Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215

GROUNDWATER MONITORING NETWORK EVALUATION

BIG SANDY FLY ASH POND

LOUISA, KENTUCKY

Prepared by

consultants

8217 Shoal Creek Blvd, Suite 200 Austin, TX 78757

Geosyntec Project No.: TXL0510

December 2016

GROUNDWATER MONITORING NETWORK EVALUATION BIG SANDY FLY ASH POND LOUISA, KENTUCKY

TABLE OF CONTENTS

1.		OB.	JECTIVE1-1
1	.1	Pu	rpose
1	.2	Or	ganization of Report1-1
1	.3	Co	ordinate System and Datum1-1
2.		BAG	CKGROUND INFORMATION2-1
2	2.1	Fa	cility Location Description
2	2.2	De	escription of CCR Unit
	2.2	2.1	Embankment Configuration2-1
	2.2	2.2	Area and Volume of CCR Units
	2.2	2.3	Construction and Operational History2-2
	2.2	2.4	Surface Water Control
2	2.3	Pro	evious Investigations and Studies
2	2.4		/drogeologic Setting
	2.4	4.1	Climate and Water Budget
2.4.2			Regional and Local Geologic Setting
	2.4.3		Regional and Local Hydrogeologic Setting2-6
	2.4	4.4	Surface Water and Surface Water-Groundwater Interactions
	2.4	4.5	Water Users
3.		MO	NITORING NETWORK EVALUATION3-1
3	8.1	Hy	vdrostratigraphic Units
	3.	1.1	Horizontal and Vertical Position Relative to CCR Unit
	3.	1.2	Overall Flow Conditions
3	3.2	Uţ	opermost Aquifer
	3.2	2.1	CCR Rule Definition
	3.2	2.2	Identified Onsite Hydrostratigraphic Unit(s) – Uppermost Aquifer
3	3.3	٥v	verview of Groundwater Monitoring System Regulatory Requirements
3	3.4		eview of Existing Monitoring Network

3.4.1	Overview	.3-	3
3.4.2	Compliance Assessment	. 3-	3
	•		

LIST OF TABLES

- Table 2-1Timeline of Big Sandy Power Plant and BSFAP History
- Table 2-2Summary of Nearby Groundwater Withdrawal Wells
- Table 3-1
 Monitoring Network Well Construction Summary

LIST OF FIGURES

- Figure 2-1 Site Location Map
- Figure 2-2 Plant and CCR Unit Location Map
- Figure 2-3 CCR Unit Layout and Boring/Monitoring Well Locations
- Figure 2-4 Surface Geology Map
- Figure 2-5 Nearby Groundwater Withdrawal Wells
- Figure 3-1 Groundwater Elevation Map Uppermost Aquifer
- Figure 3-2 Groundwater Monitoring Well Network of the Uppermost Aquifer

LIST OF APPENDICES

Appendix A References

Appendix B Supplemental Documentation from 2010 and 2012 Investigations

- Drawings Prepared by URS (2013)
 - Figure 3.2 Boring and Well Locations
 - o Figure 4.1a Cross Section A-A'
 - Figure 4.1b Cross Section B-B'
 - Figure 4.1c Cross Section C-C'
 - Figure 4.1d Cross Section D-D'
 - o Figure 4.2c Groundwater Elevations October 15, 2012
- Relevant Boring Logs and Monitoring Well Construction Diagrams
 - o 2012 Installations (MW-1201 through MW-1207)
 - o 2010 Installations (MW-1007 through MW-1012 and PB-1 through PB-8)

Appendix C Supplemental Documentation from the 2016 Investigation

• Figure 1 Cross Section A-A'

Appendix D Boring Logs and Monitoring Well Construction Diagrams from the 2016 Installations

LIST OF ACRONYMS

AEP	American Electric Power
BSFAP	Big Sandy Fly Ash Pond
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
cfs	Cubic feet per second
ft, MSL	Feet above mean sea level
gpm	Gallons per minute
KAR	Kentucky Administrative Regulation
KRS	Kentucky Revised Statutes
KPDES	Kentucky Pollutant Discharge Elimination System
KYDEP - DWM	Kentucky Department for Environmental Protection – Division of Waste Management
KYPCo	Kentucky Power Company
MCL	Maximum Contaminant Level
MW	Megawatt
NAD83	North American Datum of 1983
NAVD 88	North American Vertical Datum of 1988
PE	Professional Engineer
PG	Professional Geologist
PMF	Probable Maximum Flood
PVC	Polyvinyl Chloride
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

1. OBJECTIVE

1.1 <u>Purpose</u>

The purpose of this report is to provide an assessment of the groundwater monitoring network associated with the American Electric Power (AEP) Big Sandy Power Plant Fly Ash Pond (BSFAP) with respect to compliance with the United States Environmental Protection Agency's (USEPA's) Coal Combustion Residual (CCR) Rule (Title 40 Code of Federal Regulations (CFR) Section (§) 257.91.

This report was prepared by Mr. Dawit Yifru, geologist. The geology and hydrogeology information evaluated and discussed in this report was prepared under the direction of Mr. Jimmy Whitmer, PG (Kentucky licensed professional geologist (PG) No. 2287). The overall groundwater monitoring network evaluation contained herein was performed by Mr. Scott M. Graves, PE (Kentucky licensed professional engineer (PE) No. 21274). The report was reviewed by Mr. John Seymour, PE (Illinois), in accordance with Geosyntec's senior peer review policies.

1.2 Organization of Report

This report is organized as follows:

- Section 2 presents background information on the power plant and the CCR unit;
- Section 3 presents an evaluation of the existing monitoring network; and
- Section 4 provides a certification from a qualified PE.

A list of the references that are cited in this report is provided in Appendix A. Supporting documentation is provided in Appendices B through D.

1.3 <u>Coordinate System and Datum</u>

The horizontal coordinate values provided in this report are based upon the North American Datum of 1983 (NAD83), Kentucky North Zone. The vertical datum utilized for reporting the elevations within this report is North American Vertical Datum of 1988 (NAVD 88).

