CCR wastewater pond is scheduled to be completed by the end of 2018. AEP has indicated that they plan to excavate the bottom ash from these ponds and dispose of the ash in the Big Sandy Plant Fly Ash Pond (BSFAP) located approximately 1.5 miles north-northwest of the main plant area (see Figure 2-2), followed by closure of the BSFAP.

2.2 Description of CCR Unit

The CCRs formerly generated by the Big Sandy Plant include bottom ash that is placed in two identical side-by-side existing surface impoundments – the Bottom Ash Ponds (BAPs) – which are the CCR unit that is the subject of this groundwater monitoring network evaluation report. The location of the BAPs in relation to the main plant area is shown on Figure 2-2. As shown, the BAPs are located just west of the main plant area, and located approximately 500-ft north from the Big Sandy River.

The Bottom Ash Complex (BAC), shown in more detail on Figure 2-3, consists of the:

- North and South Bottom Ash Ponds (collectively, the "BAPs" that together are the CCR unit that is subject of this report);
- North and South Clear Water Ponds (CWPs); and
- Reclaim Water Pond (RWP).

The BAPs formerly received wet-sluiced bottom ash generated from the coal burning process. The BAPs continue to receive other non-CCR wastewater flows from the plant. Solids in the BAPs were periodically reclaimed from the pond and used as a construction material, or transferred to the BSFAP for disposal. Each BAP is equipped with a 24-inch diameter outlet pipe that conveys decanted water through the divider embankment from the BAPs to the CWPs. The CWPs also each have outlet structures to regulate the maximum water level in those ponds. When water rises to the elevation of those outlet structures, water is conveyed from the CWPs to the RWP. From the RWP, water is pumped to the BSFAP (AEP, 2015), which eventually discharges water at a Kentucky Pollutant Discharge Elimination System (KPDES)-permitted outfall (KPDES Permit No. KY0000221). The

CWPs and RWP contain only "de minimis" levels of CCR and thus, in accordance with the Final CCR Rule, do not meet the definition of a CCR surface impoundment. Therefore, the CWPs and RWP are not the subject of this monitoring network evaluation report and the CCR unit comprises only the North and South BAPs.

2.2.1 Embankment Configuration

The design and configuration of the BAPs and overall BAC is shown in plan and cross-sectional view on DWG No. 12-3642-6 (Bottom Ash Storage Area) within Appendix B. The design drawing shows that the BAPs are symmetrical and have an identical size and shape. The perimeter embankment of the BAPs is constructed of compacted fill with 2 horizontal to 1 vertical (2H:1V) exterior side slopes. The design drawing also shows that the BAPs were originally constructed with 1.75H:1V interior side slopes; however according to AEP (2014), as a result of a 2009 pond inspection, the interior slopes of the BAPs were regraded to a 2H:1V slope during the 2009-2010 timeframe. An interior splitter (separator) dike, also constructed of compacted earthen fill and having 1.75H:1V slopes, separates the North BAP and South BAP. Another separator dike constructed of compacted earthen fill and having 2H:1V slopes, separates the west end of the BAPs from the CWPs.

The interior slopes of the BAPs are lined with an 18-inch thick layer of grouted riprap erosion protection, underlain by a geotextile fabric. The exterior slopes of the BAPs are vegetated with grass. The crests of the perimeter BAP embankments serve as access roadways; they have an aggregate road surface, and vary in width from 20 to 30 feet (AEP, 2014). Borings completed in 2009 (Stantec, 2010) and 2016 (Geosyntec, 2016) indicate that the embankment fill consists of a medium stiff to stiff, yellowish brown to brown lean clay, silt with sand, and sandy lean clay with sand. Stantec (2010) further described the embankment fill as having an average moisture content that is 3 to 5 percent above standard Proctor optimum moisture content, and with a density on the order of 90 to 95 percent of the standard Proctor maximum density.

The perimeter embankment around the north, east, and south sides of the BAPs has a top-of-berm elevation of 580 ft above mean sea level (ft, MSL), as does the interior splitter dike between the BAPs. The separator dike on the west end of the BAPs is at elevation 578 ft, MSL. The design drawings indicate that the bottoms of the pond are at elevation 565 ft, MSL at the high end (east end) of the BAPs, and approximately elevation 560 ft, MSL on the low end (west end) of the BAPs. Thus, the interior slopes are between approximately 15 and 20-ft tall. From the design drawings, the BAPs appear to be partially incised (i.e., they appear to have been constructed with a portion of the bottom grades being excavated below the natural ground surface). However, the perimeter embankments and separator dikes are composed of above-grade compacted fill constructed to elevations higher than the surrounding natural ground surface. The existing ground surrounding the BAPs is relatively flat, with a shallow grade sloping downward in a general north to south direction toward the river. Because of this, the northern perimeter embankment of the North BAP has an exterior height of only a few feet. The existing ground south of the BAPs has a ground elevation of approximately 568 ft, MSL.

Therefore, the southern perimeter embankment of the South BAP (where exterior-facing slopes are the tallest) has an exterior embankment slope height of approximately 12 ft.

2.2.2 Area and Volume of CCR Units

The North and South Bottom Ash Ponds are identical in storage size and configuration, each having an area of about 1.5 acres. The combined maximum storage volume that can be held in the bottom ash ponds is about 48,000 cubic yards, assuming they are both completely filled to the top of the west separator dike with no freeboard (elevation 578 ft, MSL). AEP has indicated to Geosyntec (as confirmed by observations during Geosyntec's 2015 and 2016 site visits) that when ponds are in operation they alternate pond filling operations between the two BAPs (i.e., they only fill one pond at a time with bottom ash).

2.2.3 Construction and Operational History

The Big Sandy Power Plant began operation in 1963, and the BAC was constructed in 1968. In 2009-2010, an engineering study and subsequent maintenance/repair activities were completed on the BAPs (AEP, 2014). Specifically, repair activities were performed on the interior slopes and interior splitter dike. The interior slopes were stripped of existing vegetation and slope protection, graded to a 2H:1V slope, and stabilized with grouted riprap to enhance stability and provide erosion protection. Also, in conjunction with these repairs the access roadways that form the perimeter of the BAPs were graded and paved using aggregate.

2.2.4 Surface Water Control

The BAPs are surrounded by above-grade perimeter embankments which prevent surface water runoff from entering them. The existing topography surrounding the BAPs is relatively flat, with a shallow grade sloping down from north to south. A riprap-lined drainage ditch is situated along the north toe of the perimeter embankment to divert storm water drainage around the BAC area. Therefore, the only surface water added to the BAPs is precipitation that falls within their footprint (within the interior crest of slopes). Each BAP is equipped with a 24-inch diameter outlet pipe that conveys decanted water through the divider embankment from the BAPs to the CWPs, which in turn discharge to the RWP. From the RWP, water is pumped to the BSFAP (AEP, 2015).

2.3 <u>Previous Investigations</u>

In 2009, Stantec conducted a geotechnical site investigation of the BAPs as part of a seepage and stability evaluation of the embankment system (Stantec, 2010). Stantec's investigation included drilling of six (6) soil borings (B-1 through B-6) with depths ranging between 31.5 and 61.5 ft below ground surface (bgs) and installation of three (3) shallow piezometers (PZ-1, PZ-2, and PZ-6) in borings (B-1, B-2, and B-6) with depths ranging from 15 to 20 ft bgs. The boring and piezometer locations are shown on Figure 2-3. Five of the six borings were advanced from the tops of the

embankments and one boring (B-2) was advanced at the toe of the slope of a perimeter BAP embankment. Two of the three piezometers (PZ-1 and PZ-6) were dry in January 2010 and April 2016. One piezometer (PZ-2) contained approximately 0.4 ft and 2 ft of water during the January 2010 and April 2016 measurements, respectively.

In 2016 Geosyntec installed nine monitoring wells (MW-1612 through MW-1620) at the locations shown on Figure 2-3 to supplement the existing geologic and hydrogeologic information (Geosyntec, 2016). The monitoring wells were installed at depths ranging from 27 ft to 74 ft bgs. Monitoring wells MW-1612 and MW-1613 were screened in residual soil north of the BAPs. The remaining monitoring wells were screened in sand and gravel alluvium deposited by the Big Sandy River, which represents the uppermost aquifer at the site. These monitoring wells are discussed further in Section 3.

2.4 <u>Hydrogeologic Setting</u>

2.4.1 Climate and Water Budget

The average annual precipitation at the site is approximately 44 inches, with monthly totals averaging between about 3.0 inches in the driest months (October and January) to about 5.5 inches in the wettest month (July). Temperatures range from highs in the mid to upper 80s Fahrenheit in July to highs in the low to mid 40s Fahrenheit in January (Lloyd and Lyke, 1955).

Prior to changing from coal to natural gas fuel, the Big Sandy Power Plant used water to sluice bottom ash to the BAPs. Currently, the BAPs receive and hold precipitation that falls within their footprint (within the interior crest of slopes), and also receive other non-CCR wastewaters from the plant. Water from the BAPs flows into the adjacent CWPs, and then into the RWP from which it is pumped to the BSFAP (AEP, 2015). Water detained in the BSFAP is released through the principal spillway structure at the main dam, where it is discharged to Blaine Creek at a KPDES-permitted outfall.

2.4.2 Regional and Local Geologic Setting

The regional geology of the site consists of relatively flat-lying Pennsylvanian-age rocks of the Monongahela, Conemaugh, and Breathitt Formations in the upland areas and relatively thin Quaternary-age alluvial deposits in the stream valleys (Lloyd and Lyke, 1995). A regional geology map is presented on Figure 2-4. The Monongahela, Conemaugh, and Breathitt Formations are the result of sedimentary deposition in a fluvial-deltaic environment, and consist of cyclic sequences of sandstones, siltstones, shales and coals. The alluvial material in the region is present along present-day streams and consists of unconsolidated deposits of silt, sand, and gravel derived from present-day stream processes (Lloyd and Lyke, 1995). The alluvial deposits may be up to 50 ft thick in some areas, with the greatest thicknesses present in the major stream valleys with generally lesser amounts present in the tributary valleys. A relatively thin layer of residual soils (residuum) generally consisting of clay derived from the weathering of underlying bedrock is often present at the ground surface at higher elevations.

The local site subsurface in and around the BAC includes compacted fill soil used to construct the embankments. Underlying the fill material, the local geology includes alluvium and residual soil. In particular, alluvial deposits were encountered at locations beneath the fill soil associated with the BAPs and at locations south of the BAPs towards the Big Sandy River. The upper alluvial deposits consist of a low hydraulic conductivity sandy lean clay, lean clay, and silt to a depth of approximately 540 ft, MSL in the vicinity of the BAPs. Below approximately 540 ft, MSL, lower alluvial deposits were encountered consisting of sand and gravel with occasional thin clay lenses. In areas north of the BAPs, a residual soil consisting of primarily silts, along with clays and sand/gravel zones at greater depths was encountered beneath the fill. Weathered shale was encountered beneath the residual soil north of the BAPs. Based on elevation, the weathered shale is likely part of the Breathitt Formation. Geologic cross sections illustrating the subsurface lithologic units at the site in relation to the BAPs are presented in Appendix C.

2.4.3 Regional and Local Hydrogeologic Setting

The near-surface hydrogeology of the region is generally categorized into two systems: (i) an alluvial aquifer system of unconsolidated deposits; and (ii) an aquifer system in the fractures of the bedrock (Lloyd and Lyke, 1995). The unconsolidated aquifer system, which consists of sand and gravel overlying the consolidated rocks, occurs in present-day stream valleys. The bedrock mostly consists of repeating sequences of fractured sandstone, shale, coal and limestone deposited during multiple sedimentary cycles. The two aquifer systems are directly recharged by precipitation where exposed at land surface and groundwater generally flows parallel to the topographic slope.

The lower alluvial deposits (below approximately elevation 540 ft, MSL) are composed of sand and gravel composites that form the uppermost aquifer, with the water bearing portion of the uppermost aquifer in the vicinity of the BAPs being located below approximately elevation 524 ft, MSL. It is noted that on the western side of the BAC area of the site and upgradient from the BAPs, a groundwater elevation of approximately elevation 535 ft, MSL was measured in the alluvium. The upper alluvial deposits (above approximate elevation 540 ft, MSL) are composed of low hydraulic conductivity clay and silt (with vertical hydraulic conductivities varying between 7.6×10^{-8} cm/sec and 5.2×10^{-6} cm/sec) (Geosyntec, 2016).

Piezometers (PZ-1, PZ-2 and PZ-6) installed within the lean clay material during the 2009 geotechnical investigation are consistently dry (PZ-1 and PZ-6) or have a small amount of water that collects over time in the end cap (PZ-2). Borings drilled through the clay/silt upper alluvium in 2016 indicated dry to moist soil, not saturated, and boreholes left open during drilling did not accumulate groundwater. Deeper borings installed during the 2016 monitoring well installation activities indicated saturated conditions within the sand and gravel of the lower alluvial deposits. These saturated alluvial deposits represent the uppermost aquifer and occur at approximately 60 ft bgs in the vicinity of the BAPs. Water levels measured in monitoring wells installed within the sand and gravel lower alluvium in the vicinity of the BAPs range in elevation from approximately 523 to 524 ft, MSL.

Geosyntec[▶]

consultants

Groundwater flow in the sand and gravel alluvium generally follows the surface topography towards the Big Sandy River. Two soil borings/monitoring wells (MW-1612 and MW-1613) installed directly upgradient and north of the BAPs during the 2016 investigation did not encounter the alluvial deposits. These borings/wells were installed into the residual soil and encountered shallow bedrock before encountering the alluvial aquifer. Borings/wells MW-1612 and MW-1613 encountered bedrock at elevations of approximately 537 and 552 ft, MSL, respectively. Monitoring well MW-1613 remained dry for several days and eventually only accumulated approximately 1.9 ft of water. Monitoring well MW-1612 encountered a very localized shallow perched water zone not representative of the uppermost alluvial aquifer. As a result, monitoring well MW-1619 and MW-1620 were added to Geosyntec's 2016 drilling program to provide upgradient hydrogeologic information for the alluvial aquifer.

2.4.4 Surface Water and Surface Water-Groundwater Interactions

The BAPs formerly received waters associated with the wet-sluiced bottom ash and currently receive only non-CCR wastewaters from other Big Sandy Plant operations, as well as any precipitation that falls on them. As described in Section 2.4.1, water from the BAPs flows into the adjacent CWPs, and then to the RWP, where it is pumped to the BSFAP. Water detained in the BSFAP is released through the principal spillway structure at the Main Dam, where it is discharged to Blaine Creek from a KPDES-permitted outfall downstream of the dam. During the time that water is held in the BAPs, some of the water evaporates and some water probably infiltrates into the subsurface since there is no constructed pond liner system. Stantec (2010) indicates that the normal operating pool of the BAPs is elevation 575 ft, MSL.

FEMA's Flood Insurance Rate Map (FIRM) that includes the site area (FIRM Number 54099C0165C, January 2, 2013) shows that the BAPs are not in the 100-year floodplain. The FEMA map also indicates that the 100-year base flood elevations in the Big Sandy River are between elevation 567 and 568 ft, MSL where the river is closest to the BAPs. During normal river stage conditions, the water level in the Big Sandy River is much lower.

Based on groundwater elevation data collected from the monitoring wells installed in 2016, the groundwater flow direction in the sand and gravel alluvium is to the south towards the Big Sandy River. The measured groundwater elevation in the alluvium at monitoring wells in the vicinity of the BAPs ranged from elevation 523 to 524 ft, MSL. Not only is this elevation well below the normal operating pool of the BAPs at elevation 575 ft, MSL, but it is also much lower than the base of the BAPs (elevation 560 to 565 ft, MSL). Furthermore, the clay/silt zone between the base of the BAPs and the upper limit of the uppermost aquifer was not saturated, and no evidence of a hydraulic connection between the groundwater in the alluvium and the surface water in the BAPs was observed.

2.4.5 Water Users

Location and description of groundwater withdrawal wells were obtained from the Kentucky Groundwater Data Repository, Water Well and Spring Location Map (http://kgs.uky.edu/kgsmap/KGSWater/viewer.asp). The location of these wells is shown on Figure As shown, ten (10) water wells were identified in the search area in Kentucky within 2-5. approximately three (3) miles from the BAPs. Additional information on these wells is provided in Table 2-1. As shown on Table 2-1, six (6) of these wells are used for domestic use, one (1) for industrial use, one (1) for mining, and two (2) water wells for unknown use. The water withdrawal wells in the area are all upgradient of, and/or in different alluvial valleys than, the BAPs.

3. MONITORING NETWORK EVALUATION

3.1 <u>Hydrostratigraphic Units</u>

3.1.1 Horizontal and Vertical Position Relative to CCR Unit

The hydrogeology within the BAPs area is characterized by a sand and gravel alluvial deposit associated with the floodplain of the Big Sandy River. The upper limit of the sand and gravel alluvium aquifer is located at an approximate elevation of 540 ft, MSL (20 to 25 ft below the bottom of the BAPs). The aquifer is not in direct hydraulic connection with the surface water in the BAPs or with the CCR due to the presence of a low-permeability zone of clay/silt located between the base of the BAPs and the upper limit of the uppermost aquifer (i.e., the sands and gravels in the lower alluvium).

3.1.2 Overall Flow Conditions

Groundwater elevations in the alluvium monitoring wells in the vicinity of the BAPs (523 to 524 ft, MSL on July 14, 2016) are higher than surface water elevation in the Big Sandy River (approximately 519 ft, MSL on July 14, 2016; obtained from the USGS Stream gauge data, USGS Big Sandy River at Louisa, KY). A potentiometric surface map generated based on the July 2016 water level measurements indicated that the groundwater flow direction in the sand and gravel alluvium aquifer is parallel to the topographic slope to the south towards the Big Sandy River (Figure 3-1).

Laboratory vertical hydraulic conductivity testing was conducted using undisturbed Shelby tube soil samples collected from the clay/silt zone at four borings around the BAPs, from elevations corresponding to the interval below the base of the BAPs and above the uppermost aquifer. The measured vertical hydraulic conductivity of the clay/silt zone ranged from 7.6×10^{-8} cm/sec to 5.2×10^{-6} cm/sec (Geosyntec, 2016). Borings drilled for the associated four hydraulic conductivity specimens indicated dry to moist soil, not saturated, and boreholes left open during drilling did not accumulate groundwater. Additionally, piezometers drilled during the 2010 investigation within the clay and silt zone are consistently dry (PZ-1 and PZ-6) or have a small amount of water that collects over time in the end caps (PZ-2). From May 2016 through July 2016, groundwater elevations in monitoring wells in the vicinity of the BAPs screened in the sand and gravel alluvium ranged between 523 and 524 ft, MSL while surface water elevations in the BAPs ranged between approximately 565 ft, MSL (when water levels were near the bottom of the BAPs) and approximately 575 ft, MSL (when the ponds were full). The difference in groundwater and surface water elevations near the BAPs demonstrates the lack of a hydraulic connection between the groundwater in the alluvium and the surface water in the BAPs.

Slug testing results of seven monitoring wells screened in the lower alluvial sands and gravels show that the aquifer has an average measured horizontal hydraulic conductivity of approximately 9.3×10^{-3} cm/sec. Recharge to the sand and gravel alluvium aquifer can be attributed to infiltration of

precipitation in areas where the low permeability clay layer is thin or not present. Recharge is also likely from surface water draining from the sandstone outcrops north of the BAPs.

3.2 <u>Uppermost Aquifer</u>

3.2.1 CCR Rule Definition

The term "uppermost aquifer" referred to in §257.91 of the groundwater monitoring systems rule for CCR units is defined in 40 CFR §257.53 as: "the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within the facility's property boundary. Upper limit is measured at a point nearest to the natural ground surface to which the aquifer rises during the wet season." Aquifer is defined as "a geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs." Per the preamble that accompanies the CCR Rule, this includes a shallow, deep, perched, confined, or unconfined aquifer, provided that it yields usable water. "Usable water" is not defined in the CCR Rule nor in Kentucky regulations.

For reference, Kentucky environmental regulations for water wells (401 KAR 6:001(3)) defines an aquifer as "a water-bearing formation that transmits water in sufficient quantity to supply a well."

3.2.2 Identified Onsite Hydrostratigraphic Unit

The sand and gravel alluvium deposited by the Big Sandy River meets the definition of the uppermost aquifer in the CCR Rule. Based on boring log and monitoring well data around the BAPs, the upper limit of the sand and gravel alluvium aquifer is located at an approximate elevation of 540 ft, MSL (20 to 25 ft below the bottom of the BAPs). Based on the July 14, 2016 water level measurements, groundwater elevations in the alluvium aquifer in monitoring wells in the vicinity of the BAPs was between 523.23 ft, MSL and 524.21 ft, MSL. Slug testing data from wells screened in the lower alluvial sands and gravels show that the aquifer has an average measured horizontal hydraulic conductivity of approximately 9.3×10^{-3} cm/sec (Geosyntec, 2016). The direction of groundwater flow is generally to the south towards the Big Sandy River. A potentiometric surface map depicting groundwater elevations and the general direction of flow in the uppermost aquifer is presented on Figure 3-1.

The aquifer is not in direct hydraulic connection with the surface water in the BAPs or with the CCR due to the presence of a low hydraulic conductivity zone of clay/silt located between the base of the BAPs and the upper limit of the uppermost aquifer (i.e., the sands and gravels in the lower alluvium).

3.3 <u>Overview of Groundwater Monitoring System Regulatory Requirements</u>

The preamble that accompanies the CCR Rule concisely summarizes the groundwater monitoring system regulatory requirements of Rule 40 CFR §257.91 by stating that "all groundwater monitoring

systems must consist of a sufficient number of appropriately located wells (at least one upgradient and three downgradient wells) in order to yield groundwater samples from the uppermost aquifer that represent the quality of background groundwater and the quality of groundwater passing the CCR waste boundary." The upgradient background wells must be located beyond the upgradient extent of CCR-derived contamination whereas the downgradient wells will monitor the quality of groundwater passing the Waste boundary of the CCR unit and must be located at the downgradient perimeter of the CCR unit or at the closest practical distance from this location. Although the rule requires a minimum of one upgradient and three downgradient monitoring wells, the number, spacing and depths of the monitoring wells must be determined based on hydrogeology of the site including aquifer thickness, groundwater flow rates and direction.