2. BACKGROUND INFORMATION

2.1 Facility Location Description

The Kentucky Power Company (KYPCo), a business unit of AEP, operates the Big Sandy Plant – a former 1,060 megawatt (MW) coal-fired power generating station located in Lawrence County, Kentucky approximately 4.5 miles north of Louisa, Kentucky (Figure 2-1). The Big Sandy Plant is located along the Kentucky side of the Big Sandy River that forms the border with West Virginia.

AEP permanently ceased burning coal at the Big Sandy Plant in November 2015 and transitioned to a 278 MW natural-gas-fired power plant facility. As a result, CCR wastes are no longer being generated, operation of the fly ash pond for disposal of CCR waste has ceased, and the BSFAP is currently undergoing closure.

2.2 Description of CCR Unit

The CCRs formerly generated by the Big Sandy Plant were disposed of in a nearby existing surface impoundment (i.e., "CCR unit") known as the BSFAP, which is the subject of this groundwater monitoring network evaluation report. The location of the BSFAP in relation to the main plant area is shown on Figures 2-1 and 2-2. As shown, the BSFAP is located approximately 1.3 miles northwest of the Big Sandy Power Plant and about 4.5 miles north-northwest of Louisa, Kentucky. The BSFAP formerly received wet-sluiced fly ash from the coal burning process as well as bottom ash that was periodically transferred from the Bottom Ash Ponds next to the main plant area.

The BSFAP was formed by constructing a dam across the valley of Horseford Creek, and therefore it has sometimes been referred to as the "Horseford Creek Site" in historical site documents. Figure 2-2 presents a layout map of the BSFAP and its immediate area. Figure 2-2 illustrates that the fly ash pond area is contained by a dam called the "Main Dam" (sometimes referred to as the "Horseford Creek Dam" in historical site documents) located at the north end of the Horseford Creek valley.

Additionally, the fly ash pond area is contained by another dam referred to as the "Saddle Dam" that spans across a small saddle (i.e., pass) between peaks on a ridgeline on the southeastern side of the BSFAP. Along with these dams, the rest the BSFAP is contained by the valley floor and sideslopes. The valley floor is composed of alluvium soil overlying bedrock. The valley sideslopes range in steepness from approximately 2 horizontal to 1 vertical (2H:1V) to 5H:1V (URS, 2013c), and consist of a thin veneer of residual soil (residuum) or weathered bedrock, with some outcrops of sandstone, coal, and shale.

2.2.1 Embankment Configuration

The Main Dam is an approximately 171-ft tall, zoned earth and rock fill dam with downstream slopes varying from 1.75H:1V to 2.25H:1V and upstream slopes varying from 2.H:1V to 2.75H:1V. The

crest of the Main Dam has an elevation of 711 feet above mean sea level (ft, MSL). In the 2015 dam inspection report (AEP, 2015b), the water level in the BSFAP adjacent to the Main Dam was reported at elevation 671.5 ft, MSL creating a freeboard of approximately 40 feet. It is founded on a stratum of alluvium (approximately 17-ft thick on average) which overlies bedrock. The Main Dam also has a compacted clay keyway that cuts through the alluvium and is founded on bedrock. The Main Dam is equipped with a principal service spillway composed of a spillway tower and discharge pipe that passes through the dam which releases water on the downstream side of the dam.

The Saddle Dam is approximately 55-ft tall, has an upstream slope of 2.75H:1V, and a downstream slope of 1.75H:1V. The Saddle Dam is constructed of a combination of compacted clay, bottom ash, and fly ash. The dam is founded primarily on bedrock, along with some stiff residuum clays. The crest of the Saddle Dam is at an elevation of 711 ft, MSL. The Saddle Dam does not have a discharge structure located within the dam. However, an approximately 100-ft wide emergency spillway channel, with an elevation of 706.25 ft, MSL, is situated next to the Saddle Dam.

2.2.2 Area and Volume of CCR Units

The BSFAP currently occupies approximately 130 acres, and has a length from the crest of the Main Dam to the upstream end of the upper pool of approximately 7,800 feet (URS, 2013b). Based on the stage-storage relationship for the fly ash pond (KYPCo, 1993), this would equate to approximately 3,000 acre-feet of storage currently held in the BSFAP. At the maximum operating pool elevation of 705 ft, MSL, the fly ash pond would occupy approximately 176 acres and would have approximately 7,400 acre-feet of storage capacity. Based on current conditions compared to the maximum design operating pool elevation, there is a remaining design storage capacity in the BSFAP of approximately 4,400 acre-feet (i.e., about 7,100,000 cubic yards).

However, AEP permanently ceased burning coal at the Big Sandy Plant in November 2015 and has completed the transition to a natural gas-fired power plant facility. As a result, CCR wastes are no longer being generated, and operation of the fly ash pond for disposal of CCR waste has ceased. AEP began construction to close the BSFAP in August 2016 under the applicable closure provisions of 401 Kentucky Administrative Regulations (KAR) 45:110 for special waste disposal facilities and 40 CFR §257.102 as appropriate, following the more stringent requirements. AEP filed a Closure Plan application with the Kentucky Energy and Environment Cabinet; Kentucky Department for Environmental Protection (KYDEP) – Division of Waste Management (DWM) in June 2013 for final closure of the BSFAP, and received the permit in September 2015. The closure is scheduled for completion in 2020.

2.2.3 Construction and Operational History

The construction and operational history of the Big Sandy Power Plant and BSFAP is provided in Table 2-1. As shown, Unit 1 of the Big Sandy Power Plant began operation in 1963. From 1968 to

1970, the BSFAP was created by construction of the original portion of the Main Dam. Initially, the Main Dam was built with a crest elevation of 625 ft, MSL (85 feet tall). Rock fill berms were also constructed adjacent to the toe of slope of both the upstream and downstream portions of the Main Dam to further buttress the dam. Piezometers were installed in 1969 to monitor performance of the dam.

A second phase of construction was completed in 1979; the Main Dam was raised to a crest at elevation 675 ft, MSL (135 feet tall). This phase also included the construction of an initial saddle dam and emergency spillway. During the second phase, instrumentation was installed at the Main Dam to monitor performance of the dam. The instrumentation system consisted of deformation monuments, piezometers, and flow measurement weirs at the Main Dam.

The third phase of BSFAP expansion, which was constructed in controlled stages from 1993 to 2011 and now represents current existing conditions, involved raising the crest of the Main Dam to elevation 711 ft, MSL (171 feet tall) and constructing a new Saddle Dam with a new adjacent emergency spillway.

2.2.4 Surface Water Control

Storm water runoff from the approximately 675-acre contributing drainage area of the Horseford Creek watershed above the Main Dam currently flows into the BSFAP. The Main Dam is equipped with a principal service spillway composed of a spillway tower and discharge pipe that passes through the dam and which releases water from the BSFAP at Kentucky Pollutant Discharge Elimination System (KPDES)-permitted outfall (plant "Outfall 001") on the downstream side of the dam (KPDES Permit No. KY0000221). The discharged water then flows into Blaine Creek, which in turn flows into the Big Sandy River.

The BSFAP is also equipped with an emergency spillway next to the Saddle Dam. According to the Engineering Report associated with the 1993 Stage 3 raising of the Main Dam to achieve its current condition (KYPCo, 1993), the principal spillway system has the capacity to safely discharge the design flood without engaging the emergency spillway. The KYPCo (1993) Engineering Report also indicates that the emergency spillway is designed to pass the probable maximum flood (PMF) without overtopping the dam.

2.3 <u>Previous Investigations and Studies</u>

Several site investigations and studies have been conducted during operational history of the BSFAP. The following reports containing hydrogeologic and groundwater quality characterizations and assessments were used to provide backup information to support this groundwater monitoring well network evaluation:

• Final Report – Hydrogeologic Site Investigation. June, 2013. URS Corporation;

- Report Groundwater Monitoring Plan. June, 2013. URS Corporation;
- Kentucky Power Company, Big Sandy Power Plant Ash Pond Closure Drawings, 100% Submittal, June 2013. URS Corporation;
- Big Sandy Fly Ash Pond: Report on Hydrogeology and Groundwater Quality. June 2015. Geosyntec Consultants, Inc.; and
- Big Sandy Fly Ash Pond: Monitoring Well Installation Report. October 2016. Geosyntec Consultants, Inc.

Previous hydrogeologic investigations at the BSFAP included installation of six (6) groundwater monitoring wells (MW-1007 through MW-1012) in 2010. A total of twenty (20) borings were drilled as part of the April 2012 subsurface exploration program by URS Corporation. These borings include eight (8) pond borings (PB-1 through PB-8), five (5) soil borings (SB-3, SB-4, SB-6, SB-7 and SB-8), and seven (7) hydrogeological borings (HB-1 through HB-7) that were subsequently converted into groundwater monitoring wells (MW-1201 through MW-1207). Monitoring wells MW-1206 and MW-1207 were properly abandoned in accordance with 401 KAR 6:350, Section 11, in December 2015 and January 2016. In 2016, eleven borings were drilled and seven (7) groundwater monitoring wells (MW-1607) were installed. The location of the monitoring wells, borings, and other sampling points is shown on Figure 2-3. Boring logs, monitoring well construction diagrams and geologic cross-sections from the 2010 and 2012 investigations are provided in Appendix B. A geologic cross-section from the 2016 investigation is provided in Appendix C. Boring logs and monitoring well construction diagrams of the wells installed in 2016 are provided in Appendix D.

The hydrogeologic investigations involved drilling; soil, rock, and ash sampling; hydraulic testing; borehole geophysics; well water gauging; and groundwater sampling. In addition, surface water samples and samples from groundwater seeps were collected as part of the groundwater investigation in 2012. The results of these investigations are summarized in the above-referenced documents.

2.4 <u>Hydrogeologic Setting</u>

2.4.1 Climate and Water Budget

The average annual precipitation at the site is approximately 44 inches, with monthly totals averaging between about 3.0 inches in the driest months (October and January) to about 5.5 inches in the wettest month (July). Temperatures range from highs in the mid to upper 80s Fahrenheit in July to highs in the low to mid 40s Fahrenheit in January (Lloyd and Lyke, 1955).

Under previous operating conditions when the Big Sandy Plant was burning coal, they used water to sluice and transfer fly ash and miscellaneous waste to the BSFAP. As mentioned, AEP permanently ceased burning coal at the Big Sandy Plant in November 2015. Closure of the BSFAP has begun, and

operation of the fly ash pond for disposal of CCR waste has ceased. Accordingly, CCR sluice water is no longer generated. The Big Sandy Plant will continue to send sluice water from non-CCR sources to the BSFAP through approximately 2018. Additionally, storm water generated by precipitation in the watershed above the Main Dam also flows into the BSFAP. Finally, there is likely an additional component of water entering the BSFAP due to groundwater seepage into the pond from the subsurface water-bearing strata that encounter ash placed within the valley, as discussed subsequently in Section 2.4.4. Water detained in the BSFAP is released through the principal spillway structure at the Main Dam (Figure 2-3), where it is discharged to a KPDES-permitted outfall on the downstream side of the Main Dam.

There is also a second KPDES-permitted outfall ("Outfall 018") located on the downstream side of the Main Dam associated with the seepage collection system through the collection blanket and chimney drain. According to AEP (2015a), that outfall location experiences a historical average daily flow rate of approximately 0.15 cubic feet per second (cfs) [i.e., about 67 gallons per minute (gpm)]. The discharged water from these BSFAP outfalls flows into Blaine Creek, which in turn flows into the Big Sandy River (a tributary of the Ohio River).