3.4 <u>Review of Existing Monitoring Network</u>

3.4.1 Overview

The groundwater monitoring network is shown on Figure 3-2 and consists of a total of five groundwater monitoring wells to provide detection monitoring in the uppermost aquifer, with two wells located upgradient of the BAPs and three wells located downgradient of the BAPs. The number, depth and spacing of groundwater monitoring wells included in the groundwater monitoring network are based on site-specific geologic and hydrogeologic information. Two monitoring wells MW-1619 and MW-1620 located upgradient of the BAPs will serve for background monitoring. The remaining three monitoring wells MW-1614, MW-1615, and MW-1618 will be used for downgradient monitoring. Also as indicated on Figure 3-2, two additional wells MW-1616 and MW-1617 will be used for water level measurement only, to help confirm groundwater flow directions as needed. The monitoring wells were installed in an eight-inch borehole and have four-inch diameter Polyvinyl Chloride (PVC) casings, 10-ft long screens with 0.01-inch slot size in the uppermost aquifer. Well construction details for the five wells in the monitoring network are summarized in Table 3-1 and boring logs and well construction diagrams for all of Geosyntec's 2016 well installations are provided in Appendix D.

3.4.2 Compliance Assessment

Review of the groundwater monitoring well network in relation to the geologic and hydrogeologic conditions in the area of the BAPs indicates that it consists of a sufficient number of wells installed at the appropriate locations and depths to yield groundwater samples from the uppermost aquifer that accurately represent the quality of background groundwater and groundwater passing the waste boundary of the BAPs. The groundwater monitoring well network is also capable of providing a system for detection of potential groundwater contamination in the uppermost aquifer nearest the waste boundary. In particular, the three downgradient groundwater monitoring wells are appropriately positioned based on their close proximity to downgradient waste boundary of the BAPs, the close lateral spacing for the relatively small size of the BAPs, and the documented groundwater flow

direction to the south towards the Big Sandy River. Based on the above review, the groundwater monitoring network around the Big Sandy BAPs meets the requirements of 40 CFR §257.91.

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER 4.

I have reviewed the groundwater monitoring network and well construction details in the vicinity of the Bottom Ash Ponds at the Big Sandy Plant and based on the evaluation presented in Section 3 of this report, I certify that the groundwater monitoring system has been designed and constructed to meet the requirements of Section 40 CFR §257.91.

Scott M. Graves

12/16/2016

Seal and Signature

Date

21274

Kentucky

License No.

State

TABLES

Table 2-1. Summary of Nearby Groundwater Withdrawal Wells

AKGWA Number	Primary Use	Latitude ¹	Longitude ¹	Construction Date	Elevation (ft)	Total Depth (ft)	Static Water Level (ft)	Approximate Static Water Level Elevation (ft)	Well Yield (gpm)
00011523	Domestic - Single Household	38.189	-82.638	5/23/1988	580	67	50	530	35
00006915	Domestic - Single Household	38.194	-82.653	5/15/1988	580	120	60	520	8
00006916	Domestic - Single Household	38.193	-82.651	5/31/1988	580	105	70	510	20
00002933	Domestic - Single Household	38.192	-82.629	3/3/1987	640	100	50	590	10
30002996	Not Available	38.189	-82.625	NA	NA	NA	NA	NA	NA
00006922	Domestic - Single Household	38.188	-82.615	8/10/1988	810	380	250	560	0.83
00060898	Industrial - General	38.178	-82.613	7/18/2011	576	64	55	521	5-10
00056935	Mining	38.171	-82.645	8/24/2001	680	200	51	629	60
00008075	Domestic - Single Household	38.188	-82.664	2/22/1990	680	80	25	655	20
00051043	Not Available	38.170	-82.644	5/26/1999	580	140	25	555	15

Bottom Ash Ponds Groundwater Monitoring Network, AEP - Big Sandy Plant Louisa, Kentucky

Notes:

- 1. Latitude and Longitude are based on NAD 83 Geographic Coordinate System.
- 2. Vertical datum is based on NAVD 88.
- 3. Groundwater supply well data obtained from Kentucky Groundwater Data Repository, Water Well and Spring Location Map (http://kgs.uky.edu/kgsmap/KGSWater/viewer.asp).
- 4. NA: Not Available

Table 3-1. Monitoring Network Well Construction Summary

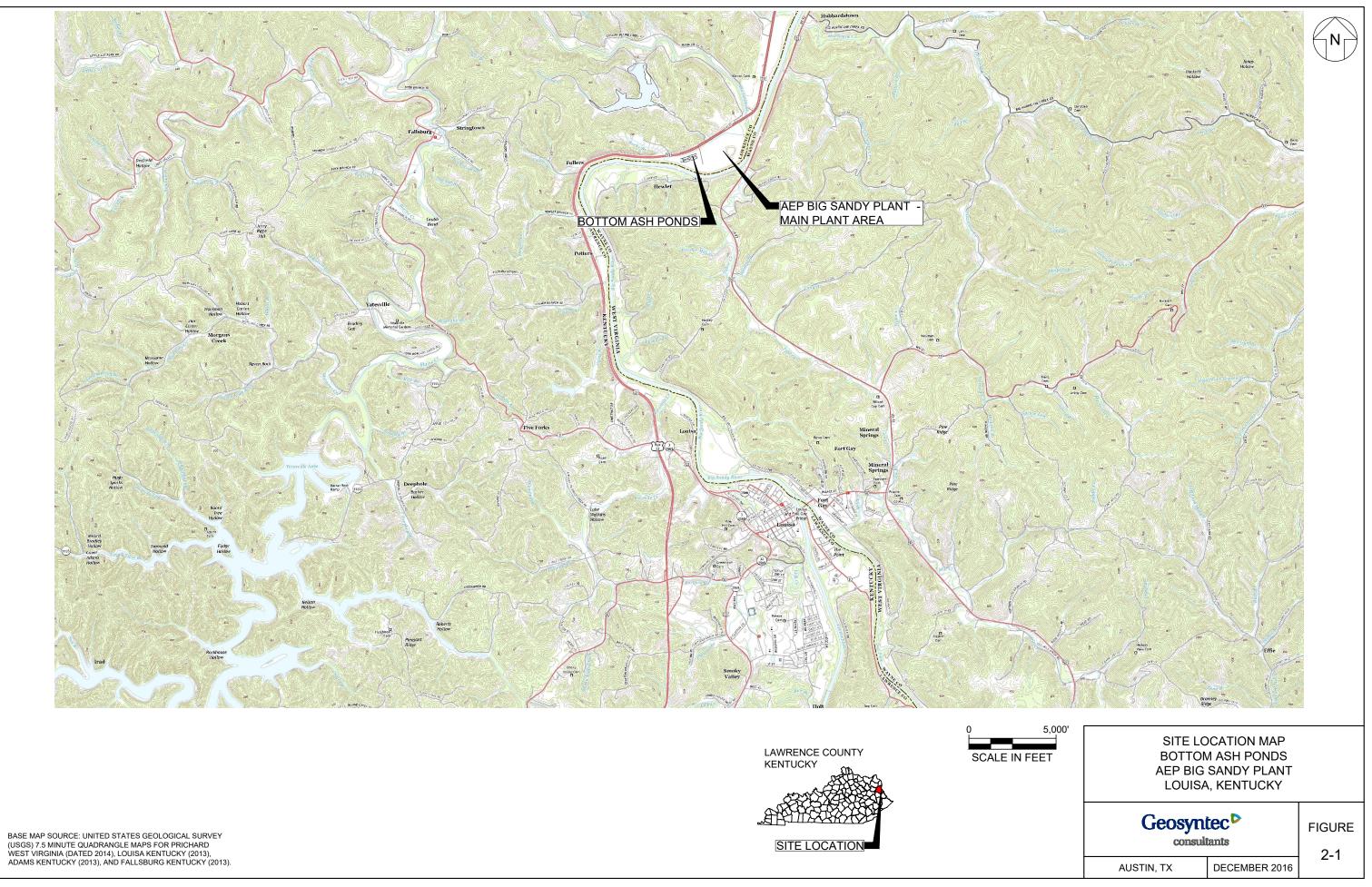
Bottom Ash Ponds Groundwater Monitoring Network, AEP - Big Sandy Plant Louisa, Kentucky

Monitoring Well ID	Northing	Easting	TOC Elevation (ft, MSL)	Ground Surface Elevation (ft, MSL)	Stickup Length* (ft)	Well Purpose & Location	Screen Zone Geology	Screen Top BTOC (ft)	Screen Bottom BTOC (ft)	Screen Bottom Elevation (ft, MSL)
MW-1614	248536.83	2108469.48	582.95	580.39	2.56	Sampling (Downgradient)	Sand Alluvium	66.1	76.1	506.9
MW-1615	248596.46	2108637.78	583.22	580.42	2.80	Sampling (Downgradient)	Sand Alluvium	66.3	76.3	506.9
MW-1618	248659.65	2108783.48	584.19	581.17	3.01	Sampling (Downgradient)	Sand Alluvium	66.0	76.0	508.2
MW-1619	250527.53	2111325.37	562.95	561.10	1.85	Sampling (Upgradient)	Sand Alluvium	41.4	51.4	511.6
MW-1620	248456.53	2107233.10	571.95	569.20	2.75	Sampling (Upgradient)	Sand Alluvium	45.7	55.7	516.2

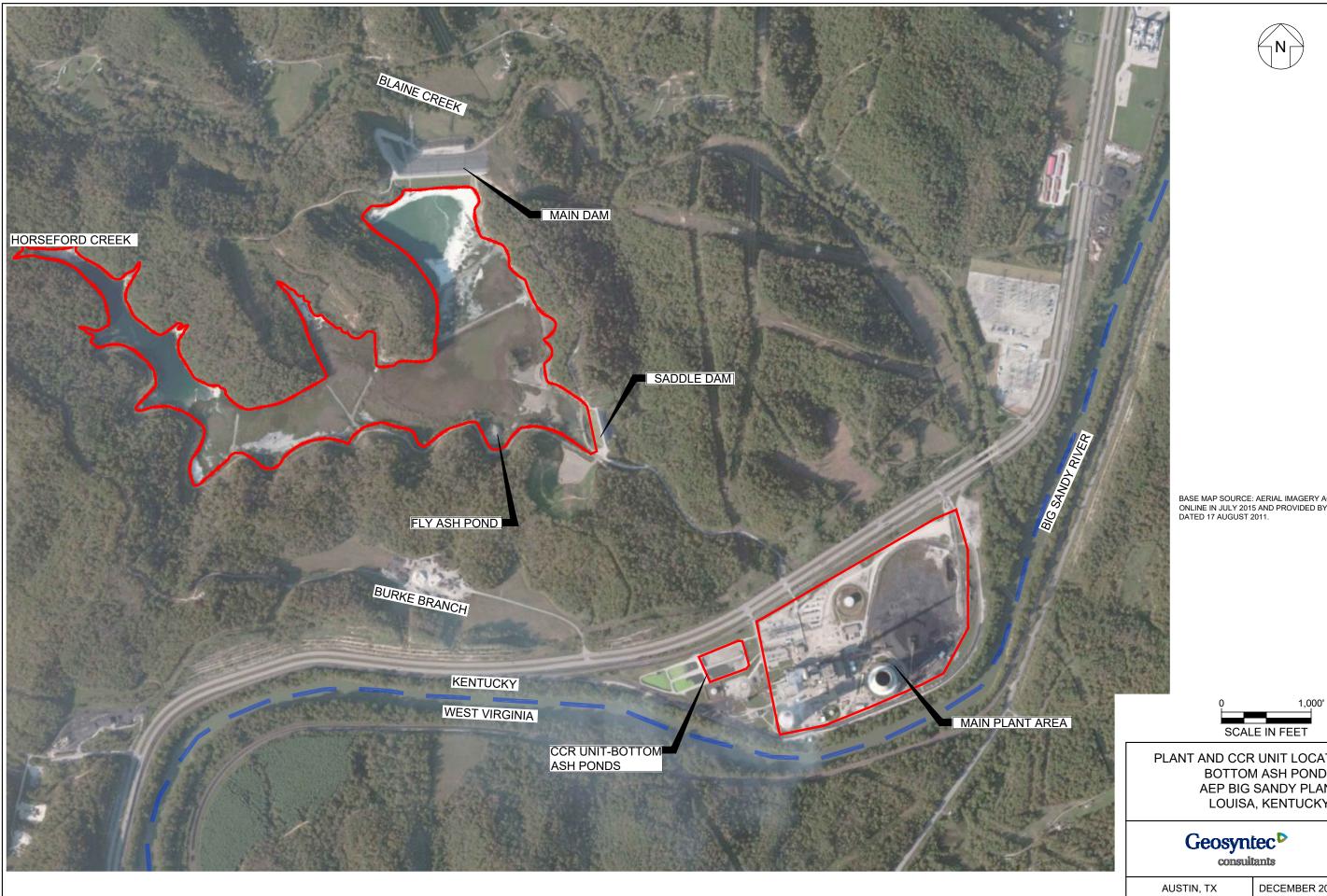
Notes:

1. Northing and Easting are in NAD83 State Plane KY North. Elevations are in based on NAVD88.

2. The Northing and Easting measurements were taken at the top of casing (TOC).

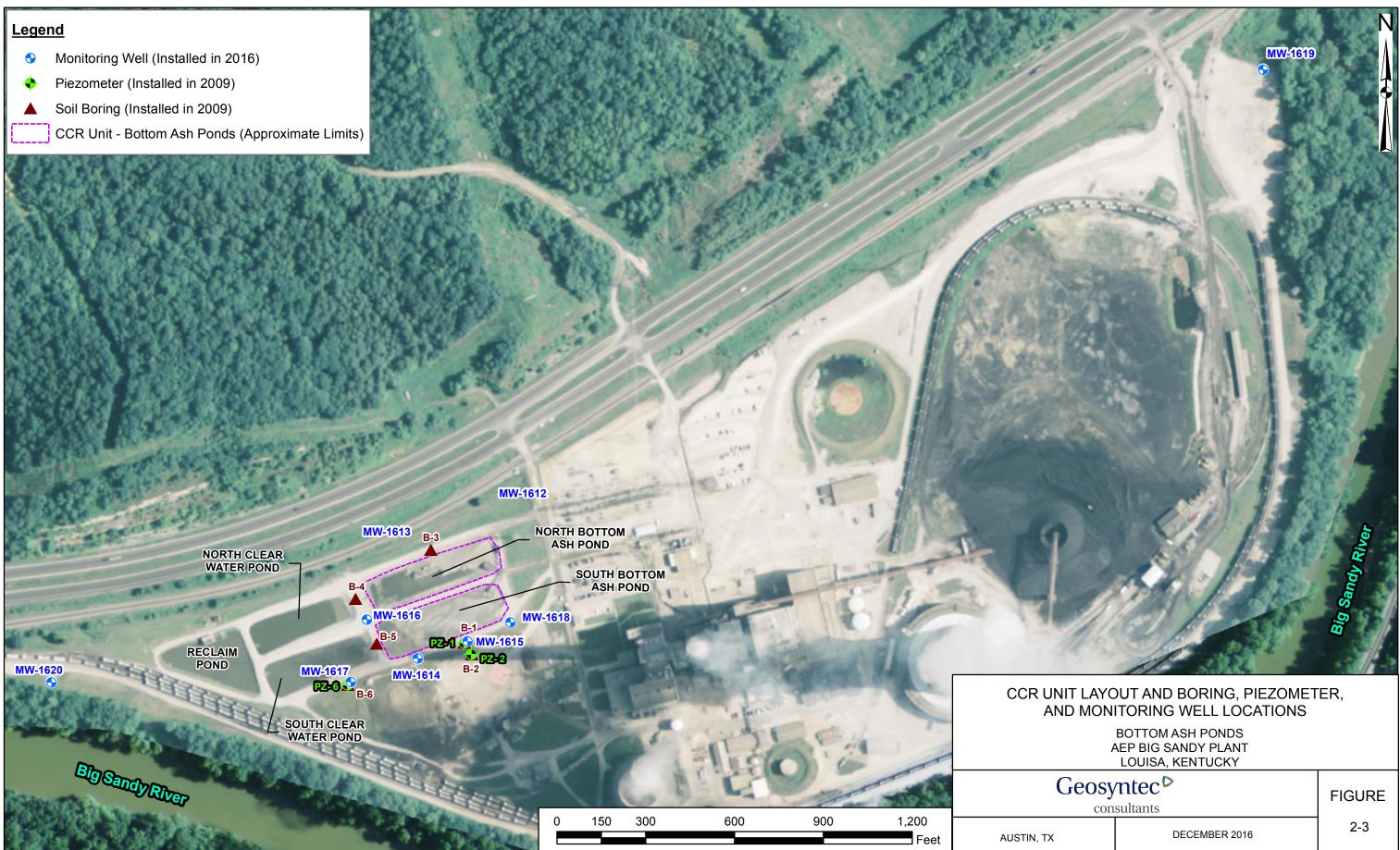

3. ft = Feet

MSL = Mean Sea Level

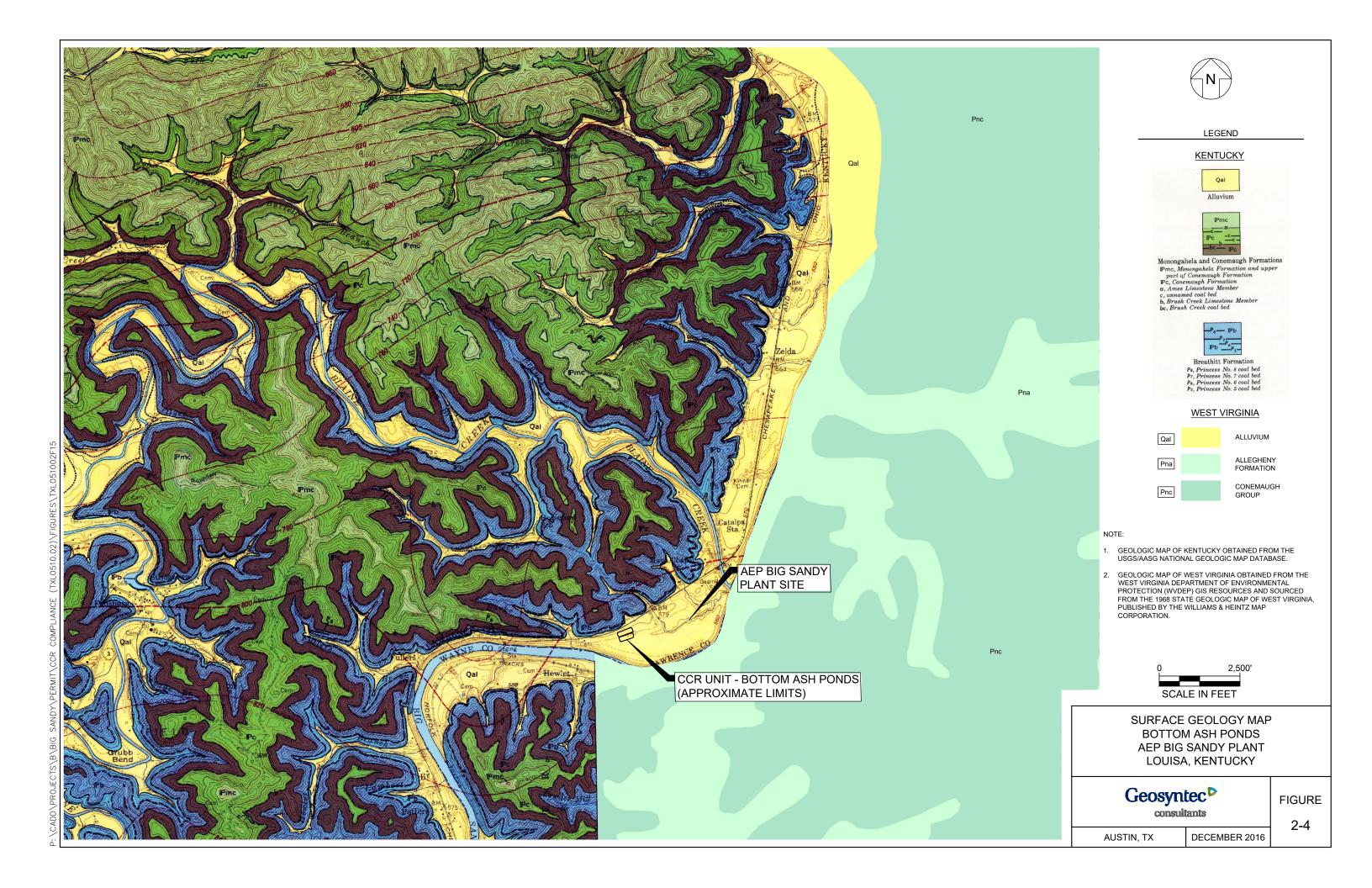

*: Casing length above ground surface

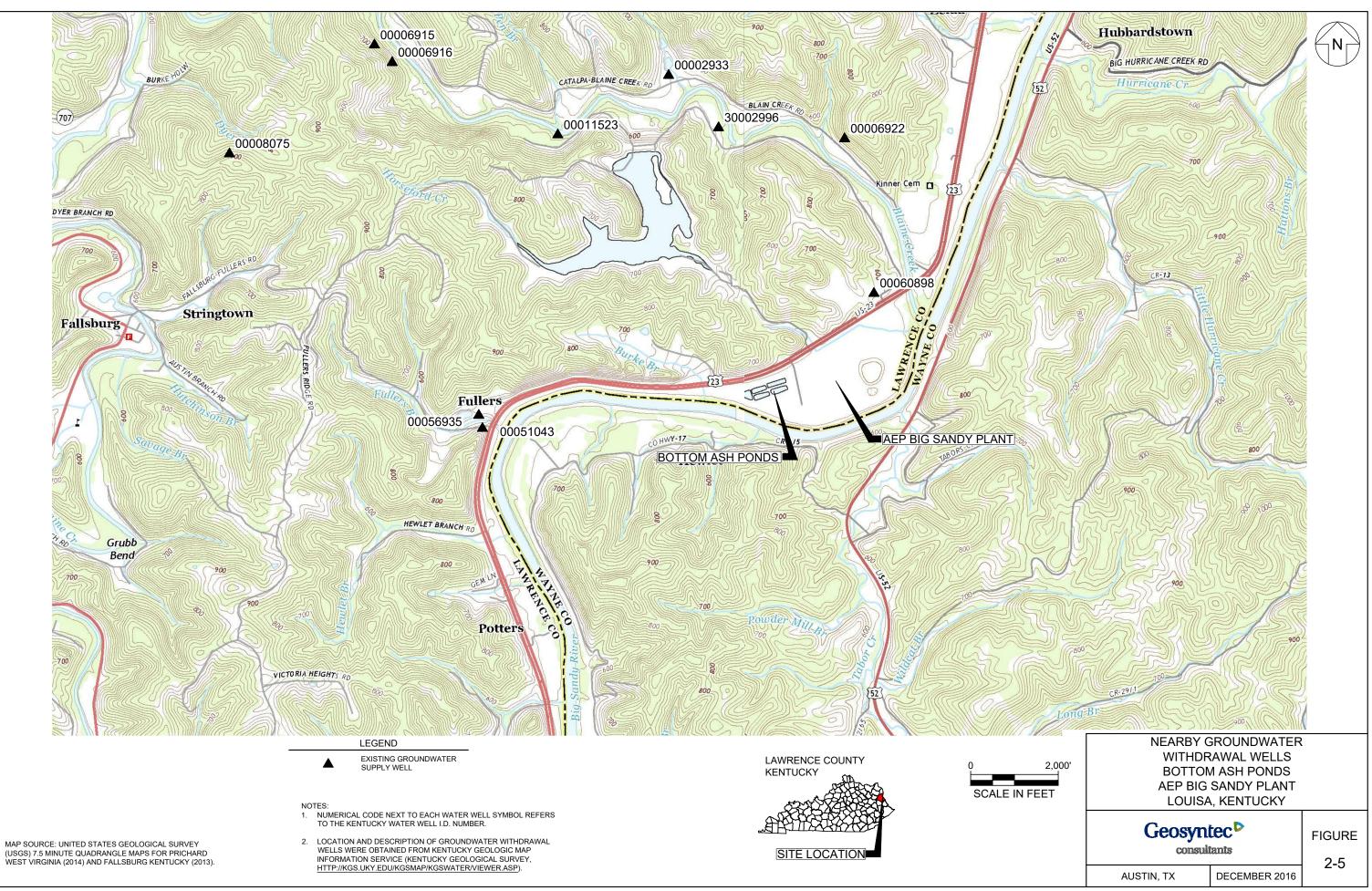
BTOC = Below Top Of Casing

FIGURES

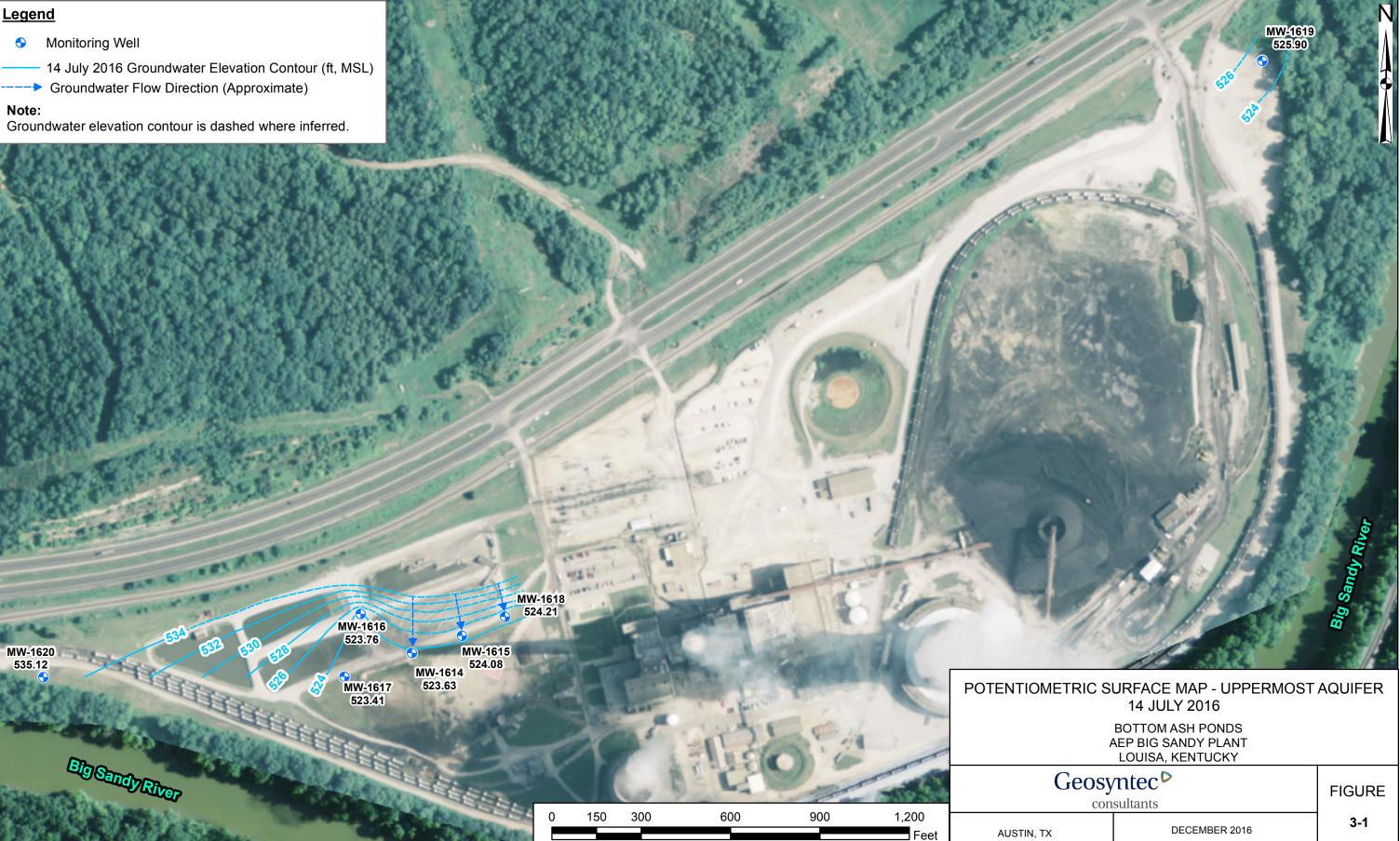

BASE MAP SOURCE: AERIAL IMAGERY ACCESSED VIA ArcGIS ONLINE IN JULY 2015 AND PROVIDED BY MICROSOFT. IMAGE IS DATED 17 AUGUST 2011.

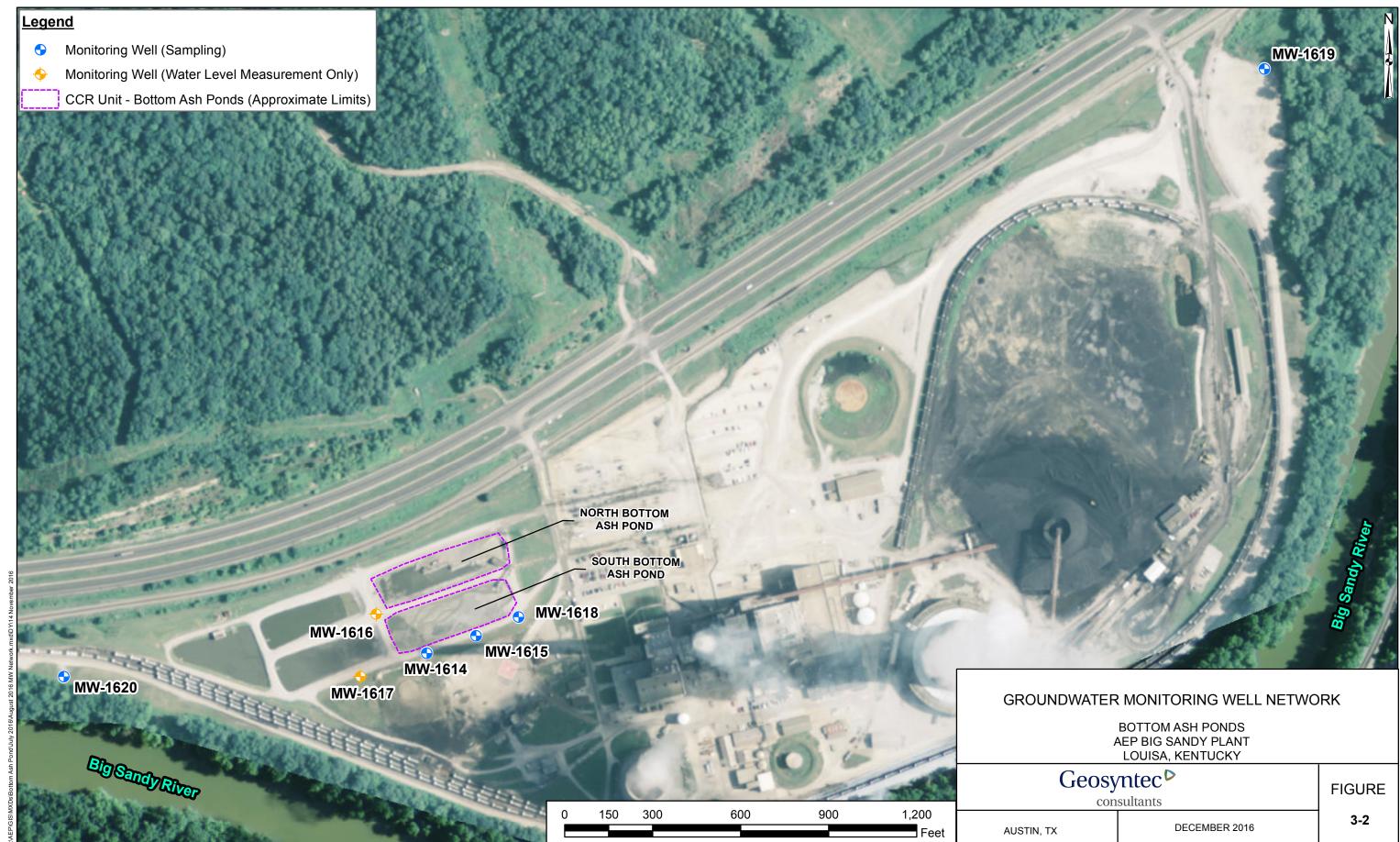
PLANT AND CCR UNIT LOCATION MAP BOTTOM ASH PONDS AEP BIG SANDY PLANT LOUISA, KENTUCKY