2.4.2 Regional and Local Geologic Setting

The regional geology of the site consists of relatively flat-lying Pennsylvanian-age rock of the Monongahela, Conemaugh, and Breathitt formations in the upland areas and relatively thin Quaternary-age alluvial deposits in the stream valleys (Lloyd and Lyke, 1995). A regional geology map is presented on Figure 2-4. The Monongahela, Conemaugh, and Breathitt formations are the result of sedimentary deposition in a fluvial-deltaic environment, and consist of cyclic sequences of sandstone, siltstones, shales and coals. Alluvial material in the region is present along present-day streams and consists of unconsolidated deposits of silt, sand, and gravel derived from present-day stream processes (Lloyd and Lyke, 1995). A relatively thin layer of residual soils (residuum) generally consisting of clay and sand derived from the weathering of underlying bedrock is present at the ground surface at higher elevations (URS, 2013a).

The local bedrock geology at the BSFAP consists of siltstones, sandstones, shales and coals of the Monongahela, Conemaugh, and Breathitt formations (URS, 2013a). Quaternary-age alluvium is present overlying the bedrock at the base of the BSFAP and along the floodplain of the Blaine Creek. Geologic cross sections illustrating the site subsurface lithologic units and groundwater in relation to the ash are presented in the supporting documentation in Appendix B and Appendix C.

Borings advanced within the BSFAP footprint revealed ash thickness in the pond of up to 130 ft with the ash thickness increasing downstream, from 15 ft at PB-1 location to 133 ft at PB-8 location (the location of Pond Borings is shown in URS (2013) Figure 4.2c in Appendix B). The alluvial deposit that occurs at the bottom of the Horseford Creek valley is composed of sandy lean clay to silty sand and gravel. The thickness of the alluvium varies from approximately 10 ft upstream (at PB-1 location)

to 26 ft in the middle section of the pond (at PB-6 location) to 19 ft downstream (at PB-8 location). The alluvium was also encountered downstream of the Main Dam in MW-1606 and MW-1607 and in the floodplain of Blaine Creek (in MW-1604 and MW-1605) (Discussed in Section 3).

The Monongahela formation, present roughly above 910 ft, MSL elevations, consists of sandstones, siltstones and shales. Only the lowest cross-bedded sandstone member of the Monongahela formation is present on site as a resistant cap on the highest ridge lines [Geosyntec (2015) Figure 3 in Appendix B].

Underlying the Monongahela formation is the Conemaugh formation, which consists of sandstone, siltstone and shale with some limestone and coal beds demarcating the upper and lower portions of the formation. A 2- to 3-ft thick Brush Creek limestone member, located at approximately 780 ft, MSL separates the upper unit and the lower unit. The Conemaugh formation outcrops on the hillsides of the site at approximate elevations of 700 ft to 920 ft, MSL.

Underlying the Conemaugh formation is the Breathitt formation, which consists of sandstone, siltstone and shale with some limestone and coal beds identified as Princess Coals. The uppermost Breathitt formation consists of shale with a resistant sandstone unit near elevation 680 ft, MSL (URS, 2013a). The Princess No. 8 coal bed is not laterally persistent, but is thick enough for commercial mining. The coal bed has an average thickness of 30 inches in northern Lawrence County, where it extends westward for about eight miles from the Big Sandy River near the mouth of Blaine Creek valley (Huddle et al., 1963). Exposure of the Princess No. 7 was reported in the Horseford Creek valley at an approximate elevation of 610 to 620 ft, MSL prior to the creation of the BSFAP (URS, 2013a). The 2016 drilling and monitoring well installation at the BSFAP indicated a coal seam at approximate elevation of 600 ft, MSL. However, the coal seam was not continuous in the Horseford Creek valley. In borings further upstream of the Main Dam (in MW-1608 and MW-1609), a carbon rich shale was encountered at an approximate elevation of 600 ft, MSL.

2.4.3 Regional and Local Hydrogeologic Setting

The near-surface hydrogeology of the region is generally categorized into two systems: (i) an alluvial aquifer system of unconsolidated deposits; and (ii) an aquifer system in the fractures of the bedrock (Lloyd and Lyke, 1995). The alluvial aquifer system typically consists of sand and gravel and occurs in present-day stream valleys. The bedrock mostly consists of repeated beds of fractured sandstone and limestone deposited during the multiple sedimentary cycles.

Groundwater at the BSFAP site is unconfined and is encountered within the fractured bedrock (shale, sandstone, coal) and in the alluvial deposits. Based on potentiometric surface measurements in monitoring wells screened in the alluvium and others screened in the bedrock, these water bearing units appear to be hydraulically interconnected. The water-bearing units are recharged by precipitation, and groundwater generally flows parallel to the topographic slope. The BSFAP is surrounded by ridges, which function as groundwater divides (Figure 2-3). Although there are

fractures present throughout the bedrock, aquifer characteristics of the bedrock and well yields are variable due to the number of fractures and how well the fractures are interconnected.

Groundwater elevations in the overburden/weathered bedrock or fractured bedrock on the hillsides surrounding the BSFAP are higher than the surface water elevation in the pond. Accordingly, groundwater generally flows parallel to the topographic slope and therefore into the BSFAP where these hillsides encounter the ash. Groundwater flow then continues towards the Horseford Creek valley bottom and into the alluvium deposits at the base of the BSFAP, where it then flows along the centerline of the valley towards the Main Dam.

2.4.4 Surface Water and Surface Water-Groundwater Interactions

The BSFAP receives storm water runoff from the approximately 675-acre contributing drainage area of the Horseford Creek watershed upstream from the Main Dam. Some of the surface water flowing into the BSFAP is retained in the pond (i.e., standing water, some of which evaporates and some of which infiltrates into the underlying alluvium). Additionally, surface water is released via the discharge pipe that passes through the Main Dam. The discharged water then flows into Blaine Creek, which from that location flows for approximately 1.5 miles and then joins the Big Sandy River.