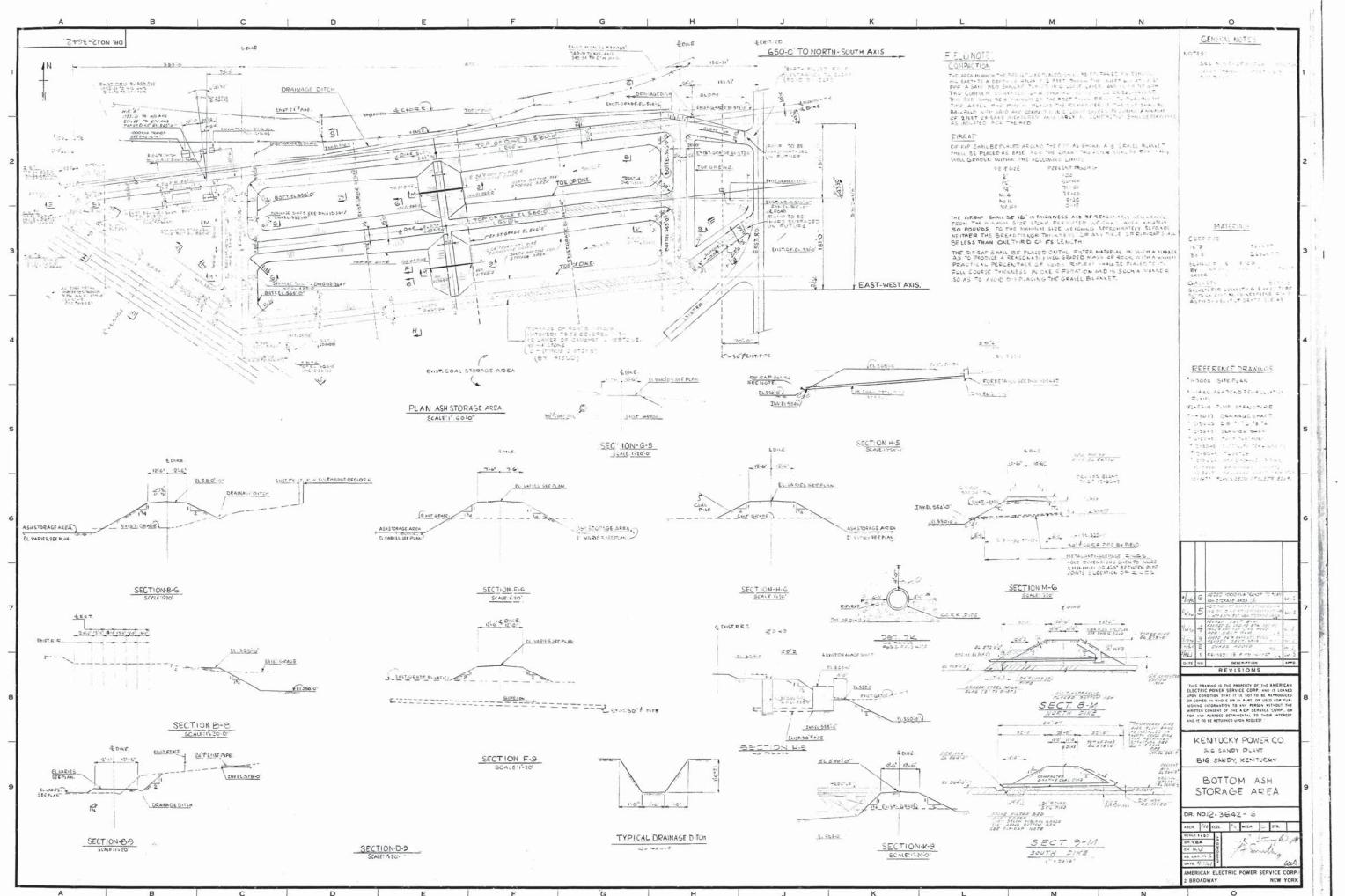

FIGURE


2-2

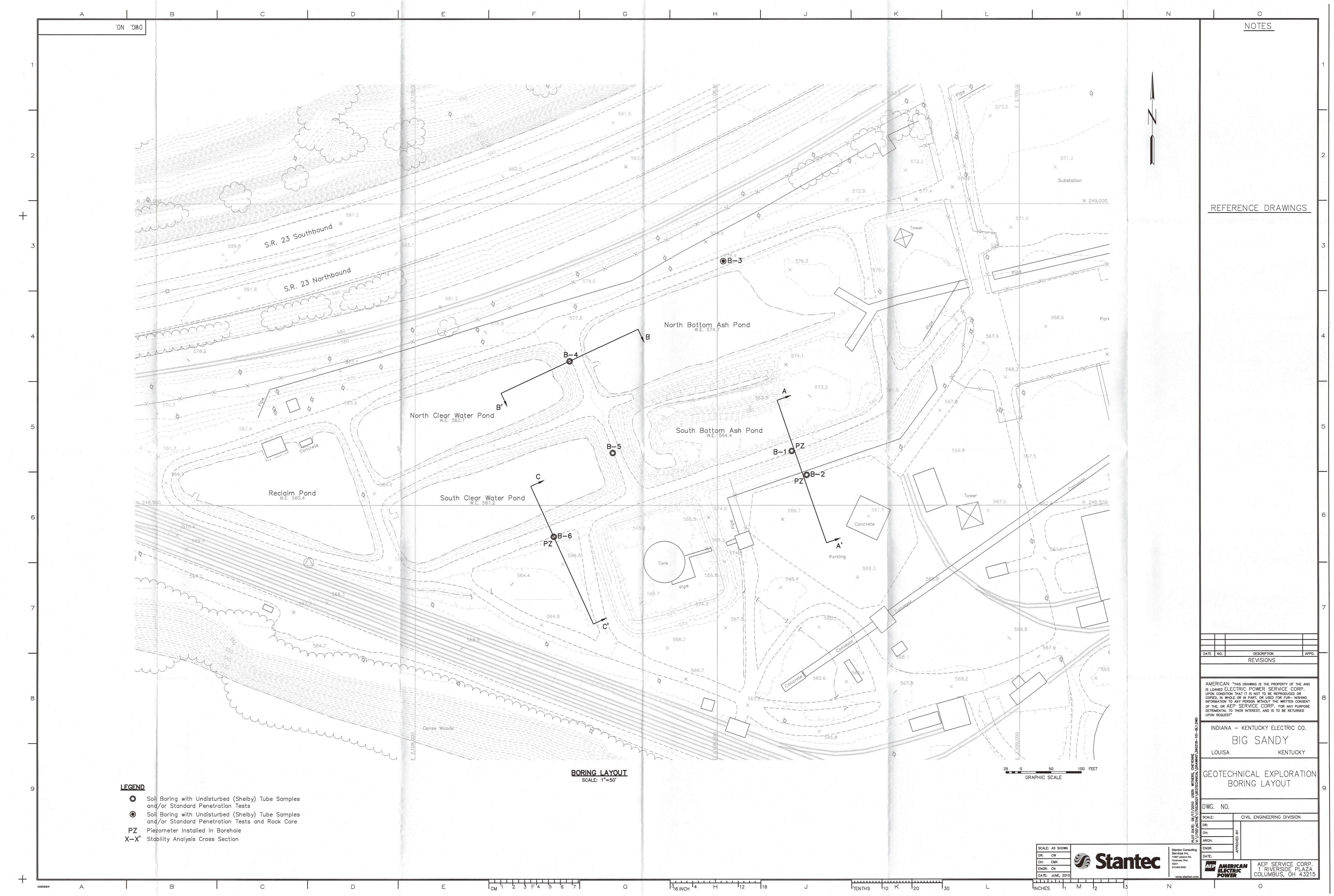
DECEMBER 2016

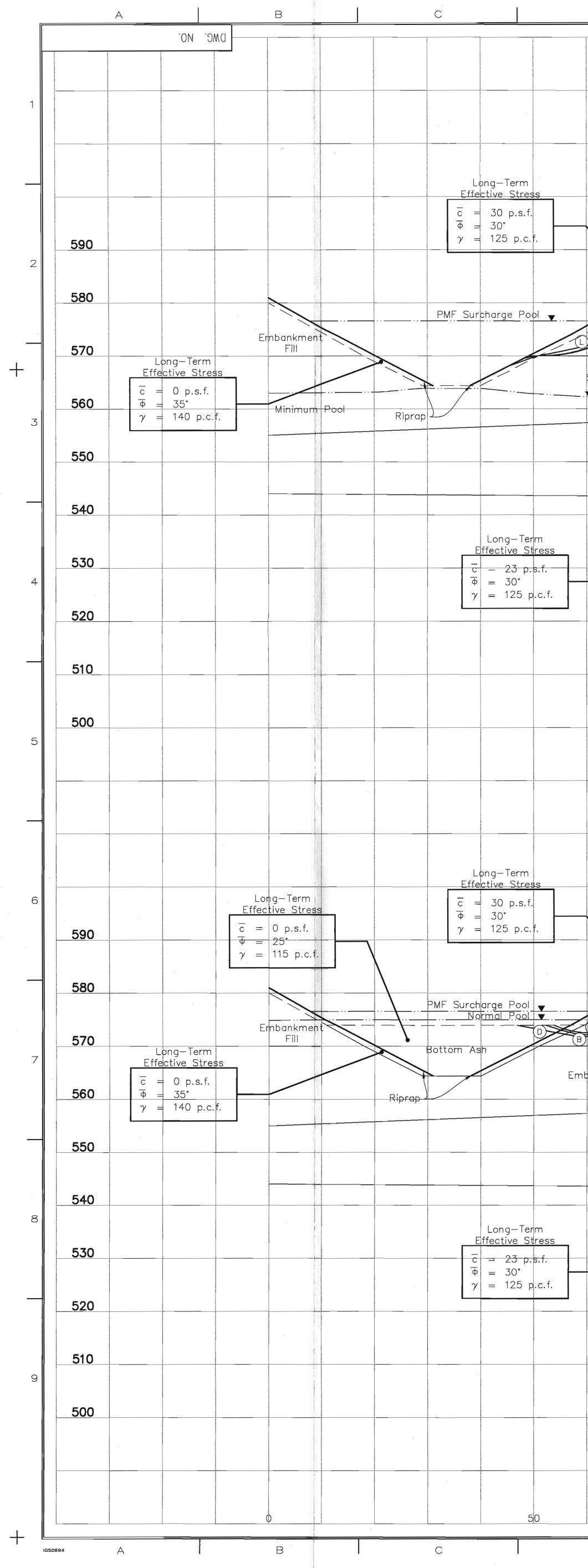



Geosy	ntec	D
~		

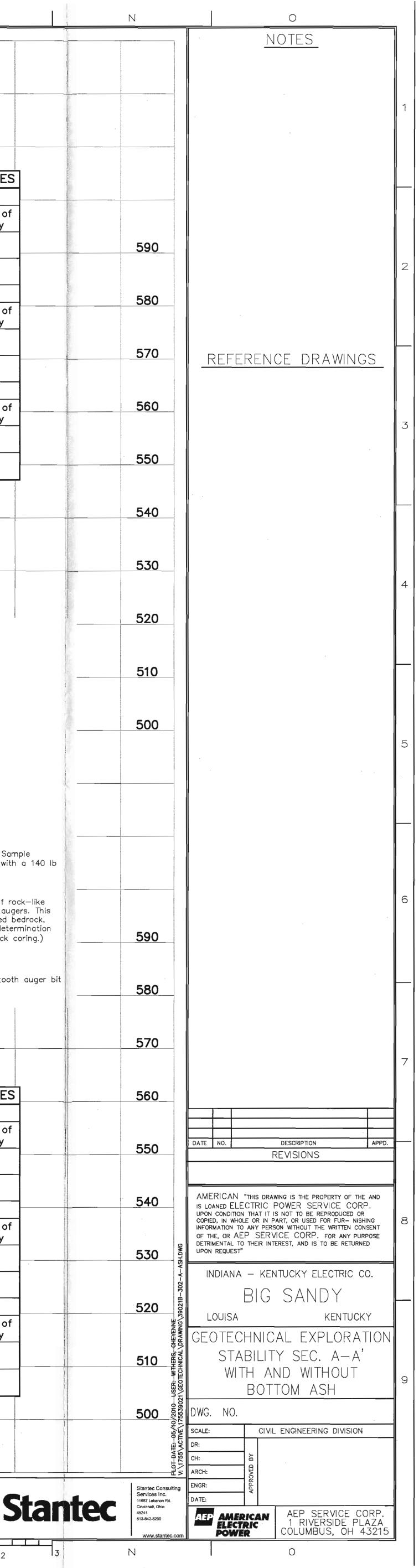


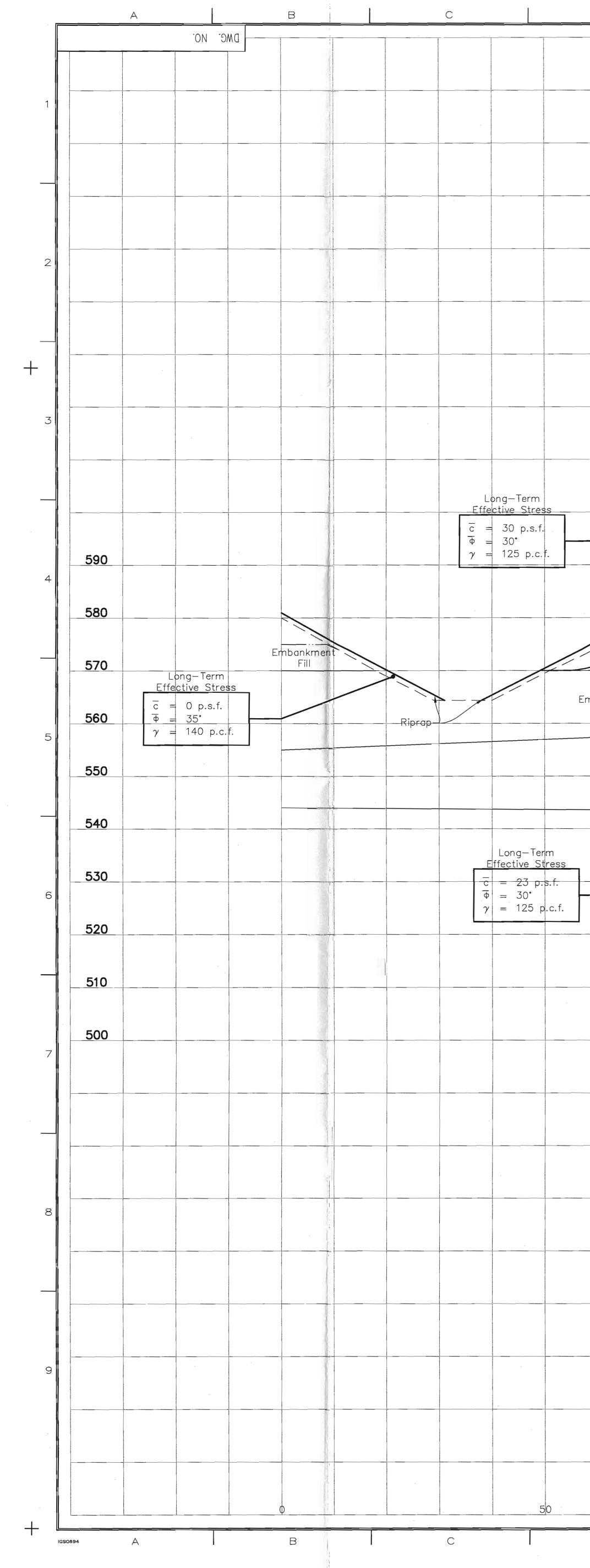
APPENDIX A REFERENCES


- AEP (American Electric Power), 1975. *Drawing 12-3642-6 Bottom Ash Storage Area*, Kentucky Power Company Big Sandy Plant, November, 2014.
- AEP (American Electric Power), 2014. Dam & Dike Inspection Report: Bottom Ash Pond Complex, Saddle Dam, Horseford Dam, GERS-14-024, November, 2014.
- AEP (American Electric Power), 2015. Big Sandy Plant: Post-Conversion and Decommissioning Water Balance Flow Diagram (Interim and Final), May, 2015.
- Geosyntec (Geosyntec Consultants, Inc.), 2016. Monitoring Well Installation Report: Bottom Ash Ponds, AEP Big Sandy Plant, October 2016.
- Lloyd, Jr., O.B., and Lyke, W.L., 1995. Ground Water Atlas of the United States, Segment 10: Illinois, Indiana, Kentucky, Ohio, Tennessee. Hydrologic Investigations Atlas 730-K. U. S. Geological Survey, Reston, VA.
- Stantec (Stantec Consulting Services, Inc.), 2010. Report on Geotechnical Exploration AEP Big Sandy Power Plan Unit 1-2 Bottom Ash Pond. June, 2010.

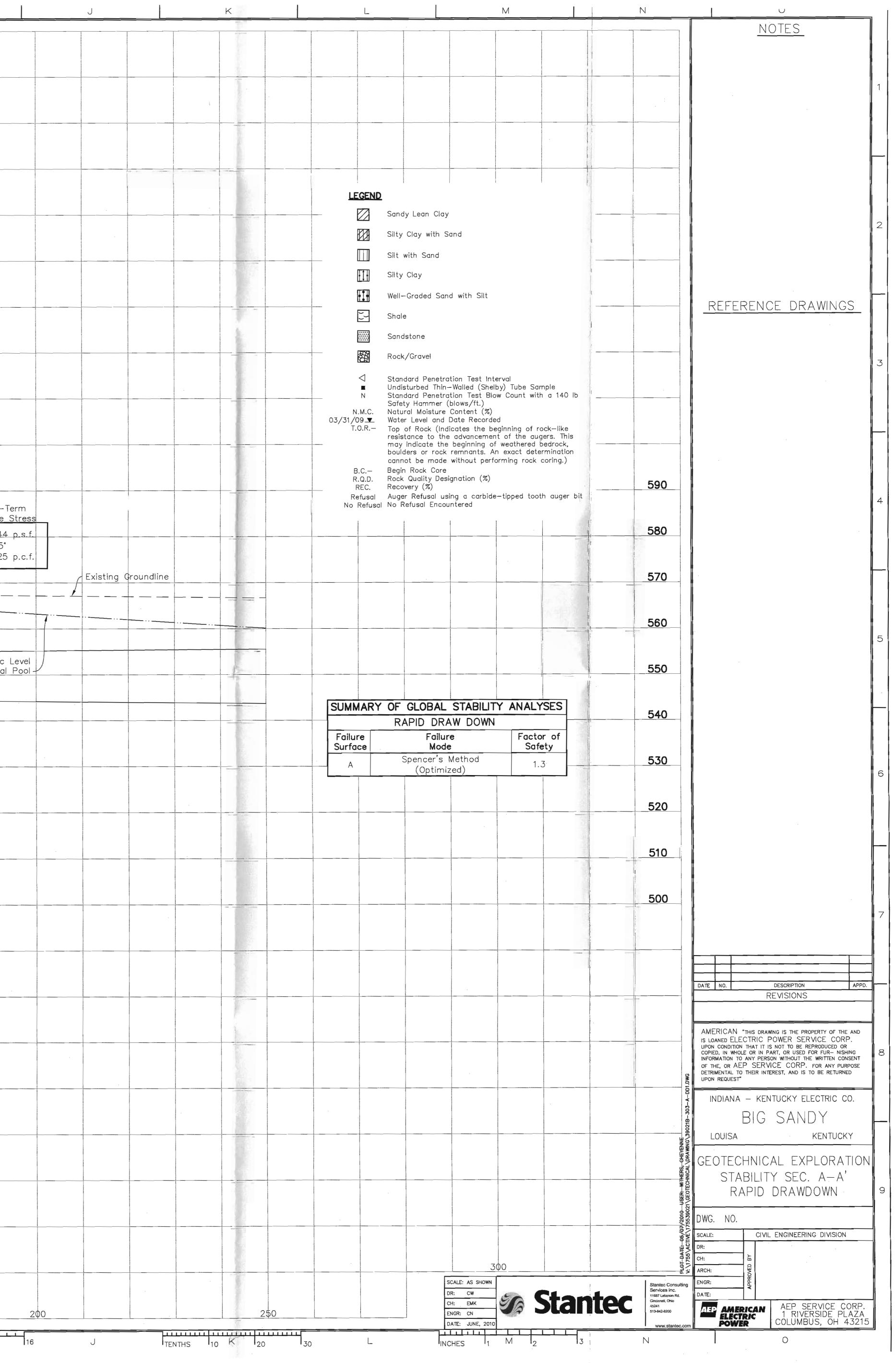

APPENDIX B

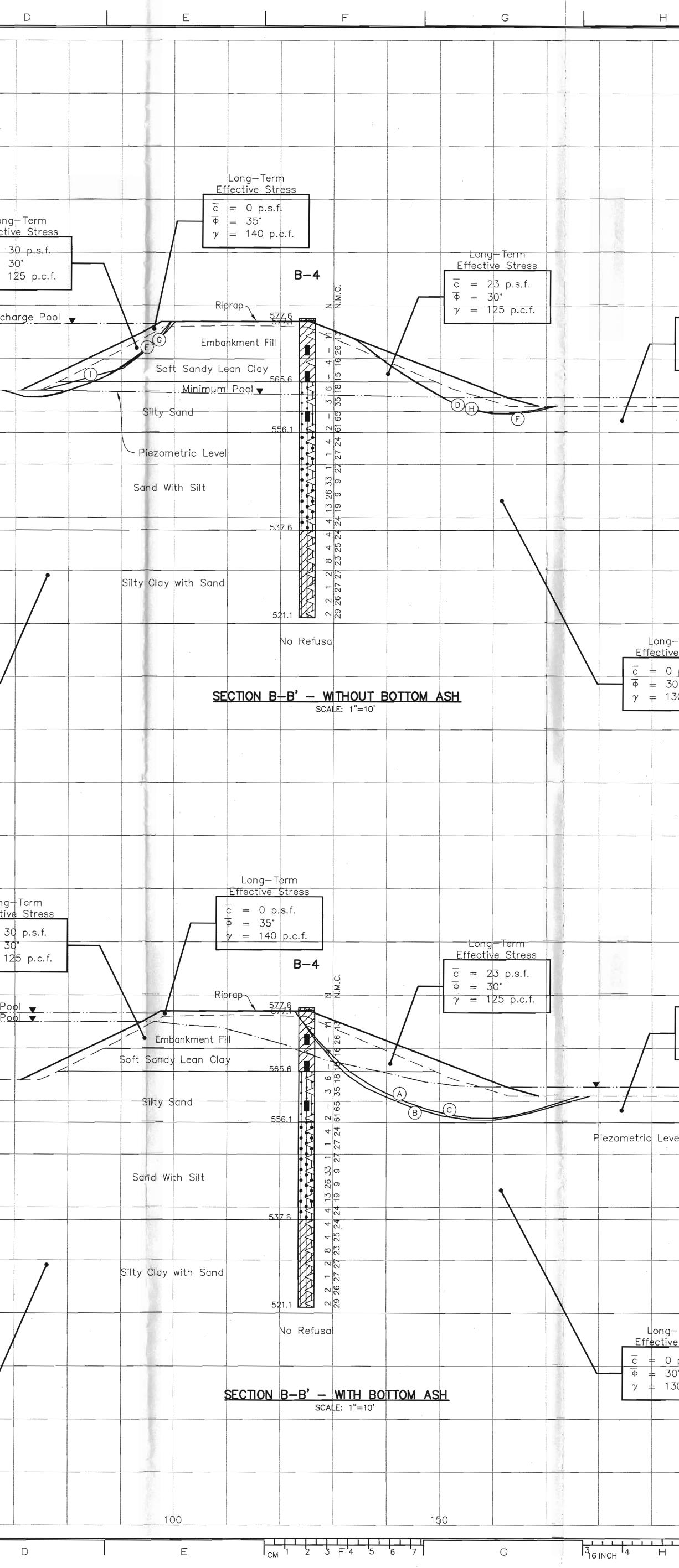
SUPPLEMENTAL DOCUMENTATION


A I B I C I D I E I F I G I H I J I K I

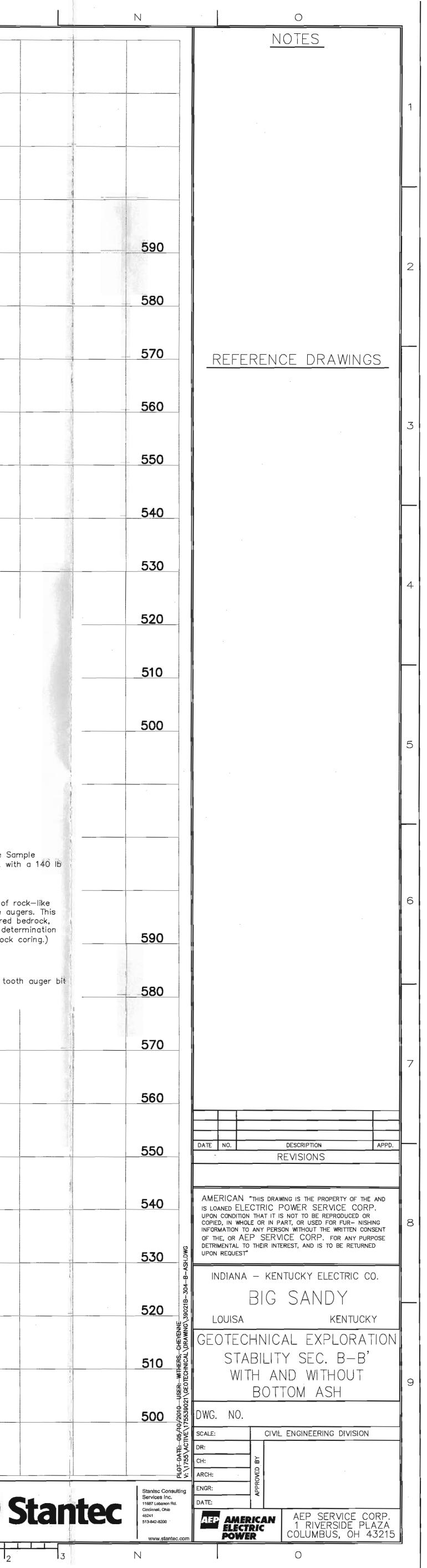


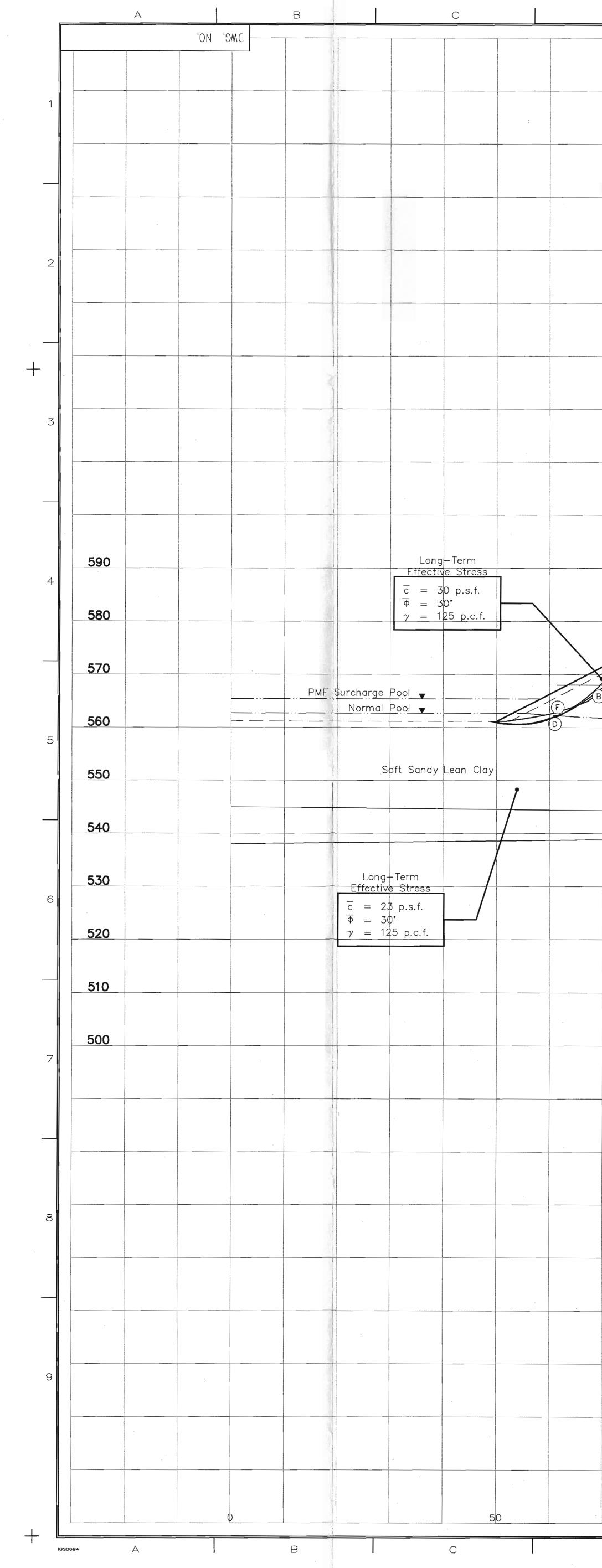
D			E			F			G		H
										· .	
		B-1									
	578	2	15 N 13 N.M.C.				B-2				$rac{}{} Ef}{} \overline{c}$
Stiff Sand	Embankmer Fill y Lean Clay	nt	21 16 14 15	K			U.C. W.W. Z.Z.				
	558	3.4	5 8 11 10 - 22 22 21 19 21	···		554.4	7 9 - 10 15 22 26 21 24 19				
	543	3.4	4 2 2 30 26 33 1			10/29/09_ ▼ 544_3			Soft Sand	ly Lean Clay	
		V V V	5 5 10 11				13 9 10 7 8 11				
	10/28/09_		14 29 16 17 15 18 7 6 7 8	Sar	d With Sil		o Refusal		c	Long-Term fective Stress = 0 p.s.f.	
	518	3.4	21						γ γ	= 30° = 130 p.c.f.	
				<u>SE</u>	CTION A		/ THOUT E LE: 1"=10'	OTTOM /	<u>ASH</u>		
										4	
		B-1									
	570	2	15 N.M.C.		-		B-2				Ef
F			21 16 14 15 21 16 14 15			<u> </u>	N. M. C.				
nbankment		3.4	8 11 10 -	Stiff So	ndy Lean	Clay554	9 - 10 15 2 26 21 24 19				F
		3.4	4 2 2 - 5 30 26 33 - 22			10/29/09_▼ 544,3	1 - 4 7 30 - 26 2		Soft Sanc	y Lean Clay	
			11 17 13 9 5 5 10 11 3 11 3			536.	13 9 10 7 8 11				
	10/28/09_		29 16 17 15 7 6 7 8	Sar	d With Sil		Refusal			Long-Term fective Stress	
	518	No Refu	20 14 21 18						$\frac{\overline{c}}{\phi}$	= 0 p.s.f. <u>- 30°</u> = 130 p.c.f.	
					SECTION	A-A' -	WITH BO E: 1"=10'	TTOM AS	<u>H</u>		
			10	0				15	50		
D	l		E			F 4 5	6 7		G	3 16 INCH 4	