Roads overlying the ash material have been constructed at various locations within the BSFAP (Figure 2-2). These roads function as dikes, resulting in ash accumulation of varying elevations throughout the pond area as well as variations in surface water elevations within the pond. The upstream surface water elevation in the pond is approximately 685 ft, MSL, and the downstream surface water elevation in the pond is approximately 670 ft, MSL (URS, 2013b). This difference in water surface elevation appears to be because the surface elevation of the ash varies along the length of the pond, trending from lower surface elevations at the Main Dam, and higher surface elevations at the upstream reaches of the pond. In places, the ash is exposed to the surface (not submerged), and this ash holds back surface water that accumulates behind the exposed ash. Also, as previously noted the BSFAP is currently undergoing closure. As part of closure construction, dewatering and grading of the ash to form the subgrade of an engineered cap has begun in the upstream reaches of the pond.

Based on the site hydrogeology (as described in Section 2.4.3), the surface water and groundwater appear to hydraulically interact with each other. Groundwater elevations in the overburden/weathered bedrock or fractured bedrock on the hillsides surrounding the BSFAP are higher than the surface water elevation in the pond. Accordingly, groundwater generally flows parallel to the topographic slope and eventually discharges into the surface water of the BSFAP. Downstream of the Main Dam, it appears that groundwater from the Horseford Creek alluvium would flow into the Blaine Creek valley alluvium and eventually may make its way into surface water of the creek.

2.4.5 Water Users

Location and description of groundwater withdrawal wells were obtained from the Kentucky Groundwater Data Repository, Water Well and Spring Location Map (<u>http://kgs.uky.edu/kgsmap/KGSWater/viewer.asp</u>). The location of these wells is provided in Figure 2-5. As shown, a total of ten (10) water wells were identified within an approximately 1 mile radius from the BSFAP. Additional information on these wells is provided in Table 2-2. As shown on Table 2-2, six (6) of these wells are used for domestic use, one (1) for industrial use, one (1) for mining, and two (2) water wells for unknown use.

3. MONITORING NETWORK EVALUATION

3.1 <u>Hydrostratigraphic Units</u>

3.1.1 Horizontal and Vertical Position Relative to CCR Unit

Groundwater at the BSFAP is unconfined and is encountered within the fractured bedrock of the Conemaugh and Breathitt formations and in the alluvial deposits at the bottom of the Horseford Creek valley. These bedrock and alluvium water-bearing units appear to be hydraulically connected. Outcrops of sandstone, siltstone, and shale along the hillsides of the Horseford Creek valley surround the ash pond (URS, 2013b). The ash was placed directly above the alluvium in the Horseford Creek valley. Underlying the alluvium is either sandstone or shale of the Breathitt formation. Geologic cross sections illustrating this connectivity of the water bearing formations are provided in Appendix B and Appendix C.

3.1.2 Overall Flow Conditions

As discussed in Section 2.4.4 above, groundwater flow conditions at the BSFAP site are generally consistent with site topography with groundwater flowing from the hillsides surrounding the BSFAP and discharging into the BSFAP. North of the Main Dam it appears that groundwater from the Horseford Creek alluvium would flow into the Blaine Creek valley alluvium and eventually may make its way into surface water of the creek. Groundwater flow directions are shown in Figure 3-1.

Based on the pre-development site topography at the location of the current Saddle Dam, a saddle is present between peaks on a ridgeline on the southeastern side of the BSFAP. This pass, or saddle, functions as a groundwater divide. Natural surface and groundwater flow near the Saddle Dam would be split with a portion flowing towards the west or northwest into the Horseford Creek valley (i.e., towards the BSFAP) and a portion flowing towards the southeast away from the BSFAP. However, during periods of high surface water elevation in the BSFAP, groundwater flow direction may predominately be towards the southeast, away for the BSFAP. The July 2016 groundwater level data indicated that groundwater flow direction in the vicinity of the Saddle Dam is away from the BSFAP.

The Monitoring Well Installation Report (Geosyntec, 2016) indicated that the horizontal hydraulic conductivity (K) of the bedrock units depends on the dimension of fractures identified in the screen interval, and how well the fractures are interconnected. Wells screened in the sandstone unit with one open fracture (such as MW-1601 and MW-1602) have an average K on the order of 10⁻⁴ cm/sec. Similarly, monitoring well MW-1611 screened in shale and coal seam with multiple open fractures also has a K of 10⁻⁴ cm/sec. In contrast, monitoring wells screened in the sandstone and shale with multiple but narrow fractures (such as in MW-1603 and MW-1608) resulted in K values on the order of 10⁻⁵ and 10⁻⁶ cm/sec. Two borings (designated as MW-1609 and MW-1610) were abandoned because borehole geophysics and packer testing results indicated no measurable groundwater flow in

the target screen intervals. Monitoring wells screened in the sand and gravel alluvium have K values on the order of 10^{-3} cm/sec to 10^{-4} cm/sec.

3.2 <u>Uppermost Aquifer</u>

3.2.1 CCR Rule Definition

The term "uppermost aquifer" referred to in §257.91 of the groundwater monitoring systems rule for CCR units is defined in 40 CFR §257.53 as: "the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within the facility's property boundary. Upper limit is measured at a point nearest to the natural ground surface to which the aquifer rises during the wet season." Aquifer is defined as "a geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs." Per the preamble that accompanies the CCR Rule, this definition includes a shallow, deep, perched, confined, or unconfined aquifer, provided that it yields usable water. "Usable water" is not defined in the CCR Rule nor in Kentucky regulations.

3.2.2 Identified Onsite Hydrostratigraphic Unit(s) – Uppermost Aquifer

The hydrostratigraphy in the vicinity of the BSFAP is characterized by an interconnected waterbearing system comprised of Pennsylvanian-age bedrocks of the Conemaugh and Breathitt formations and the Quaternary alluvium. The bedrocks include sandstones, siltstones, shale, and coal that may grade laterally and vertically into one another. The alluvial deposits include sandy lean clay to silty sand and gravel at the bottom of the Horseford Creek valley and the floodplain of the Blaine Creek.

The interconnected water-bearing system of the fractured bedrock and alluvium is considered to be the uppermost aquifer at the BSFAP site. This is based on the presence of groundwater in numerous monitoring wells screened in the water bearing units, the recovery of these wells during pumping and development, and a potentiometric surface generally consistent with site topography and surface water elevations. This conclusion is further supported by the presence of several nearby water withdrawal wells (discussed in Section 2.4.5) that appear to be screened in the same or a similar hydrogeologic setting/formation or materials.

3.3 <u>Overview of Groundwater Monitoring System Regulatory Requirements</u>

The preamble that accompanies the CCR Rule concisely summarizes the groundwater monitoring system regulatory requirements of Rule 40 CFR §257.91 by stating that "all groundwater monitoring systems must consist of a sufficient number of appropriately located wells (at least one upgradient and three downgradient wells) in order to yield groundwater samples from the uppermost aquifer that represent the quality of background groundwater and the quality of groundwater passing the CCR waste boundary." The upgradient background wells must be located beyond the upgradient extent of potential contamination whereas the downgradient wells will monitor any contaminants leaking into

the groundwater and must be located at the downgradient perimeter of the CCR unit. Although the rule requires a minimum of one upgradient and three downgradient monitoring wells, the number, spacing and depths of the monitoring wells must be determined based on hydrogeology of the site including aquifer thickness, groundwater flow rates and direction.

3.4 <u>Review of Existing Monitoring Network</u>

3.4.1 Overview

The groundwater monitoring network consists of ten (10) groundwater monitoring wells located both upgradient and downgradient of the BSFAP to provide detection monitoring in the uppermost aquifer (fractured bedrock and alluvium). Six (6) groundwater monitoring wells (MW-1011, MW-1012, MW-1203, MW-1601, MW-1602, and MW-1603) are screened in fractured sandstone and shale layers of the Breathitt formation. Four (4) monitoring wells (MW-1604 through MW-1607) are screened in the alluvium. The location of each groundwater monitoring well within the uppermost aquifer is shown in Figure 3-2.

Three (3) of the monitoring wells (MW-1011, MW-1012, and MW-1203) screened in bedrock were installed on the hillside slopes upgradient of the BSFAP and will be used for background monitoring. Three (3) monitoring wells (MW-1601, MW-1602, and MW-1603) installed in bedrock are located downgradient of the BSFAP and will be used for downgradient monitoring. Two (2) monitoring wells (MW-1604 and MW-1605) screened in alluvium will be used for background monitoring; while two (2) other monitoring wells (MW-1606 and MW-1607), screened in alluvium and located below the Main Dam downgradient of the Horseford Creek valley, will be used for downgradient monitoring.

The monitoring wells (except the pre-existing wells MW-1011, MW-1012 and MW-1203) were installed in an eight-inch borehole and have four-inch diameter PVC casings, 10-ft long screens and 0.01-inch slot size. Monitoring wells MW-1011, MW-1012, and MW-1203 were constructed with a two-inch diameter PVC casings and 0.01-inch slot size screens with screen lengths ranging between 10 and 30 ft. Well construction details are summarized in Table 3-1 and boring logs and well construction diagrams are provided in Appendix B and Appendix D.

3.4.2 Compliance Assessment

Review of the groundwater monitoring well network in relation to the geologic and hydrogeologic conditions in the area of the BSFAP indicates that it consists of a sufficient number of wells installed at the appropriate locations and depths to yield groundwater samples from the uppermost aquifer that accurately represent the quality of background groundwater and groundwater passing the waste boundary of the BSFAP. The groundwater monitoring well network is also capable of providing a system for detection of potential contamination in the uppermost aquifer nearest the waste boundary. In particular, the downgradient groundwater monitoring wells are appropriately positioned based on

their close proximity to downgradient waste boundary of the BSFAP and the documented hydrogeology and groundwater flow directions at the site. Based on the above review, the groundwater monitoring network around the BSFAP meets the requirements of 40 CFR §257.91.

4. **CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER**

I have reviewed the groundwater monitoring network and well construction details in the vicinity of the Fly Ash Pond at the Big Sandy Plant and based on the evaluation presented in Section 3 of this report, I certify that the groundwater monitoring system has been designed and constructed to meet the requirements of Section 40 CFR §257.91.

Scott M. Graves

Printed Name of Licensed Professional Engineer THE OF KEN AND DESCRIPTION OF THE OWNER OWNE GRAVES 1274

12/16/2016

Seal and Signature

Date

21274

Kentucky

License No.

State

TABLES

Year	Event						
1963	Unit 1 began operation.						
1968	Construction of Horseford Creek Dam Phase 1 began in late 1968.						
1969	Rock fill berms were constructed on both sides (upstream and downstream) of the embankment in January 1969.						
1969	Unit 2 began operation.						
1969	Piezometers were installed in late 1969 to monitor the pore water pressures in the embankment fill and foundation soils; the berms were enlarged in late 1969.						
1970	Construction of phase 1 was completed in mid-February 1970 when the dam crest reached 625 ft, MSL (i.e. 85 feet tall)						
1976	Design for Horseford Creek Dam Phase 2 began in April 1976.						
1979	Phase 2 construction was completed in 1979 with the crest at 675 ft, MSL (i.e. 135 feet tall).The service spillway tower and discharge pipe were constructed as part of phase 2.A Saddle Dam and emergency spillway were also constructed in phase 2.						
1993	Phase 3 construction begins, which included raising the crest of the Main Dam, constructing a new Saddle Dam, filling the old emergency spillway, and constructing a new emergency spillway.						
2009	Construction of the raising of the Main Dam was completed, achieving the final crest elevation of 711 ft, MSL.						
2010	AEP installed the MW1000-series wells to monitor groundwater quality downgradient of the BSFAP.						
2012	Twenty (20) borings were advanced by URS to assess the local geology and hydrogeology as well as to evaluate the geotechnical characteristics of the soil. Seven (7) borings were converted to MW1200-series monitoring wells.						
2016	Eleven (11) borings were drilled under Geosyntec's oversight to supplement the site hydrogeologic information and eight (8) borings were converted to MW1600-series monitoring wells.						
2016	Commencement of construction to close the BSFAP began in August 2016.						