Large For Large For Utilities Streep 	+		J		K			M
LooperTerm State Construction State								
LooperTerm State Construction State			-					
LooperTerm State Construction State								
LooperTerm State Construction State								
LooperTerm State Construction State								
LooperTerm State Construction State						SUMMAR	Y OF GLOBAL STABIL	TY ANALYSES
Large For Large For Utilities Streep 								
Large Terri Large								Factor of Safety
i Logo I tarm						G		
1 0.0.000000000000000000000000000000000	Long-Ter	rm				н	Spencer's Method	1.7
T - 30 -								N
Image: Second	φ = 35°							Factor of Safety
Subscraft Muchael	$\gamma = 125 \text{ p}$	o.c.t.					,	
PARE LEWINT Foldor Foldor Foldor Softee Foldor Foldor Softee Softee<			Existing G	rounaline		J	Spencer's Method	1.4
Serfeet Mode Selder Nextment No Selder Nextment No Selder Nextment No Selder Nextment No Selder Nextment Selder Selder Nextment Selder Selder Nextment Selder Selder Nextment Selder Selder Selder Selder Selder Selder <t< td=""><td></td><td></td><td></td><td></td><td>T.</td><td></td><td></td><td></td></t<>					T.			
K Spence's Microsoft / E Level K Spence's Microsoft / E Level P C K Spence's Microsoft / E Level Spence's Microsoft / E Level Longe / E Microsoft / E Level Longe / E Microsoft / E Level Longe / E Microsoft / E Level K Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Longe / E Microsoft / E Level Longe / E Microsoft / E Level K Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Longe / E Microsoft / E Level Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level Spence's Microsoft / E Level </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Factor of Safety</td>								Factor of Safety
PERCINCY COMP I I Semeral in Method 1.5 I Semeral in Method 1.5 I Semeral in Method 1.5 I Semeral in Method III I Semeral in Method IIII I Semeral in Method IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						K	Spencer's Method	
Lington Win Lington Lington Lington	~ P	'iezometric Le	vel				Spencer's Method	1.9
Image: Strategy in the strate								
Image: Strategy in the strate	· ·							
Image: Strategy in the strate								
Image: Strategy in the strate								
Image: Strategy in the strate								
Image: Start in the start of the start o								
Siny Day with Sand Siny Day							EGEND	I
Bit with Sarz Bit with Sarz <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Sandy Lean Clay</td><td></td></td<>							Sandy Lean Clay	
Sty Cay Well-Graded Same Hit SIL State St					-		Silty Clay with Sand	
Long-Term State Condition State							Silt with Sand	
Image: Strate in the strate							Silty Clay	
Image: Substance in the second sec							Well-Graded Sand with	ı Silt
Image: State in the state i							Shale	
C Statut Retriction Task Interval					and the second sec		Sandstone	
Pierometric Level Summary of CLOBAL STABILITY ANALYSE Pierometric Level Summary of							Rock/Gravel	
N Biological Participation Test Blow Control N Statical array control Test Blow Control Statical array control Statical array control V3/31/Cast User Control User Control Statical array control Long-Torm Top of test. (Foldise the beginning of the according root back for a static statical array control (S) Long-Torm Hackee State Hackee State Book Root Development of the source static						· · ·		
al/3/109 X Well Level and Date Recorded CAL Top of Rock (Inclame to belighting of rock (Inclame to belight))) Piezometric Lavel Existing Groundline SUMMARY OF GLOBAL STABILUTY ANALYSE Piezometric Lavel SUMMARY OF GLOBAL STABILUTY ANALYSE Subscience (Inclame to belight)) Piezometric Lavel SUMMARY OF GLOBAL STABILUTY ANALYSE Subscience (Inclame to belight)) Piezometric Lavel Subscience (Inclame to belight)) Subscience (Inclame to belight)) Piezometric Lavel<							N Standard Penetration Safety Hammer (blows	Test Blow Count wit /ft.)
Long-Term Ender Stress Z = 144 p.s.t Ref. Gaily Depretion (3) Ref. Gaily Depretion (3) Ref. Gaily Depretion (3) Ref. Gaily Depretion (3) Ref. Gaily Depretion (3) Ref. Gaily Depretion (3) Ref. Gaily Depretion (3) Plezometric Level SUMMARY OF CLOBAL STABILITY ANALYSE Statisting Groundline Statisting Groundline Statisting G						03/31/0	09 💌 🛛 Water Level and Date	Recorded
Long-Term Compare Vibral Lege and Vibral Lege an							resistance to the advo may indicate the begir	ncement of the au Ining of weathered
Lingerier Robe Rodity Designation (3) Z = 144 p.s.f. Rec. Recovery (3) F = 35' Y = 125 p.c.f. Piezometric Level Existing Groundine Piezometric Level SUMMARY OF GLOBAL STABILITY ANALYSES Sufface Follure Sufface Follure Sufface Follure Sufface Follure Sufface Follure Sufface Set s						E	cannot be made witho	
E 144 p.s.f. 7 125 p.c.f. Plezometric Level SUMMARY OF GLOBAL STABILITY ANALYSES STATIC CONDITION Follure Follure STATIC CONDITION Follure Follure Statust Na Return Statust Na Return Plezometric Level SUMMARY OF GLOBAL STABILITY ANALYSES Statust Na Return Statust Na Return Statust Na Return Statust Na Return Statust Na Return Statust Na Return Plezometric Level Summark Statust Na Return Statust Na Return Statust Na Retur						R	R.Q.D. Rock Quality Designation REC. Recovery (%)	
y = 125 p.c.f. Existing Groundline Piezometric Level SUMMARY OF GLOBAL STABILITY ANALYSE: STATIC CONDITION Follure STATIC CONDITION Follure A Spencer's Method 1.9 B Spencer's Method 1.9 C Spencer's Method 1.9 SetSMC CONDITION Follure Follure Surface Mode Setestic Optimized) 1.6 D Spencer's Method 1.6 D Spencer's Method 1.6 D Spencer's Method 1.9 Spencer's Method 1.6 D Optimized) 1.6 Spencer's Method D Spencer's Method 1.9 Spencer's Method 1.6 Sofety Spencer's Method 1.6 Sofety Spencer's Method 1.6 Sofety Spencer's Method 1.9 Sofety Spencer's Method 1.9 Sofety Spencer's Method 300 300 Spencer's Method Sofety Sofety	$\overline{c} = 144 \text{ p}$	1				No	etusal Auger Retusal using a Refusal No Refusal Encountere	carbiae—tippea too 1
Piezometric Level Piezometric Level SUMMARY OF GLOBAL STABILITY ANALYSES STATIC CONDITION Foilure F		o.c.f.						
STATIC CONDITION Follure Follure Follure Follure Follure Sofety A Spencer's Method 1.9 B Spencer's Method 1.9 B Spencer's Method 1.9 SEISMIC CONDITION Factor of Sofety C SEISMIC CONDITION Factor of Mode Sofety 1.9 C Spencer's Method 1.9 Sofety 1.6 D Spencer's Method 1.6 D Spencer's Method 1.6 V Failure Failure Factor of Sofety Sofety 1.9 Sofety E Spencer's Method 1.9 Spencer's Method 1.9 300 300 Zo0 Zo0 Zo0 Zo0 Zo0 Xo Xo Xo Xo Xo Xo Xo Xo Xo Xo<			Existing G	roundline				
STATIC CONDITION Falure Falure Falure Factor of Safety A Spencer's Method 1.9 B Spencer's Method 1.9 B Spencer's Method 1.9 C Optimized) 1.9 C SEISMIC CONDITION Factor of Sofety C Spencer's Method 1.6 D Spencer's Method 1.6 V E Spencer's Method 1.9 Gottimized) 1.9 1.9 300 Z00 Z00 Z00 300 300	·							
STATIC CONDITION Falure Falure Falure Factor of Safety A Spencer's Method 1.9 B Spencer's Method 1.9 B Spencer's Method 1.9 C Optimized) 1.9 C SEISMIC CONDITION Factor of Sofety C Spencer's Method 1.6 D Spencer's Method 1.6 V E Spencer's Method 1.9 Gottimized) 1.9 1.9 300 Z00 Z00 Z00 300 300	Piezometr	ic Level				SUMMAR	Y OF GLOBAL STABIL	TY ANALYSES
Surface Mode Safety A Spencer's Method (Optimized) 1.9 B Spencer's Method (Optimized) 1.9 B Spencer's Method (Optimized) 1.9 C Spencer's Method (Optimized) 1.6 D Spencer's Method (Optimized) 1.6 D Spencer's Method (Optimized) 1.6 D Spencer's Method (Optimized) 1.6 D Spencer's Method (Optimized) 1.6 Failure Failure Failure Spencer's Method (Optimized) 1.9 E Spencer's Method (Optimized) 1.9 Failure Spencer's Method (Optimized) 1.9 E Spencer's Method (Optimized) 1.9 Spencer's Method (Optimized) 3@0 Spencer's Method (Optimized) 3@0 Spencer's Method (Optimized) 3@0								
A (Optimized) 1.3 B Spencer's Method (Optimized) 1.9 SEISMIC CONDITION Follure Mode Foctor of Sofety C Spencer's Method (Optimized) 1.6 D Spencer's Method (Optimized) 1.6 D Spencer's Method (Optimized) 1.6 PMF EVENT Follure Mode Foctor of Sofety F Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 2.4 O Spencer's Method (Optimized) 2.4 Z00 Z50 Spencer's Method (Optimized) 2.4								Factor of Safety
B Spencer's Method (Optimized) SEISMIC CONDITION Follure Follure Mode Safety C Spencer's Method 1.6 D Spencer's Method 1.6 D Spencer's Method 1.6 D Spencer's Method 1.6 D Spencer's Method 1.6 Surface Follure Follure Foctor of Surface Sofety E Spencer's Method 1.9 F Spencer's Method 1.9 Spencer's Method 2.4 Optimized) 1.9 Spencer's Method 2.4 Spencer's Metho						A		1.9
SEISMIC CONDITION Failure Failure Failure Spencer's Method 1.6 O Spencer's Method 1.6 O Spencer's Method 1.6 PMF EVENT Failure Failure Failure Spencer's Method 1.6 O Spencer's Method 1.6 Variation Failure Failure Surface Mode Safety E Spencer's Method 1.9 F Spencer's Method 2.4 Optimized) 2.4 300 200 250 Soft with and the second						В	Spencer's Method	1.9
Surface Mode Safety C Spencer's Method (Optimized) 1.6 D Spencer's Method (Optimized) 1.6 PMF EVENT Failure Mode Factor of Safety E Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 2.4 200 250 Spencer's Method (Optimized) 300								<u> </u>
200 250 C (Optimized) 1.6 0 Spencer's Method (Optimized) 1.6 PMF EVENT Failure Surface Failure Mode Factor of Safety E Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 1.9 Spencer's Method 2.4 Spencer's Method 2.4								Factor of Safety
D Spencer's Method (Optimized) 1.6 PMF EVENT Failure Surface Failure Mode Factor of Safety E Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 2.4 0 Secure As service (Optimized) 300 200 250 Secure As service (Optimized) Secure As service (Optimized)		· .	-			C		1.6
PMF EVENT PMF EVENT Failure Surface Failure Spencer's Method (Optimized) F Spencer's Method 2.4 Coptimized) 200 250 PMF EVENT Failure Failure Failure Spencer's Method 2.4 Source Sou						D	Spencer's Method	1.6
Surface Mode Safety E Spencer's Method (Optimized) 1.9 F Spencer's Method (Optimized) 2.4 Image: Solution of the second of the seco								
E Spencer's Method 1.9 F Spencer's Method 2.4 (Optimized) 2.4 300 SCALE: AS SHOWN DR: CW CH: EMK ENGR: ON DATE: JUNE, 2010								Factor of Safety
F Spencer's Method (Optimized) 2.4 Image: Spencer's Method (Optimized) 2.4 Image: Spencer's Method (Optimized) 2.4 Image: Spencer's Method (Optimized) 300 Image: Spencer's Method (Optimized) 300 Image: Spencer's Method (Optimized) 300 Image: Spencer's Method (Optimized) 300 Image: Spencer's Method (Optimized) Image: Spencer's Method (Optimized) Image: Spencer's Method (Optimized) Image: Spencer's Method (Optimized) Image: Spencer's Method (Image: Spencer's Method (Ima						E	Spencer's Method	
200 250 300 250						F	Spencer's Method	2.4
200 SCALE: AS SHOWN DR: CW CH: EMK ENGR: CN DATE: JUNE, 2010								
200 SCALE: AS SHOWN DR: CW CH: EMK ENGR: CN DATE: JUNE, 2010								
200 SCALE: AS SHOWN DR: CW CH: EMK ENGR: CN DATE: JUNE, 2010								
200 250 DR: CW CH: EMK ENGR: CN DATE: JUNE, 2010								
200 250 ENGR: CN DATE: JUNE, 2010							DR: CV	
		200			250		ENGR: C	
		16	 J	TENTHS	10 K 20	30		

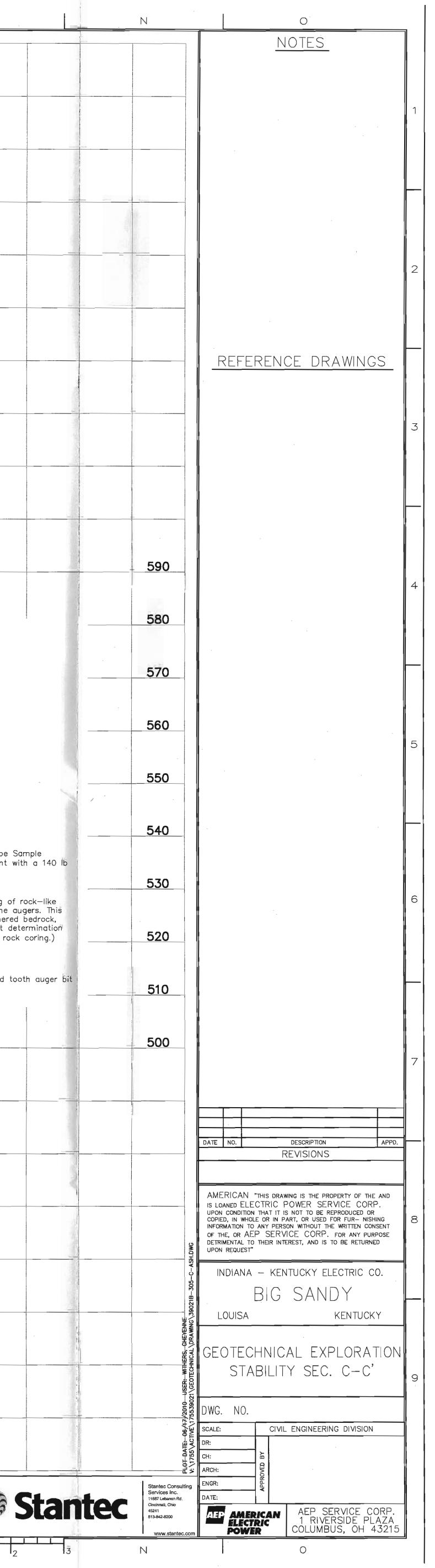


	D			E				F				G			<u>H</u>
													· · · · ·		
						- The state of the			A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY						
									ay munde of a deal of the second s						
								-							
												-		有	
	-			P									1	·	
				3—1											
				N.M.C.											E
	T.		579.9	- 15 15 19					B-					\square	$\overline{\Phi}$
_	(A)			21 16 14				5	67.8 67.3	U.W. W.Z.Z				/	
Emt	ankment	Fill 2	558.4	10 - 19 21	Sti	ff Sand	y Lean C	lay		- 10 15 21 24 19				F	
				- 5 8 - 22 22				5	54.8	4 7 9 26 22 26					Piez
		1	543 4	26 33				10/29/09	⊥ 44.8	8 30	-	Soft Sand	ly Lean Cla	/	
				A.A.A.A. 17 13 9 5 10 11				5	36.3	13 9 10 7 8 11					
				7 15 11 7 8 5		Sanc	t With Si		No Re				ong-Term		
		10/28/	/09 💌	AAA 14 29 16 18 7 6							$\mathbf{\mathbf{n}}$		Long-Term fective Stre = 0 p.s.f.		
			518.4 No 1			-							<u> </u>	.f.	
							-								
											-				
				<u>SECTI</u>	ON A-/	<u>4' - V</u>	<u>VITHOUT</u>	BOTT(\$CALE: 1	DM AS "=10'	<u>SH —</u>		RAWDOW	N		
				1			<u> </u>								
					100						1	50			-
				E				5 F 4				G	3		<u> </u>

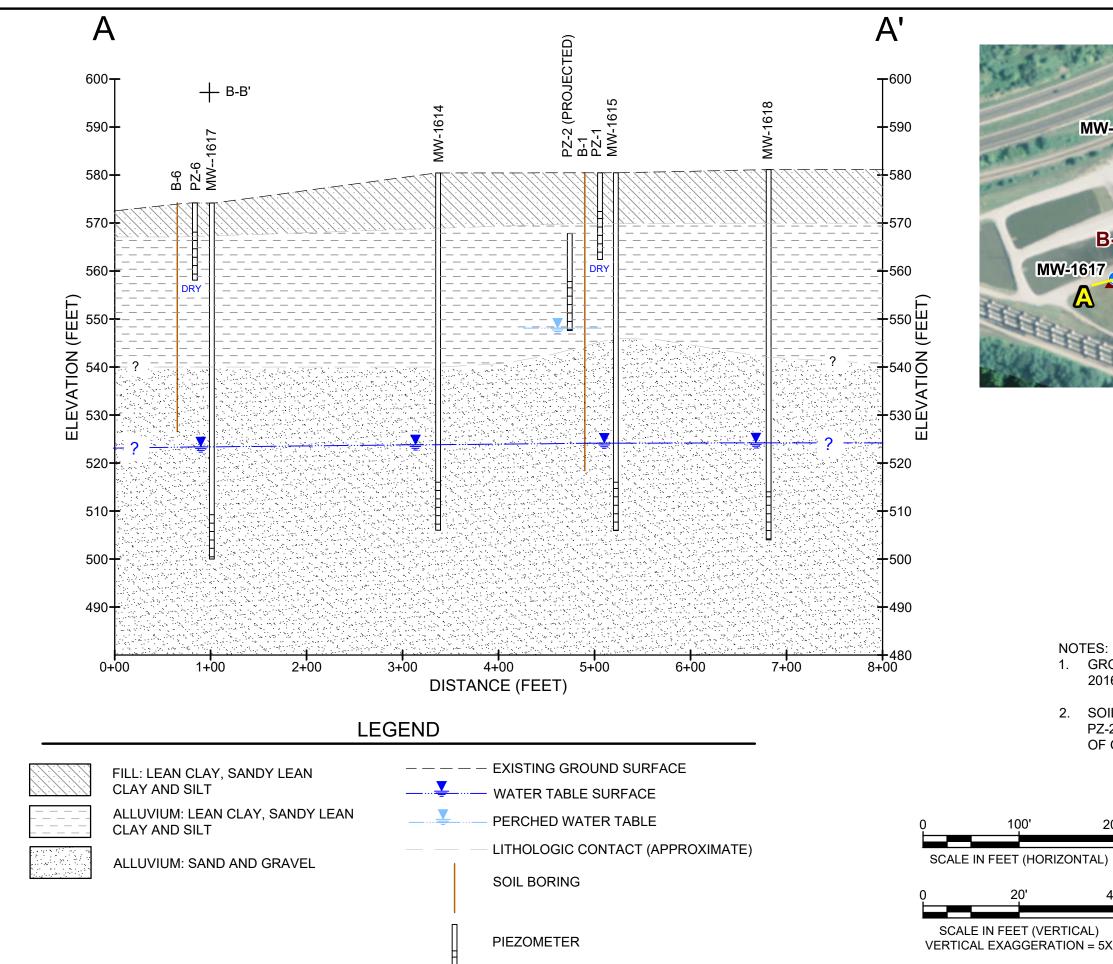

					· · · · · · · · · · · · · · · · · · ·
				LEGEND	Sandy Lean Clay
					Silty Clay with Sand
					Silt with Sand
					Silty Clay
					Well-Graded Sand with Silt
					Shale
					Sandstone
					Rock/Gravel
					Standard Penetration Test Interval Undisturbed Thin-Walled (Shelby) Tub
				N N.M.C.	Standard Penetration Test Blow Coun Safety Hammer (blows/ft.) Natural Moisture Content (%)
				03/31/09_	Water Level and Date Recorded Top of Rock (Indicates the beginning resistance to the advancement of th
					resistance to the advancement of the may indicate the beginning of weather boulders or rock remnants. An exact
			-	B.C	cannot be made without performing Begin Rock Core
				R.Q.D. REC.	Rock Quality Designation (%) Recovery (%)
Long-Term				Refusal	Auger Refusal using a carbide—tipped No Refusal Encountered
Effective Stress]				
$\overline{c} = 144 \text{ p.s.f.}$ $\overline{\Phi} = 35^{\circ}$					
$\gamma = 125 \text{ p.c.f.}$					
	Existing (Groundline			
		<u>+</u>			
		······································			
Piezometric Level					
	1			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				SUMMARY	OF GLOBAL STABILITY AN
					RAPID DRAW DOWN
				SUMMARY Failure Surface	RAPID DRAW DOWN Failure F Mode
				Failure	RAPID DRAW DOWN Failure F
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
				Failure Surface	RAPID DRAW DOWNFailure ModeFSpencer's MethodF
					RAPID DRAW DOWNFailure ModeFSpencer's MethodF
					RAPID DRAW DOWNFailure ModeFSpencer's MethodF
					RAPID DRAW DOWN Failure Mode F Spencer's Method (Optimized)
					RAPID DRAW DOWN Failure Mode F Spencer's Method (Optimized)
					RAPID DRAW DOWN Failure Mode F Spencer's Method (Optimized)



		DMC' NO'			<u></u>		<u> </u>		
					-				
							· · · · · · · · · · · · · · · · · · ·		
590					5				Long Effectiv $\overline{c} = 3$ $\overline{\Phi} = 3$
580					· · ·				$\gamma = 1$ MF Surch
570				i 					
560									
550									
540									
							Effecti	<u>ve Stress</u>	
							$\overline{\Phi} = 2$	25°	
590			1		5				Long- Effective $\overline{c} = 30$ $\overline{\phi} = 30$ $\gamma = 12$
580			$\overline{\Phi} = \gamma =$	25°				PMF Sur	
570							Bottom		No <u>rmal P.o</u>
560									
550									
540									
530									
520									/
							$\overline{\Phi} = 2$	25°	
<u> </u>									
		0					5	0	
	530 550 530 520 510 510 500 590 590	580 570 560 550 550 540 530 520 510 510 500 510 520 510 500 510 520 510 5300 510 </td <td></td> <td></td> <td>590 </td> <td>590 </td> <td></td> <td>390 </td> <td>590 </td>			590	590		390	590