AKGWA Number	Primary Use	Latitude ¹	Longitude ¹	Construction Date	Elevation (ft)	Total Depth (ft)	Static Water Level (ft)	Approximate Static Water Level Elevation (ft)	Well Yield (gpm)
00011523	Domestic - Single Household	38.189	-82.638	5/23/1988	580	67	50	530	35
00006915	Domestic - Single Household	38.194	-82.653	5/15/1988	580	120	60	520	8
00006916	Domestic - Single Household	38.193	-82.651	5/31/1988	580	105	70	510	20
00002933	Domestic - Single Household	38.192	-82.629	3/3/1987	640	100	50	590	10
30002996	Not Available	38.189	-82.625	NA	NA	NA	NA	NA	NA
00006922	Domestic - Single Household	38.188	-82.615	8/10/1988	810	380	250	560	0.83
00060898	Industrial - General	38.178	-82.613	7/18/2011	576	64	55	521	5-10
00056935	Mining	38.171	-82.645	8/24/2001	680	200	51	629	60
00008075	Domestic - Single Household	38.188	-82.664	2/22/1990	680	80	25	655	20
00051043	Not Available	38.170	-82.644	5/26/1999	580	140	25	555	15

Table 2-2. Summary of Nearby Groundwater Withdrawal Wells

Notes:

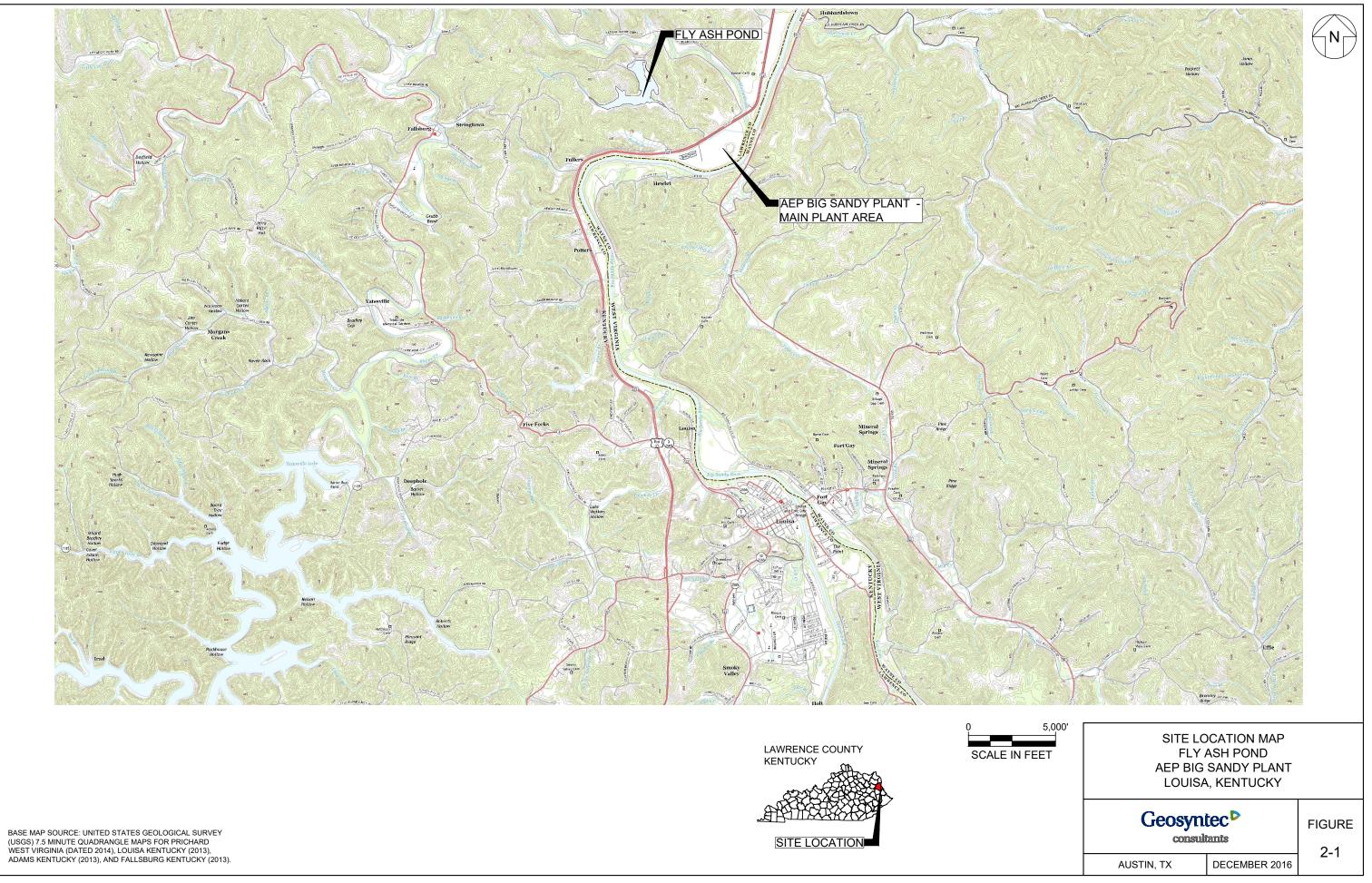
- 1. Latitude and Longitude are based on NAD 83 Geographic Coordinate System.
- 2. Vertical datum is based on NAVD 88.
- 3. Groundwater supply well data obtained from Kentucky Groundwater Data Repository, Water Well and Spring Location Map (http://kgs.uky.edu/kgsmap/KGSWater/viewer.asp).
- 4. NA: Not Available

Table 3-1. Monitoring Network Well Construction Summary

Fly Ash Pond Groundwater Monitoring Network, AEP - Big Sandy Plant Louisa, Kentucky