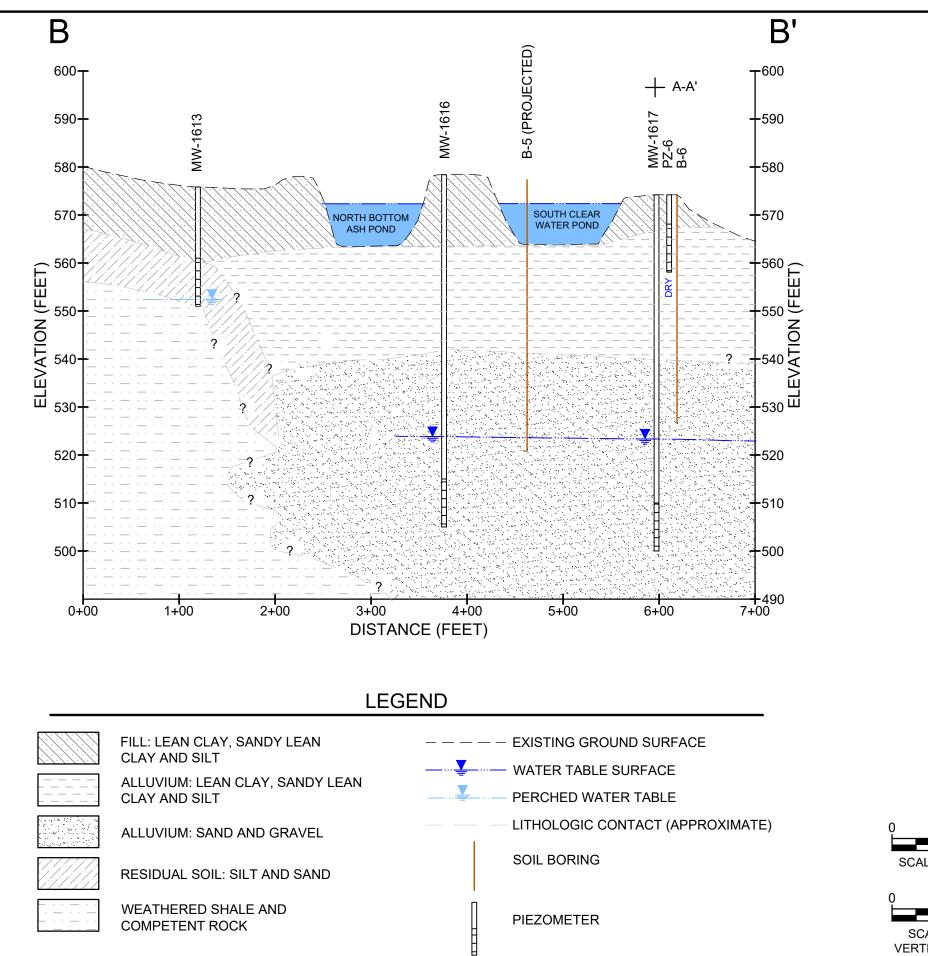
J	K		L	M		<u> </u>
		SUMMAR	Y OF GLOBAL STA	BILITY ANALYSES		
		Failure Surface	STATIC CONDIT Failure Mode	ION Factor of Safety		590
		D	Spencer's Metho (Optimized)	d 1.6		
Long-Term Effective Stress		E	Spencer's Metho (Optimized) SEISMIC CONDI			580
$\overline{c} = 0 \text{ p.s.f.}$ $\overline{\phi} = 30^{\circ}$ $\gamma = 130 \text{ p.c.f.}$		Failure Surface	Failure Mode Spencer's Metho	Factor of Safety		570
		G F	(Optimized) Spencer's Metho	1.0		
Existing Ground	line	Failure	(Optimized) PMF EVENT Failure			560
		Surface	Mode Spencer's Metho	Safety		550
			(Optimized) Spencer's Metho (Optimized)	d 1.9		
						540
						530
						520
ng-Term tive_Stress			LEGEND Sandy Lean	Clay		
0 p.s.f. 30°			Silty Clay w			_510
130 p.c.f.			Silt with Sa	nd		500
				I Sand with Silt		
			Shale Sandstone			
· · ·			Rock/Gravel		_	
			 Undisturbed N Standard Pe Safety Hamr 	netration Test Interval Thin—Walled (Shelby) Tube S netration Test Blow Count w mer (blows/ft.)	ample ith a 140 lb	
		03	3/31/09.▼ Water Level T.O.R Top of Rock resistance to	sture Content (%) and Date Recorded (Indicates the beginning of o the advancement of the a	rock-like ugers. This	
			may indicate boulders or	e the beginning of weathered rock remnants. An exact de nade without performing roc!	l bedrock, termination	590
			R.Q.D. Rock Quality REC. Recovery (%)	[,] Designation (%)) al using a carbide—tipped to	oth auger bit	580
$ Long-Term Effective Stress \overline{c} = 0 \text{ p.s.f.} \overline{\Phi} = 30^{\circ} $						560
$\overline{\Phi} = 30^{\circ}$ $\gamma = 130 \text{ p.c.f.}$						570
						560
Existing Ground	line	SUMMAR	Y OF GLOBAL STAN STATIC CONDIT			
evel /		Failure Surface	Failure Mode Spencer's Metho	d Factor of Safety	h	550
	Ne l	A	(Optimized) SEISMIC CONDI	ΠΟN		540
		Failure Surface B	Failure Mode Spencer's Metho	d T.2		
		Failure	(Optimized) PMF EVENT Failure			530
		Surface	Mode Spencer's Metho (Optimized)	Safety		520
ng-Term tive Stress						510
0 p.s.f. 30° 130 p.c.f.						_510
						500
				300		
				SCALE: AS SHOWN		Stantec Consu Services Inc. 11887 Lebanon Rd. Cincinnati, Ohio
200	250			DATE: JUNE, 2010	Stante	Cincinnati, Ohio 45241 513-842-8200 www.stanteo
	NTHS 10 K 20		L	INCHES 1 M 2	3	N



DEE				
$\overline{c} = 0 \text{ p.s.f.}$ $\overline{\phi} = 35$ $\gamma = 140 \text{ p.c.f.}$ $\overline{\beta-6}$	Silt with Sand Sand With Silt $\overline{c} = 0 \text{ p.s}$ $\overline{c} = 0 \text{ p.s}$ $\overline{\phi} = 30^{\circ}$ $\gamma = 130$	tress s.f.		EGEND
		STA Failure A Sp A B Sp B Sp Sp B Sp Sp C Sp D Sp Sp	GLOBAL STABILITY ANALYSES ATIC CONDITION Failure Factor of Safety bencer's Method (Optimized) 3.4 bencer's Method (Optimized) 1.4 ISMIC CONDITION Failure Failure Factor of Safety bencer's Method (Optimized) 2.5 bencer's Method (Optimized) 1.2 PMF EVENT Factor of Mode Failure Factor of Safety bencer's Method (Optimized) 3.4 bencer's Method (Optimized) 3.4 bencer's Method (Optimized) 1.6	

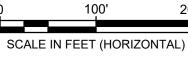
APPENDIX C GEOLOGIC CROSS SECTIONS

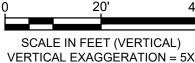
::\Projects_cadd\l\lawrence county - kentucky\figures\txlo510f0

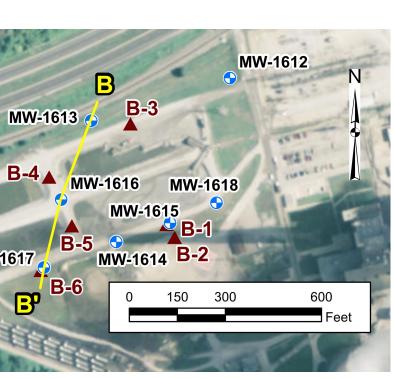

-1613 • B-4 MW-1	MW-1	MW-	1618	W-1612	ZAO	きまして
e N) IW-161	14 B-2	2			1
B-6	0	150	300	60	00 Feet	
	1.5		CF.	C	7	

KEY MAP

1. GROUNDWATER ELEVATION IS BASED ON THE JULY 14, 2016 MEASUREMENT.


2. SOIL BORINGS, B-1 AND B-6, AND PIEZOMETERS PZ-1, PZ-2, AND PZ-6 DATA WERE OBTAINED FROM REPORT OF GEOTECHNICAL EXPLORATION (STANTEC, 2010)


00'	GEOLOGIC CI	A-A'					
9	BIG SANDY B LOUISA	NDS					
10' •	Geosyn						
,			FIGURE				



MW-1617 THURSDAY

NOTES:

KEY MAP

1. GROUNDWATER ELEVATION IS BASED ON THE JULY 14, 2016 MEASUREMENT.

2. SOIL BORING, B-5 AND B-6, AND PIEZOMETER PZ-6 DATA WERE OBTAINED FROM REPORT OF GEOTECHNICAL EXPLORATION (STANTEC, 2010)

<u>o</u> o'	GEOLOGIC CROSS SECTION B-B'							
<u> </u>	BIG SANDY BOTTOM ASH PONDS LOUISA, KENTUCKY							
10' 1	Geosyn		FIGURE					
x	PROJECT NO: TX0510	OCTOBER 2016	2					

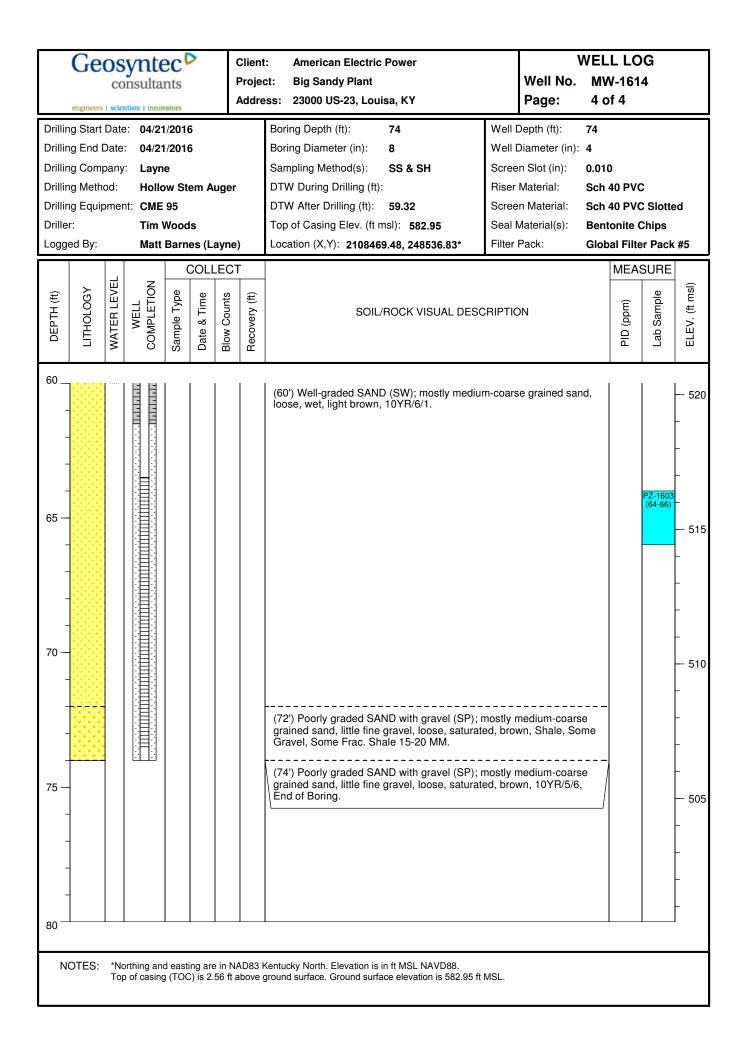
APPENDIX D

BORING LOGS AND MONITORING WELL CONSTRUCTION DIAGRAMS

Geos co			BORING AND WELL LOG LEGEND				
LITHOLOGY WATER LEVEL	WELL/BORING COMPLETION	SAMPLE TYPE	DESCRIPTION				
		GR EN SS SH CO DP	ASPHALT CONCRETE FILL TOPSOL COBBLES IGNEOUS Rock METAMORPHIC Rock SEDIMENTARY Rock Wel-graded GRAVEL (GW) Poorly graded GRAVEL (GP) Sitly GRAVEL (GC) Wel-graded GRAVEL (GC) Wel-graded GRAVEL (M+ sitl (GW-GM) Poorly graded GRAVEL with sitl (GP-GM) Wel-graded GRAVEL with sitl (GP-GM) Wel-graded GRAVEL with sitl (GP-GC) Poorly graded GRAVEL with sitl (GP-GC) Poorly graded GRAVEL with sitl (SP-SM) Wel-graded SAND (SO) Wel-graded SAND (SO) Poorly graded SAND (SO) Wel-graded SAND with sitl (SP-SM) Wel-graded SAND with sitl (SP-SO) Solt (SM) Vorgaric SOL (CL) Organic SOL (CL) Poart (CH) Organic SOL (CH) PEAT (PT) Vater Level During Drilling Water Level During Drilling (Cape CAP) Water Level During Drilling (CAP) Water Level During Drilling (CAP) Water Level During Drilling (CAP) Water Level Dur				

Geosynte consultat	nts		Clien Proje Addre	ct: Big Sandy Plant	Well No.	ELL LO MW-161 I of 2	-	
Drilling Company: Layn Drilling Method: Hollo Drilling Equipment: CME Driller: Tim V	9/2016 ie ow Stem	Augei		Boring Depth (ft):36Boring Diameter (in):8Sampling Method(s):Split SpoonDTW During Drilling (ft):18.0DTW After Drilling (ft):13.3Top of Casing Elev. (ft msl):576.06Location (X,Y):2108825.54, 249047.75*	Riser Material:Seal Material(s):Seal Material(s):	5 010 ch 40 PVC ch 40 PVC entonite (lobal Filte	C Slotte Chips	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Sample Type		Recovery (ft)	SOIL/ROCK VISUAL DESC	RIPTION	MEA: (mdd) OIA	Lab Sample BUC	ELEV. (ft msl)
	SS 04/ 13: SS 04/ 13: SS 04/ 14: SS 04/ 14:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 (0') Grass. (0.5') SILT (ML); mostly silt, few clay, nonplas light brown, 7.5YR5/6. (2') SILT (ML); trace fine gravel, trace fine sand clay, nonplastic, medium stiff, moist, light brown, 7.5YR6/6. (4') SILT (ML); trace fine sand, mostly silt, littl stiff, moist, light brown, 7.5YR6/6. (8') SILT (ML); mostly silt, some clay, low plasmoist, dark brown, 7.5YR/4/4. (11') SILT with sand (ML); trace fine gravel, femostly silt, few clay, low plasticity, stiff, moist, light brown, 7.5YR4/4. (12.5') Lean CLAY (CL); some silt, mostly clastiff, moist, light brown, 7.5YR4/4. (15') SILT (ML); trace fine sand, mostly silt, somedium stiff, moist, light brown, 7.5YR6/3. (17') Well-graded GRAVEL with sand (GW); I some fine-medium sand, trace silt, loose, moi 10YR6/6. 	nd, mostly silt, trace wn, 7.5YR5/6. e clay, low plasticity, sticity, medium stiff, sticity, medium stiff, light brown, 7.5YR4/4. y, medium plasticity, ome clay, low plasticity, ittle fine grained gravel.			- - - - - - - - - - - - - - - - - - -

Ceosynte consulta	nts	F	Client Projec Addre	ect: Big Sandy Plant Well No. MV					L LOG /-1612 f 2		
Drilling Company: Layr Drilling Method: Holk Drilling Equipment: CME Driller: Tim	9/2016 ie ow Stem A	uger		Boring Diameter (in):8Well ISampling Method(s):Split SpoonScreeDTW During Drilling (ft):18.0RiserDTW After Drilling (ft):13.3Scree	Material(s):	35 4 0.010 Sch 4 Sch 4 Bento Globa	0 PVC nite C	Slotte hips			
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Sample Type Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTIC	DN		MEAS (mdd) OIA	Lab Sample BA	ELEV. (ft msl)		
	SS 04/18 15:15 SS 04/18 15:45 SS 04/18 15:46 SS 04/18 15:54 SS 04/18 16:00 SS 04/18 16:14 SS 04/18 16:20 SS 04/18 16:51	5 5 5 6 3 3 3 3 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 4 3 3 5 6 3 6 7 3 70 10 12 26 70 70		 (22') SILT with sand (ML); few fine sand, mostly silt, plasticity, soft, wet, light yellowish-brown, 7.5YR5/1. (26') Lean CLAY with sand (CL); little fine-medium s mostly clay, medium plasticity, soft, wet, dark gray, 10' (30') Lean CLAY (CL); some silt, mostly clay, mediu medium stiff, wet, dark gray, 10'YR4/1. (32') Fat CLAY (CH); few silt, mostly clay, high plast dark gray, 10'YR4/1. (36') WEATHERED SHALE; laminated, moderately light gray, moist. 	and, little silt, 10YR4/1. m plasticity, icity, stiff, wet,				- - 550 - - - - - - - 545 - - - - - - - - - - -		


	CC		nts	>		Client Proje Addre	ct: Big Sandy Plant Well No.	MV	.L LO V-161 of 2		
Drilling En Drilling Co Drilling Me Drilling Eq Driller:	Logged By: Dawit Yifru						Boring Depth (ft):24.3Well Depth (ft):Boring Diameter (in):8Well Diameter (in)Sampling Method(s):Split SpoonScreen Slot (in):DTW During Drilling (ft):DRYRiser Material:DTW After Drilling (ft):21.6Screen Material:Top of Casing Elev. (ft msl):578.79Seal Material(s):Location (X,Y):2108392.50, 248915.51*Filter Pack:	0.01 Sch Sch Bent	0 40 PVC 40 PVC tonite F pal Filte	C Slotte Pellets	
DEPTH (ft) LITHOLOGY	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION		MEA: (mdd) OIA	Lab Sample	ELEV. (ft msl)
0			SS SS SS SS SS	04/19 13:58 04/19 14:20 04/19 14:29 04/19 14:34 04/19 14:41 04/19 14:44	$\begin{array}{c} 10\\ 10\\ 10\\ 7\\ 8\\ 10\\ 12\\ 4\\ 5\\ 8\\ 4\\ 4\\ 10\\ 12\\ 5\\ 5\\ 5\\ 3\\ 4\\ 5\\ 7\end{array}$	1.0 1.5 2.0 2.0 2.0 2.0 2.0	 (0') Gravelly SILT (ML); some fine-coarse gravel, little fine-mediu sand, mostly silt, few clay, nonplastic, soft, dry, light gray, GLEY 7/10Y. (2.5') SILT (ML); few fine-coarse gravel, mostly silt, some clay, log plasticity, very stiff, moist, dark gray, GLEY1/5/10Y. (4') SILT (ML); mostly silt, some clay, low plasticity, stiff, moist, li reddish-brown, 7.5YR6/6. 	1- 			575 - - - - - - - - - - - - - - - - - -
15				04/19 15:05 04/19 15:28 04/19 15:17	7 7 7	1.5 2.0 1.5	 (11.5') SILT (ML); mostly silt, some clay, low plasticity, medium s wet, light gray, GLEY1/6/5GY. (13.8') Well-graded SAND (SW); mostly fine-medium grained sal few fine gravel, trace silt, loose, moist, dark reddish-brown, 7.5YR4/4. (15') Well-graded SAND with gravel (SW); mostly medium grained sand, little fine-coarse gravel, few silt, loose, moist, light brown, 7.5YR4/6. 				- - - 560 - -
NOTES							Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 578.79 ft MSL.				

Consultants	Clien Proje Addre	ct: Big Sandy Plant	WELL LC MW-161 2 of 2	N-1613		
Drilling Start Date:04/19/2016Drilling End Date:04/19/2016Drilling Company:LayneDrilling Method:Hollow Stem AugDrilling Equipment:CME95Driller:Tim WoodsLogged By:Dawit Yifru	ger	Dering Depth (ft):24.3Well Depth (ft):24Dering Diameter (in):8Well Diameter (in):4Dering Diameter (in):Split SpoonScreen Slot (in):0.010TW During Drilling (ft):DRYRiser Material:Sch 40 PVCTW After Drilling (ft):21.6Screen Material:Sch 40 PVC SlotterDep of Casing Elev. (ft msl):578.79Seal Material(s):Bentonite PelletsDecation (X,Y):2108392.50, 248915.51*Filter Pack:Global Filter Pack				
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time	Blow Counts T	SOIL/ROCK VISUAL DESCRIPT	ION	MEA (mdd) OId	Lab Sample ADCS	
25	2 1.0 4 2 2 2.0 2 3 75 0.3	(23') Lean CLAY with sand (CL); few fine gravel, li sand, little silt, some clay, medium plasticity, stiff, r 7.5YR6/6. (24') SHALE; thinly bedded, moderately weathered reddish-brown, 7.5YR4/6.	noist, light brov	vn, '		
30						

		CO	onsulta	nts	>	F	Client Proje Addre	ct: Big Sandy Plant Well No. N	WELL LOG MW-1614 1 of 4				
Drillir Drillir Drillir Drillir Drille	Drilling Start Date:04/21/2016Drilling End Date:04/21/2016Drilling Company:LayneDrilling Method:Hollow Stem AugerDrilling Equipment:CME 95Driller:Tim WoodsLogged By:Matt Barnes (Layne))	Boring Depth (ft):74Well Depth (ft):74Boring Diameter (in):8Well Diameter (in):4Sampling Method(s):SS & SHScreen Slot (in):0.010DTW During Drilling (ft):Riser Material:Sch 40 PVCDTW After Drilling (ft):59.32Screen Material:Sch 40 PVCTop of Casing Elev. (ft msl):582.95Seal Material(s):Bentonite ChLocation (X,Y):2108469.48, 248536.83*Filter Pack:Global Filter					
DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEA (mdd) OIA	Lab Sample	ELEV. (ft msl)		
0			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SS SS SS SS SS SS		$\begin{array}{c} 8\\ 10\\ 15\\ 18\\ 12\\ 10\\ 11\\ 12\\ 20\\ 13\\ 12\\ 13\\ 4\\ 11\\ 10\\ 16\\ 5\\ 5\\ 5\\ 4\\ 4\\ 5\\ 5\\ 8\\ 8\\ 10\\ 12\\ 5\\ \end{array}$	2.0	 (0') SILT (ML); mostly silt, some clay, nonplastic, soft, dry, light gray, GLEY2/7/5PB, Crushed Lime For Road Gravel. (2') Lean CLAY (CL); mostly silt, little clay, medium plasticity, stiff, dry, gray (7.5YR 6/1), Light Gray - Light Brown, Road Crush Heave Top of Spoon. (4') SILT (ML); little fine gravel, little fine sand, mostly silt, stiff, dry, light brown, 7.5YR/5/2. (14') SILT (ML); little fine gravel, little fine sand, mostly silt, stiff, dry, light SILT (ML); little fine gravel, little fine sand, mostly silt, stiff, dry, light brown, 7.5YR/5/2. 	_		- 580 - - - 575 - - - 570 - - - -		
15 - - 20 N								Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 582.95 ft MSL.			565 - - -		

Geosyntec Consultants	Client Proje Addre	ct: Big Sandy Plant		V Well No. Page:	MW	ELL LOG MW-1614 2 of 4		
Drilling Equipment: CME 95 Driller: Tim Woods	Drilling End Date:04/21/2016Boring Diameter (in):8Well Diameter (in):4Drilling Company:LayneSampling Method(s):SS & SHScreen Slot (in):0.0Drilling Method:Hollow Stem AugerDTW During Drilling (ft):Riser Material:ScDrilling Equipment:CME 95DTW After Drilling (ft):59.32Screen Material:ScDriller:Tim WoodsTop of Casing Elev. (ft msl):582.95Seal Material(s):Be					onite C	Slotte	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		SOIL/ROCK VISUAL DESCI	RIPTION	N		MEAS (mdd) DIA	Lab Sample	ELEV. (ft msl)
20 - - - - - - - - - - - - -	4 4 5 7 9 1 1 4 2 2 2 2 2 2 2 2 2 2 2 2 2	(20') SILT (ML); little fine gravel, little fine sand nonplastic, stiff, wet, brown.	dium sa	nd, little silt,			PZ-1603 (36-38)	- 560 - - - 555 - - - 550 - - - 545 - - - -
		Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 582.95 ft N	/ISL.					

Geosyntec Consultants	Client Proje Addre	ct: Big Sandy Plant		V Well No. Page:		L LO /-161/ f 4		
Drilling Start Date:04/21/2016Drilling End Date:04/21/2016Drilling Company:LayneDrilling Method:Hollow Stem AugeDrilling Equipment:CME 95Driller:Tim WoodsLogged By:Matt Barnes (Layne)		Boring Diameter (in): 8 Sampling Method(s): SS & SH DTW During Drilling (ft): DTW After Drilling (ft): 59.32 Top of Casing Elev. (ft msl): 582.95	Well Di Screen Riser M Screen	ameter (in): Slot (in): Aaterial: Material: aterial(s):	0.010 Sch 4 Sch 4 Bente) 40 PVC 40 PVC onite C al Filte	Slotte Chips	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		SOIL/ROCK VISUAL DESC	RIPTION	۷		MEAS (mdd) DIA	Lab Sample	ELEV. (ft msl)
40 40 45 45 50 55 55 60 NOTES: *Northing and easting are in		(40') Well-graded SAND (SW); mostly medium loose, dry, brown. (54') Well-graded SAND (SW); mostly medium loose, wet, light brown, 10YR/6/1.						- 540 - - - 535 - - - 530 - - - 525 - - - -
		Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 582.95 ft N	ISL.					

Geosyntee consultant engineers scientists innovato	S	Client Proje Addre	ct: Big Sandy Plant	V Well No. Page:	VELL L MW-16 1 of 4		
Drilling Start Date:05/04/2016Boring Depth (ft):74Well Depth (ft):74Drilling End Date:05/04/2016Boring Diameter (in):8Well Diameter (in):4Drilling Company:LayneSampling Method(s):SS & SHScreen Slot (in):0.010Drilling Method:Hollow Stem AugerDTW During Drilling (ft):Riser Material:Sch 40 PVCDrilling Equipment:CME 95DTW After Drilling (ft):56.33Screen Material:Sch 40 PVCDriller:Tim WoodsTop of Casing Elev. (ft msl):583.22Seal Material(s):Bentonite CLogged By:Matt Barnes (Layne)Location (X,Y):2108637.78, 248596.46*Filter Pack:Global Filter						/C Slotte Chips	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Date & Time		SOIL/ROCK VISUAL DESCRIF	PTION	ME) (mdd) OId	ASURE	ELEV. (ft msl)
5 5 10 10 10 15 15 15 15 15 15 15 15 15 15		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(0') Well-graded GRAVEL (GW); mostly coarse of dry, gray, Coarse Gravel, Road Gravel. (2') Lean CLAY (CL); little fine gravel, little silt, m plasticity, stiff, dry, brown (7.5YR 5/2), Few SS G w/ some silt, few gravel and coal.	ostly clay, mediur	 n	PZ-1604 (14-16)	- 580 575

Geosy con		ı	Proje	ct: Big Sandy Plant	Project: Big Sandy Plant Well No. MW-1				
Drilling End Date: Drilling Company: Drilling Method:	Drilling Company:LayneSampling Method(s):SS & SHScreen Slot (in):0.010Drilling Method:Hollow Stem AugerDTW During Drilling (ft):Riser Material:Sch 40 PVCDrilling Equipment:CME 95DTW After Drilling (ft):56.33Screen Material:Sch 40 PVCDriller:Tim WoodsTop of Casing Elev. (ft msl):583.22Seal Material(s):Bentonite C						/C Slotte Chips		
DEPTH (ft) LITHOLOGY WATER LEVEL	COMPLETION Sample Type	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESC	RIPTIO	N	PID (mpg)	Lab Sample	ELEV. (ft msl)
20 	A A SS A A A A A SS A A SS	5 5 5 2 3 3 3 4 2 3 3 4 3 2 3 2 3 2 3 2 3 2 3		(24') SILT (ML); mostly silt, little clay, stiff, we Light Brown silt w/ some clay.	– – – – – t, light r	red (2.5YR 6/6)			- 560 - - 555 - - - 550 - - - - - - - - - -
				(34') Poorly graded SAND (SP); mostly media sand, loose, wet, light red (2.5YR 6/8), Light I Sand, Poorly Graded.	Brown M	rse grained Medium-Coarse			- - 545 - -

Geosyn consu		Proje	Client:American Electric PowerWELL LProject:Big Sandy PlantWell No.MW-1Address:23000 US-23, Louisa, KYPage:3 of 4					
Drilling Company: L Drilling Method: H Drilling Equipment: C Driller: T	5/04/2016 ayne Iollow Stem Au	-	Boring Depth (ft):74Boring Diameter (in):8Sampling Method(s):SS & SHDTW During Drilling (ft):DTW After Drilling (ft):56.33Top of Casing Elev. (ft msl):583.22Location (X,Y):2108637.78, 248596.46*	Well Depth Well Diam Screen Slo Riser Mate Screen Ma Seal Mater Filter Pack	74 4 D.010 Sch 40 PV(Sch 40 PV(Bentonite (Global Filte	C Slotte Chips		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL	COMPLETION Sample Type Date & Time	Blow Counts TO Recovery (ft)	SOIL/ROCK VISUAL DESC	RIPTION		MEA: (mdd) OId	Lab Sample	ELEV. (ft msl)
			(40') Poorly graded SAND (SP); mostly medius sand, loose, wet, light red (2.5YR 6/8), Light B Sand, Poorly Graded.	irown Mediu	rained um-Coarse			- 540
			Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 583.22 ft N	MSL.				

Geosyn consul			Client Proje Addre	ct: Big Sandy Plant	Well N Page:	o. M	LL LO W-161 of 4		
Drilling Company: La Drilling Method: Ho Drilling Equipment: CN Driller: Tin	: 05/04/2016Boring Diameter (in):8Well Diameter (in):4:: LayneSampling Method(s):SS & SHScreen Slot (in):0.010Hollow Stem AugerDTW During Drilling (ft):Riser Material:Sch 40nt: CME 95DTW After Drilling (ft):56.33Screen Material:Sch 40Tim WoodsTop of Casing Elev. (ft msl):583.22Seal Material(s):BentonMatt Barnes (Layne)Location (X,Y):2108637.78, 248596.46*Filter Pack:Global					40 PV(40 PV(tonite (PVC PVC Slotted ite Chips Filter Pack #5		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL		Date & Time Blow Counts		SOIL/ROCK VISUAL DESCF	RIPTION		MEA: (mdd) OIA	Lab Sample	ELEV. (ft msl)
60	SS SS SS SS	7 5 6 8 8 8 8 8 8 7 7 6 7 7 5 6 6 7 7 7 7 5 5 6 6 7 7 7 7		(60') Poorly graded SAND (SP); mostly medium sand, loose, wet, light red (2.5YR 6/8), Light Br Sand, Poorly Graded.	own Medium-Co	parse		PZ-1604 (64-66)	- 520

Geog c engineers sc	onsulta	nts		F	Client Projec Addre	ct: Big Sandy Plant	V Well No. Page:		L LO /-161 f 4		
Drilling Start Da Drilling End Dat Drilling Compan Drilling Method: Drilling Equipme Driller: Logged By:	e: 04/28 ny: Layn Holld ent: CME Tim	8/2016 ne ow Ste	em Au s	ıger		Boring Diameter (in):8WeilSampling Method(s):SS & SHScreetDTW During Drilling (ft):56.0RiseDTW After Drilling (ft):54.7ScreetTop of Casing Elev. (ft msl):578.19Screet	I Material(s):	0.010 Sch 4 Sch 4 Bente	i0 PVC i0 PVC onite C	Slotte	
DEPTH (ft) LITHOLOGY WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts HO	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPT	ION		MEAS (mdd) OIA	Lab Sample	ELEV. (ft msl)
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SS SS SS SS SS SS SS	04/28 09:03 04/28 09:13 04/28 09:21 04/28 09:27 04/28 09:33 04/28 09:40 04/28 09:40 04/28 09:40 04/28 09:45 04/28 </td <td>10 12 15 10 5 6 6 8 3 3 4 4 2 3 3 4 4 5 6 2 2 3 2 3 4 4 2 2 4 4 2 2 4 5 2 4 4 5 2 3 2 3 4 4 5 5 6 6 8 3 3 4 4 2 5 6 6 2 5 5 6 6 8 3 7 4 4 5 5 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8</td> <td>1.0 1.5 1.5 1.5 1.5 2.0 1.8 2.0 2.0 2.0</td> <td> (0') Well-graded GRAVEL with sand (GW); mostly grained gravel, little coarse sand, dense, dry, gray FILL. (2.8') Lean CLAY with sand (CL); little fine sand, li medium plasticity, medium stiff, moist, light brown, fragments between 4 and 6 ft. (6') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, 7.5YR/4/4, color changes to 7.5YR/4/4, pieces of coal between 1 (12') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, 7.5YR/4/4, pieces of coal between 1 (17') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, and gray, 10YR/6/2. (18.5') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, 7.5YR/5/6. </td> <td>, GLEY2/7/5BG, ttle silt, mostly cl 7.5YR/6/6, rock m plasticity, stif 3/3 at 11 ft.</td> <td>lay, s</td> <td></td> <td></td> <td>- - - - - - - - - - - - - - - - - - -</td>	10 12 15 10 5 6 6 8 3 3 4 4 2 3 3 4 4 5 6 2 2 3 2 3 4 4 2 2 4 4 2 2 4 5 2 4 4 5 2 3 2 3 4 4 5 5 6 6 8 3 3 4 4 2 5 6 6 2 5 5 6 6 8 3 7 4 4 5 5 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	1.0 1.5 1.5 1.5 1.5 2.0 1.8 2.0 2.0 2.0	 (0') Well-graded GRAVEL with sand (GW); mostly grained gravel, little coarse sand, dense, dry, gray FILL. (2.8') Lean CLAY with sand (CL); little fine sand, li medium plasticity, medium stiff, moist, light brown, fragments between 4 and 6 ft. (6') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, 7.5YR/4/4, color changes to 7.5YR/4/4, pieces of coal between 1 (12') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, 7.5YR/4/4, pieces of coal between 1 (17') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, and gray, 10YR/6/2. (18.5') Lean CLAY (CL); some silt, mostly clay, medium oist, brown, 7.5YR/5/6. 	, GLEY2/7/5BG, ttle silt, mostly cl 7.5YR/6/6, rock m plasticity, stif 3/3 at 11 ft.	lay, s			- - - - - - - - - - - - - - - - - - -
				5 in NA							

		CO		ants	>		Client Projec Addre	ct: Big Sandy Plant Well No. M	LL LOG W-1616 of 4
Drillin Drillin Drillin Drillin Drillen	ogged By: Dawit Yifru COLLECT					uger		DTW After Drilling (ft):54.7Screen Material:SclTop of Casing Elev. (ft msl):578.19Seal Material(s):Be	10 n 40 PVC n 40 PVC Slotted ntonite Chips obal Filter Pack #5
DEPTH (ft)	КООТОНТІ	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample ELEV. (ft msl)
20			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SH SH SS SS	04/28 11:12 04/28 11:30 04/28 11:32 04/28	3 3 4 3 2 2 2 2 2 2	2.0 2.0 2.0 2.0	(22') Lean CLAY (CL); some silt, mostly clay, medium plasticity, stiff, moist, brown, 10YR/6/8. (26.5') SILT (ML); mostly silt, few clay, low plasticity, medium stiff, wet, brown, 5YR/5/6.	- 55 55
- - 35 — -			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SS SS SS	11:43 04/28 11:49 04/28 12:02 04/28 13:02	2 2 1 2 2 2 2 2 3 3 2 3 3 2 3	1.0 2.0 1.5	(31') Sandy SILT (ML); some fine-medium sand, some silt, little clay, nonplastic, soft, saturated, brown, 5YR/5/6. (35') Lean CLAY (CL); little silt, mostly clay, medium plasticity, medium stiff, wet, reddish-brown, and gray, 2.5YR/4/8, pieces of coal at the bottom.	- 54
- - 40	OTES:							 (36.5') Poorly graded SAND (SP); mostly fine-medium grained sand, little silt, loose, moist, light brown, 7.5YR/7/6. (39') Lean CLAY with sand (CL); some fine sand, few silt, mostly clay, medium plasticity, medium stiff, wet, brown, 7.5YR/5/6. 	- - ,

Ceosyntec Consultants	Client Proje Addre	ct: Big Sandy Plant	Well No Page:	WEL . MV 3 o	V-161	-	
Drilling Start Date:04/28/2016Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Hollow Stem AugeDrilling Equipment:CME95Driller:Tim WoodsLogged By:Dawit Yifru	er	Boring Depth (ft):74Boring Diameter (in):8Sampling Method(s):SS & SHDTW During Drilling (ft):56.0DTW After Drilling (ft):54.7Top of Casing Elev. (ft msl):578.19Location (X,Y):2108298.34, 248668.57*	Well Depth (ft): Well Diameter (in Screen Slot (in): Riser Material: Screen Material: Seal Material(s): Filter Pack:	0.010 Sch Sch Bent) 40 PVC 40 PVC onite C al Filte	Slotte hips	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		SOIL/ROCK VISUAL DESC	RIPTION		MEAS (mdd) OIA	Lab Sample	ELEV. (ft msl)
40 40 40 40 40 40 40 55 40 40 55 40 40 55 40 55 55 55 55 55 55 55 55 55 5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.0	 (39.5') Poorly graded SAND (SP); mostly fine silt, medium dense, wet, brown, 7.5YR/6/6, 1 ft, 2-inches of clay sens at 45.5. (46') Poorly graded SAND (SP); mostly fine g loose, wet, white, GLEY1/8/5GY. (49') Poorly graded SAND (SP); mostly fine g loose, wet, light brown, 7.5YR/7/6, pieces of (50') Lean CLAY (CL); few silt, mostly clay, m, wet, dark gray, GLEY2/5/5PB. (51') Poorly graded SAND (SP); mostly fine g loose, wet, reddish-brown, 7.5YR/5/8, satural (54.5') Lean CLAY with sand (CL); few fine si clay, medium plasticity, ctiff word dark gray. 	rained sand, some coal at 49 ft. edium plasticity, st rained sand, little s ed at 53.5 ft.	e silt,			- - - - - - - - - - - - - - - 525 -
60 5 60 5 60 60 5 60 5 6 6 6 6 6 6 6 6 6 6 6 6 6	5 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	 Clay, medium plasticity, stiff, wet, dark gray, C (55') Poorly graded SAND (SP); mostly fine-rr (1111 (1111) (11111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111)	nedium grained sar nedium grained sar 2-inches of clay at	nd, 57.5			- - 520 -
		Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 578.19 ft l	ISL.				

Geosynte consulta engineers scientists inno	ints		nt: American Electric Power ect: Big Sandy Plant ress: 23000 US-23, Louisa, KY	WELL LOG Well No. MW-1616 Page: 4 of 4
Drilling Company: Lay Drilling Method: Holl Drilling Equipment: CME Driller: Tim	8/2016 ne ow Stem A	uger	Boring Diameter (in):8WeilSampling Method(s):SS & SHScreetDTW During Drilling (ft):56.0RiseDTW After Drilling (ft):54.7ScreetTop of Casing Elev. (ft msl):578.19Screet	I Depth (ft):73I Diameter (in):2een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedI Material(s):Bentonite Chipsr Pack:Global Filter Pack #5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Sample Type Date & Time	Blow Counts	SOIL/ROCK VISUAL DESCRIPT	PID (ppm) Lab Sample ELEV. (ft msl)
	SS 04/28 IA:29 SS 04/28 IA:33 SS 04/28 IA:41 SS 04/28 IA:56 SS 04/28 IA:56 SS 04/28 IA:56 SS 04/28 IA:56 SS 04/28 ID:16 ID:16 SS 04/28 ID:30 ID:30	5 6 5 5 6 5 2 4 4 8 2 4 4 8 10 12 16 7 7 10 12 5	(66') Well-graded SAND with gravel (SW); mostly grained sand, some fine-coarse gravel, trace silt, o dark gray, GLEY2/6/10B, abundant coal and round	lense, saturated, led gravel.

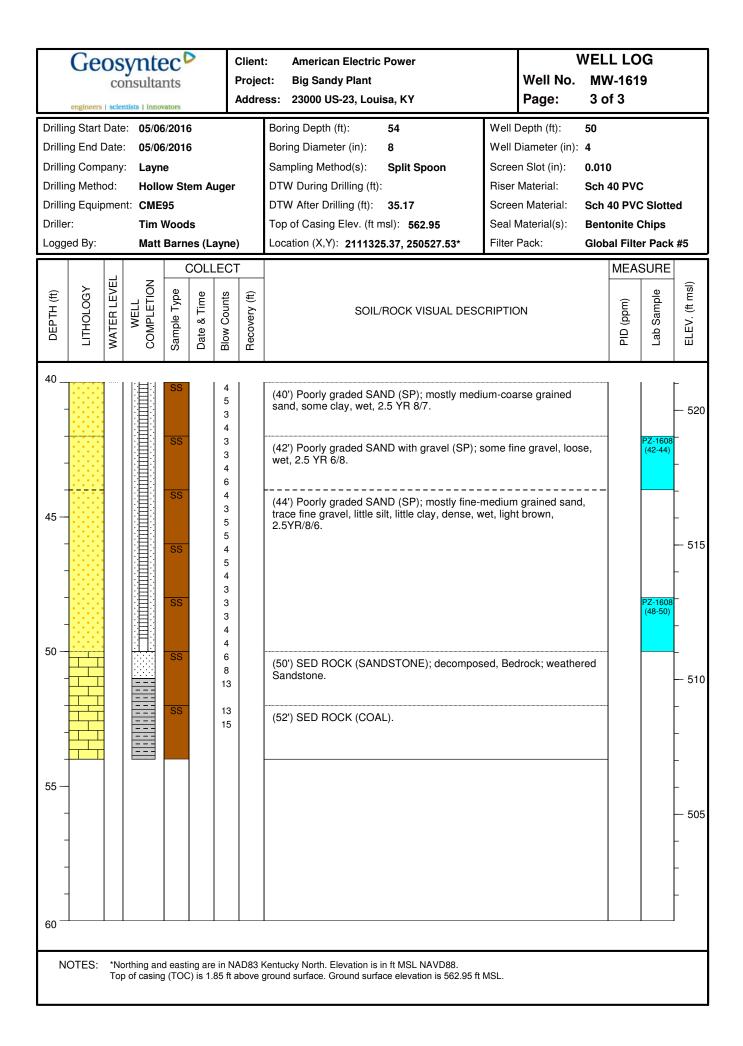
Geosyntec Consultants	Client Proje Addre	ct: Big Sandy Plant		W Well No. Page:	L LO V-161 f 4		
Drilling Start Date:05/06/2016Boring Depth (ft):74Well Depth (ft):60Drilling End Date:05/06/2016Boring Diameter (in):8Well Diameter (in):4Drilling Company:LayneSampling Method(s):Split SpoonScreen Slot (in):0.010Drilling Method:Hollow Stem AugerDTW During Drilling (ft):Riser Material:Sch 40 PVCDrilling Equipment:CME 95DTW After Drilling (ft):53.73Screen Material:Sch 40 PVCDriller:Tim WoodsTop of Casing Elev. (ft msl):577.14Seal Material(s):Bentonite ClLogged By:Matt Barnes (Layne)Location (X,Y):2108244.28, 248457.12*Filter Pack:Global Filter					C Slotte Chips		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		SOIL/ROCK VISUAL DESCI	RIPTIO	N	MEAS (mdd) OIA	Lab Sample	ELEV. (ft msl)
		(0') SILT (ML); mostly silt, little clay, stiff, dry, 1 6/6), Silt with Some Clay.	, some	silt, some cla		PZ-1606 (16-18)	- - - 570 - - - 565 - - - - - - 555
		Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 577.14 ft N	/ISL.				

Geosyntec Consultants	Client Proje Addre	ct: Big Sandy Plant		W Well No. Page:		L LO /-161 f 4		
Drilling Equipment: CME 95 Driller: Tim Woods	ag End Date:05/06/2016Boring Diameter (in):8Well Diameter (in):4ag Company:LayneSampling Method(s):Split SpoonScreen Slot (in):0.010ag Method:Hollow Stem AugerDTW During Drilling (ft):Riser Material:Sch 40 PVCag Equipment:CME 95DTW After Drilling (ft):53.73Screen Material:Sch 40 PVCTr:Tim WoodsTop of Casing Elev. (ft msl):577.14Seal Material(s):Bentonite C						C Slotte Chips	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		SOIL/ROCK VISUAL DESCR	RIPTION			MEA: (mdd) OId	Lab Sample	ELEV. (ft msl)
	3 4 3 4 3 2 2 3 2 3 2 3 <td< td=""><td>(30') SILT (ML); little fine-medium sand, mostly plasticity, stiff, wet, light brown, 5YR/1/5. (34') Poorly graded SAND (SP); mostly mediur sand, loose, wet, reddish yellow (7.5YR 8/6), s</td><th>n-coarse ome gra</th><td>e grained</td><td></td><td></td><td>PZ-1606 (30-32)</td><td>- - - - - - - - - - - - - - - - - - -</td></td<>	(30') SILT (ML); little fine-medium sand, mostly plasticity, stiff, wet, light brown, 5YR/1/5. (34') Poorly graded SAND (SP); mostly mediur sand, loose, wet, reddish yellow (7.5YR 8/6), s	n-coarse ome gra	e grained			PZ-1606 (30-32)	- - - - - - - - - - - - - - - - - - -
Top of casing (TOC) is 2.96	n above	ground surface. Ground surface elevation is 577.14 ft M	SL.					

Geosyntec Consultants	Client:American Electric PowerProject:Big Sandy PlantAddress:23000 US-23, Louisa, KY	WELL LOG Well No. MW-1617 Page: 3 of 4
Drilling Start Date:05/06/2016Drilling End Date:05/06/2016Drilling Company:LayneDrilling Method:Hollow Stem AugeDrilling Equipment:CME 95Driller:Tim WoodsLogged By:Matt Barnes (Layr	Boring Diameter (in): 8 Sampling Method(s): Split Spoon DTW During Drilling (ft): DTW After Drilling (ft): 53.73 Top of Casing Elev. (ft msl): 577.14	Well Depth (ft):60Well Diameter (in):4Screen Slot (in):0.010Riser Material:Sch 40 PVCScreen Material:Sch 40 PVC SlottedSeal Material(s):Bentonite ChipsFilter Pack:Global Filter Pack #5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		PID (ppm) Lab Sample ELEV. (ft msl)
	NAD83 Kentucky North. Elevation is in ft MSL NAVD88.	ome gravels.
	t above ground surface. Ground surface elevation is 577.14 ft M	SL.

Drilling Start Date: 05/06/2016 Drilling End Date: 05/06/2016 Drilling Company: Layne Drilling Method: Hollow Stem Auge Drilling Equipment: CME 95 Driller: Tim Woods Logged By: Matt Barnes (Layne) (1) SS (1) Agge (1) SS (1) SS (2) SS (3) SS (4) SS (4) SS (5) SS (4) SS (5) SS (6) SS (6) <t< th=""><th>Hecovery (ff)</th><th>Top of Casing Elev. (ft msl):577.14Seal Material(s):BentonLocation (X,Y):2108244.28, 248457.12*Filter Pack:Global</th><th>D PVC D PVC Slotted nite Chips Filter Pack #5 <u>MEASURE</u> (ft ms) ELEV. (ft ms)</th></t<>	Hecovery (ff)	Top of Casing Elev. (ft msl):577.14Seal Material(s):BentonLocation (X,Y):2108244.28, 248457.12*Filter Pack:Global	D PVC D PVC Slotted nite Chips Filter Pack #5 <u>MEASURE</u> (ft ms) ELEV. (ft ms)
29 29 0 0 1 1 1 1 1 1 1 1 1<	Recovery (ft)		
65	3 4	1	
	4 3 4 4 3 3 3 3 3 5 5 4 4 4 5 3 4 4 4 5 3 4 4 5 5 4 4 4 5 5 5 4 4 4 5 5 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	(60') Poorly graded SAND (SP); mostly medium-coarse grained sand, loose, wet, reddish yellow (7.5YR 8/6), some gravels.	PZ-1606 (68-70) - 50 - 50 - 50 - 49

		CO	onsulta	nts	>	1	Client Proje Addre	ct: Big Sandy Plant Well No. N	ELL LC IW-161 of 4		
Drillir Drillir Drillir Drillir Drille	ng End I ng Comp ng Metho ng Equip	Date bany od:	: Layn Hollo nt: CME Tim '	2/2010 ne ow Ste	6 em A Is	J)	DTW During Drilling (ft):Riser Material:ScDTW After Drilling (ft):56.90Screen Material:ScTop of Casing Elev. (ft msl):584.19Seal Material(s):Be	010 h 40 PV h 40 PV entonite obal Filt	C Slotte Chips	
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEA (mdd) OIA	Lab Sample	ELEV. (ft msl)
0 - - -			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SS SS		8 12 12 42 13 16 10 7		 (0') Clayey GRAVEL with sand (GC); mostly fine-coarse grained gravel, little fine sand, little silt, loose, moist, dark gray, Road Crush. (2') SILT (ML); little fine sand, little silt, mostly clay, stiff, moist, dark gray, Road Crush Heave. 	_		- 580 -
5			~~~~~~~~~~~~~~~~	SS SS SS SS		2 3 4 3 4 7 5 2 3 4 1 2		(4') SILT (ML); little fine sand, little silt, mostly clay, stiff, moist, light brown, 10YR/5/6.			- - 575 - -
- - - 15 —			~~~~~~~~~~~	SS		2 3 2 2 2 2 2 2 2 4		(14') ORGANIC SOIL (OL); little fine sand, little silt, mostly clay, stiff, moist, dark gray (10YR 4/1), Gray, Black Organic Matter.	_		570 - - -
			~~~~~~~~~~	SS		4 5 8 10 12		(16') SILT (ML); little fine sand, little silt, mostly clay, stiff, moist, light brown, 10YR/5/6.	_		565 - -
N	OTES:	*No Top	orthing an	d easti g (TOC	ing are C) is 3.	e in NA .02 ft a	AD83 I Ibove	Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 584.19 ft MSL.			


Geosyntec Consultants	Client:American Electric PowerProject:Big Sandy PlantAddress:23000 US-23, Louisa, KY	WELL LOG Well No. MW-1618 Page: 2 of 4
Drilling Start Date:04/22/2016Drilling End Date:04/22/2016Drilling Company:LayneDrilling Method:Hollow Stem AugeDrilling Equipment:CME 95Driller:Tim WoodsLogged By:Matt Barnes (Layr	Boring Diameter (in):8WeSampling Method(s):SS & SHScDTW During Drilling (ft):RisDTW After Drilling (ft):56.90ScTop of Casing Elev. (ft msl):584.19Se	ell Depth (ft): 73 ell Diameter (in): 4 reen Slot (in): 0.010 ser Material: Sch 40 PVC reen Material: Sch 40 PVC Slotted al Material(s): Bentonite Chips ter Pack: Global Filter Pack #5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		PID (ppm) Lab Sample ELEV. (ft msl)
20       30       35       35       37         25       3       3       3       3       3         30       3       3       3       3       3         30       3       3       3       3       3         40       3       3       3       3       3	brown, 10YR/5/6.	- 560 
	NAD83 Kentucky North. Elevation is in ft MSL NAVD88. above ground surface. Ground surface elevation is 584.19 ft MSL	

Geosyntec Consultants	Client:American Electric PowerProject:Big Sandy PlantAddress:23000 US-23, Louisa, KY	WELL LOG Well No. MW-1618 Page: 3 of 4
Drilling Start Date:04/22/2016Drilling End Date:04/22/2016Drilling Company:LayneDrilling Method:Hollow Stem AugeDrilling Equipment:CME 95Driller:Tim WoodsLogged By:Matt Barnes (Layne)	Boring Diameter (in):8Sampling Method(s):SS & SHDTW During Drilling (ft):DTW After Drilling (ft):56.90Top of Casing Elev. (ft msl):584.19	Well Depth (ft):73Well Diameter (in):4Screen Slot (in):0.010Riser Material:Sch 40 PVCScreen Material:Sch 40 PVC SlottedSeal Material(s):Bentonite ChipsFilter Pack:Global Filter Pack #5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		PID (ppm) Lab Sample ELEV. (ft msl)
40 40 40 45 45 50 50 50 55 55 55 55 55 55 5	(40) Well-graded SAND (SW); mostly medium trace clay, loose, wet, light yellowish brown (10 ~5% Clay.	-coarse grained sand, YR 6/4), Light Brown, - 540 535 535 530 530 
	NAD83 Kentucky North. Elevation is in ft MSL NAVD88. t above ground surface. Ground surface elevation is 584.19 ft M	SL.

engineers   scientists   innovators	Proje Addre	• •	Well No.	ELL LO //W-161a l of 4		
Drilling Start Date:04/22/2016Drilling End Date:04/22/2016Drilling Company:LayneDrilling Method:Hollow Stem AugDrilling Equipment:CME 95Driller:Tim WoodsLogged By:Matt Barnes (Lag	-	Boring Diameter (in):8WSampling Method(s):SS & SHScDTW During Drilling (ft):RiDTW After Drilling (ft):56.90ScTop of Casing Elev. (ft msl):584.19Sc	bring Diameter (in):8Well Diameter (in):4ampling Method(s):SS & SHScreen Slot (in):0.010TW During Drilling (ft):Riser Material:Sch 40TW After Drilling (ft):56.90Screen Material:Sch 40op of Casing Elev. (ft msl):584.19Seal Material(s):Benton			
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time	Blow Counts TD Recovery (ft)	SOIL/ROCK VISUAL DESCRIF	TION	MEAS (mdd) OIA	Lab Sample	ELEV. (ft msl)
SS SS SS SS SS SS SS SS SS SS		(60') Well-graded SAND (SW); mostly medium-or trace clay, loose, wet, light yellowish brown (10Y ~5% Clay.	R 6/4), Light Brown,		PZ-1607 (66-68)	- - - - - - - - - - - - - - - - - - -

		CO		nts	>	F	Client Proje Addre	ct: Big Sandy Plant Well No. M	L LO V-161 of 3	-			
Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Methong Equip	Date bany od:	: Layr Holle nt: CME Tim	6/2010 ne ow St	6 em A Is	J	)	DTW After Drilling (ft):35.17Screen Material:SchTop of Casing Elev. (ft msl):562.95Seal Material(s):Ben	40 PV( 40 PV( tonite (				
DEPTH (ft)	ГІТНОГОĠŶ	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEA: (mdd) OId	Lab Sample	ELEV. (ft msl)		
0			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SS SS SS SS SS SS SS		9 7 5 4 13 11 7 6 12 10 10 8 11 8 7 7 10 9 9 11 8 8 8 7 3 4 4 3 4 4 3 4		<ul> <li>(0') SILT (ML); mostly silt, some clay, low plasticity, stiff, dry, reddish, Organic Clay with Silt.</li> <li>(2') SILT (ML); mostly silt, some clay, low plasticity, stiff, dry, reddish, Organic Clay with Silt, red crushed leaves 3-4 ft.</li> <li>(4') SILT (ML); mostly silt, some clay, low plasticity, stiff, dry, dark gray.</li> <li>(5') SILT (ML); mostly silt, some clay, low plasticity, stiff, dry.</li> <li>(6') SILT (ML); mostly silt, some clay, low plasticity, stiff, dry, light brown, Silt with some Clay.</li> </ul>			- 560 - 555 - 555 - 555 - 550 - 550 545		
- - 20 N	OTES:							(16') SILT (ML); few fine sand, some silt, low plasticity, stiff, dry, light brown, 2.5 YR 8/6, Clay with some Silt. Silty Clay with some fine Sand: 17.5 to 18.0.           Kentucky North. Elevation is in ft MSL NAVD88.           ground surface. Ground surface elevation is 562.95 ft MSL.			-		

Geos cc engineers   scie	onsulta	nts	>	F	Client Projec Addre	ct: Big Sandy Plant	Well No Page:	WEL . MV 2 o	V-161		
Drilling Start Date Drilling End Date Drilling Company Drilling Method: Drilling Equipmen Driller: Logged By:	:: 05/00 /: Layn Holld nt: CME Tim	6/2010 ie ow Ste	6 em Au Is	•	)	Boring Depth (ft):54Boring Diameter (in):8Sampling Method(s):Split SpoonDTW During Drilling (ft):DTWDTW After Drilling (ft):35.17Top of Casing Elev. (ft msl):562.95Location (X,Y):2111325.37, 250527.53*	Well Depth (ft): Well Diameter (in) Screen Slot (in): Riser Material: Screen Material: Seal Material(s): Filter Pack:	0.010 Sch Sch Bent	40 PVC 40 PVC conite (	C Slotte	
DEPTH (ft) LITHOLOGY WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCI	RIPTION		MEA: (mdd) OId	Lab Sample	ELEV. (ft msl)
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SS SS SS		1 1 2 2 2 2 1		(20') Poorly graded SAND (SP); few silt, some (24') SILT (ML); little fine sand, little silt, mostl		stiff			- 540 - -
	~~~~~~~~~~	SS		2 1 2 2 3 3 2 2 3 3 2 2 3		dry, light brown, 7.5YR/6/7. (25') Poorly graded SAND (SP); mostly fine gr (26') SILT (ML); mostly silt, some clay, low pla brown, 10YR/1/7, Fat Clay with inter-bedded S	rained sand.	/		PZ-1608 (28-30)	- - 535 - -
30	<<<<<<<<<<<<<<<><<<<><<<<<<><<<<<<<><<<<	SS SS SS		2 2 3 2 3 2 3 2 3 2 3 2		(32') Poorly graded SAND (SP); mostly fine gr white, 7.5YR1/8. (34') SILT (ML); little medium-coarse sand, mo	ostly silt, some cla				- 530 - -
35		SS		2 3 3 4 3 4 4 5 4		low plasticity, stiff, dry, light brown, 2.5YR 8/8. (36') Poorly graded SAND (SP); mostly fine-m few fine gravel, loose, dry, 2.5 YR 3/8. (38') SILT (ML); few fine gravel, few fine-medi mostly clay, low plasticity, stiff, wet, light brow fine to medium with few gravel.	edium grained sar um sand, some sil	 lt,			- 525 - -
						Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 562.95 ft M	1SL.				

Drilling Start Date: 05/04/2016 Boring Depth (ft): 53.5 Well Depth (ft): 53.5 Drilling End Date: 05/05/2016 Boring Diameter (in): 8 Sampling Method(s): Split Spoon Drilling Company: Layne Dirilling Company: Layne Dirilling Method(s): Split Spoon Drilling Equipment: CME95 Diriller Tim Woods DTW After Drilling (ft): 34.07 Logged By: Matt Barnes (Layne) Top of Casing Elev. (ft msl): 571.95 Scenen Material: Sch 40 PVC Slotted (i) Huiling Method(s) Split Spoon DTW After Drilling (ft): 34.07 Scenen Material: Sch 40 PVC Slotted Logged By: Matt Barnes (Layne) COLLECT Top of Casing Elev. (ft msl): 571.95 Scenen Material: Sch 40 PVC Slotted (i) Tim Huiling (ft): Scenen Material: Sch 40 PVC Slotted Scenen Material: Sch 40 PVC Slotted (ii) Matt Barnes (Layne) Scine Clav. (ft msl): Scine Clav. Scine Clav. Scine Clav. (iii) Scine Clav. Scine Clav. Scine Clav. Scine Clav. Scine Clav. (iiii)			CO		ints	>	1	Client Projec Addre	ct: Big Sandy Plant Well No	. M	LL LO W-162 of 3		
(1) A BO TOHLI A BO T	Drilli Drilli Drilli Drilli Drilli	rilling End Date: 05/05/2016 rilling Company: Layne rilling Method: Hollow Stem Auger rilling Equipment: CME95 riller: Tim Woods pagged By: Matt Barnes (Layne) COLLECT							Boring Diameter (in):8Well Diameter (in)Sampling Method(s):Split SpoonScreen Slot (in):DTW During Drilling (ft):Riser Material:DTW After Drilling (ft):34.07Screen Material:Top of Casing Elev. (ft msl):571.95Seal Material(s):	0 40 PVC 40 PVC tonite (
IIIIII IIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DEPTH (ft)	ГІТНОГОGY	WATER LEVEL	WELL COMPLETION					SOIL/ROCK VISUAL DESCRIPTION		(mdd)		ELEV. (ft msl)
10 10 <td< td=""><td>5-</td><td></td><td></td><td></td><td>SS SS SS SS SS</td><td></td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>2.0</td><td> (a) SILT (ML); some clay, stiff, wet, light brown, 2.5YR/1/3, Silty Clay we some gravel and coals. (4) SILT (ML); some clay, stiff, wet, light brown, 10 YR 8/6, Silt some Clay. (6) No Recovery. (8) SILT (ML); some clay, stiff, wet, light brown, 10YR/5/8. (8) SILT (ML); some clay, stiff, wet, light brown, 10YR/5/8. </td><td>with</td><td>-</td><td></td><td>- - - 565 - - - - 560 - - - - - - - - -</td></td<>	5-				SS SS SS SS SS		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	 (a) SILT (ML); some clay, stiff, wet, light brown, 2.5YR/1/3, Silty Clay we some gravel and coals. (4) SILT (ML); some clay, stiff, wet, light brown, 10 YR 8/6, Silt some Clay. (6) No Recovery. (8) SILT (ML); some clay, stiff, wet, light brown, 10YR/5/8. (8) SILT (ML); some clay, stiff, wet, light brown, 10YR/5/8. 	with	-		- - - 565 - - - - 560 - - - - - - - - -
NOTES: *Northing and easting are in NAD83 Kentucky North. Elevation is in ft MSL NAVD88.					SS		5 4 5 5 4 4		clay, medium plasticity, stiff, dry, light brown, 10YR 5/8.	me	-		- - 550

					>	F	Client Projec Addre	ct: Big Sandy Plant		W Well No. Page:		L LO V-162 f 3		
Drillin Drillin Drillin Drillin Drillen	ig End I ig Comp ig Meth- ig Equip	Date pany od:	: Layı Holl nt: CME Tim	5/2010 ne ow St	6 em A Is	-)	Fop of Casing Elev. (ft msl): 571.95 Seal Material(s): Bent					C C Slotte Chips er Pack	
DEPTH (ft)	ГІТНОГОĞY	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCF	RIPTIO	N		MEA: (mdd) OIA	Lab Sample	ELEV. (ft msl)
20				SS SS SS SS SS		7 3 3 4 1 2 1 1 1 1 1 2 3 3 2 2 2 2 2 2 1 3 3 5		(20') Lean CLAY with sand (CL); little medium clay, medium plasticity, stiff, dry, light brown, 1	sand, li I0YR 5	ittle silt, some /8.			PZ-1609 (30-32)	- - 545 - - - 540
- 35 - - - 40			< < < < < < < < < < < < < < < < < < <	SS SS SS		5 6 4 5 4 6 5 5 5 5 5 8		 (33') Poorly graded SAND (SP); little medium- 2.5 YR 8/6. (34') Poorly graded SAND (SP); loose, wet, 2. Shale. (36') Poorly graded SAND (SP); loose, wet, whether the second secon	5 YR 8 hite, W	8/6. Sand with hite Sand.				- 535 - - - - 530
	OTES:							Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 571.95 ft N	ISL.					

Geosynte consulta engineers scientists inno	nts		Clien Proje Addre	ct: Big Sandy Plant		V Well No. Page:	VELI MW 3 of	-162	-			
Drilling Company: Layr Drilling Method: Holk Drilling Equipment: CME Driller: Tim	5/2016 e ow Stem :	Ū		OTW After Drilling (ft):34.07Screen Material:SchTop of Casing Elev. (ft msl):571.95Seal Material(s):Bent								
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Sample Type Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESC	RIPTION	I	-	MEA: (mdd) DIA	Lab Sample	ELEV. (ft msl)		
	SS SS SS SS	6 5 5 5 8 14 16 5 5 4 6 8 9 8 10 17 18		 (40') Poorly graded SAND (SP); mostly mediu sand, loose, wet, Sand with Shale fragment. F 41.75. (42') Poorly graded SAND (SP); very dense, v 43.75. Fat Clay 43.75 to 44.00. (44') Well-graded GRAVEL with sand (GW); r grained gravel, little medium-coarse sand, loc (46') Poorly graded SAND with gravel (SP); m grained sand, some fine-coarse gravel, loose 10YR/2/6. (48') SED ROCK (SANDSTONE); medium sa weathered, hard, light brown, saturated, 10YF (49.8') Fat CLAY (CH); mostly clay, high plast brown. (50.5') SED ROCK (SANDSTONE); medium sa weathered, hard, light brown, saturated. (53.5') SED ROCK (SANDSTONE); medium sa weathered, hard, light brown, saturated. 	Fat Clay i wet, Sand mostly fin ose, wet, nostly me , saturate and, inten R/2/6. ticity, stiff sand, inte	reappear at d 42.00 to e-coarse light brown. edium-coarse ed, dark gray sely f, wet, dark ensely	 e y,		PZ-1609 (44-46)	- - - - - - - - - - 520 - - - 515 - - - - 515		