Monitoring Well ID	Northing	Easting	TOC Elevation (ft, MSL)	Ground Surface Elevation (ft, MSL)	Stickup Length* (ft)	Well Purpose & Location	Screen Zone Geology	Screen Top BTOC (ft)	Screen Bottom BTOC (ft)	Screen Bottom Elevation (ft, MSL)
MW-1011	251056.62	2105873.28	718.78	716.15	2.63	Sampling (Upgradient)	Bedrock	37.63	77.63	641.1
MW-1012	249566.05	2103715.55	790.56	787.91	2.65	Sampling (Upgradient)	Bedrock	112.65	142.65	647.9
MW-1203	252206.28	2101406.51	731.03	728.30	2.73	Sampling (Upgradient)	Bedrock	39.73	49.73	681.3
MW-1601	254131.13	2104798.67	716.59	713.84	2.75	Sampling (Downgradient)	Bedrock	69.8	79.8	636.8
MW-1602	254183.19	2105862.78	714.53	711.60	2.94	Sampling (Downgradient)	Bedrock	82.4	92.4	622.1
MW-1603	251596.53	2107344.43	675.75	673.24	2.51	Sampling (Downgradient)	Bedrock	24.5	34.5	641.2
MW-1604	254482.33	2108828.43	556.21	553.12	3.09	Sampling (Upgradient)	Alluvium	43.1	53.1	503.1
MW-1605	252760.21	2110694.01	557.46	554.40	3.06	Sampling (Upgradient)	Alluvium	18.6	28.6	528.9
MW-1606	254592.81	2105122.96	554.10	550.99	3.11	Sampling (Downgradient)	Alluvium	44.1	54.1	500.0
MW-1607	254664.49	2105634.33	545.23	542.21	3.02	Sampling (Downgradient)	Alluvium	26.5	36.5	508.7
MW-1608	251052.42	2105883.65	719.08	716.15	2.94	Water Level Measurement	Bedrock	112.9	122.9	596.1
MW-1611	254192.11	2105868.49	714.25	711.64	2.61	Water Level Measurement	Bedrock	107.6	117.6	596.6

Notes:


- 1. Northing and Easting are in NAD83 State Plane KY North. Elevations are in based on NAVD88.
- 2. The Northing and Easting measurements were taken at the top of casing (TOC).
- 3. ft = Feet

MSL = Mean Sea Level

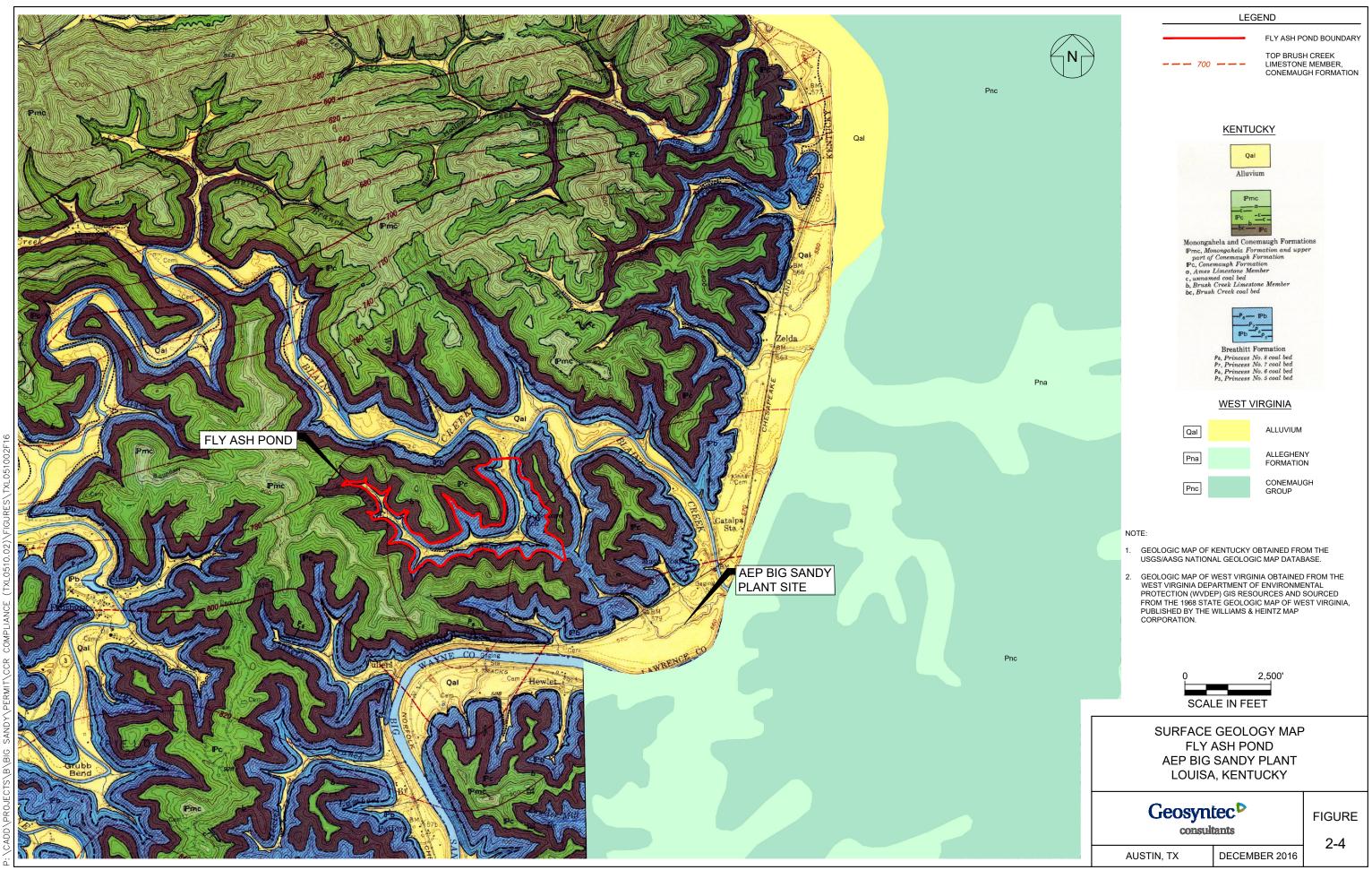
*: Casing length above ground surface

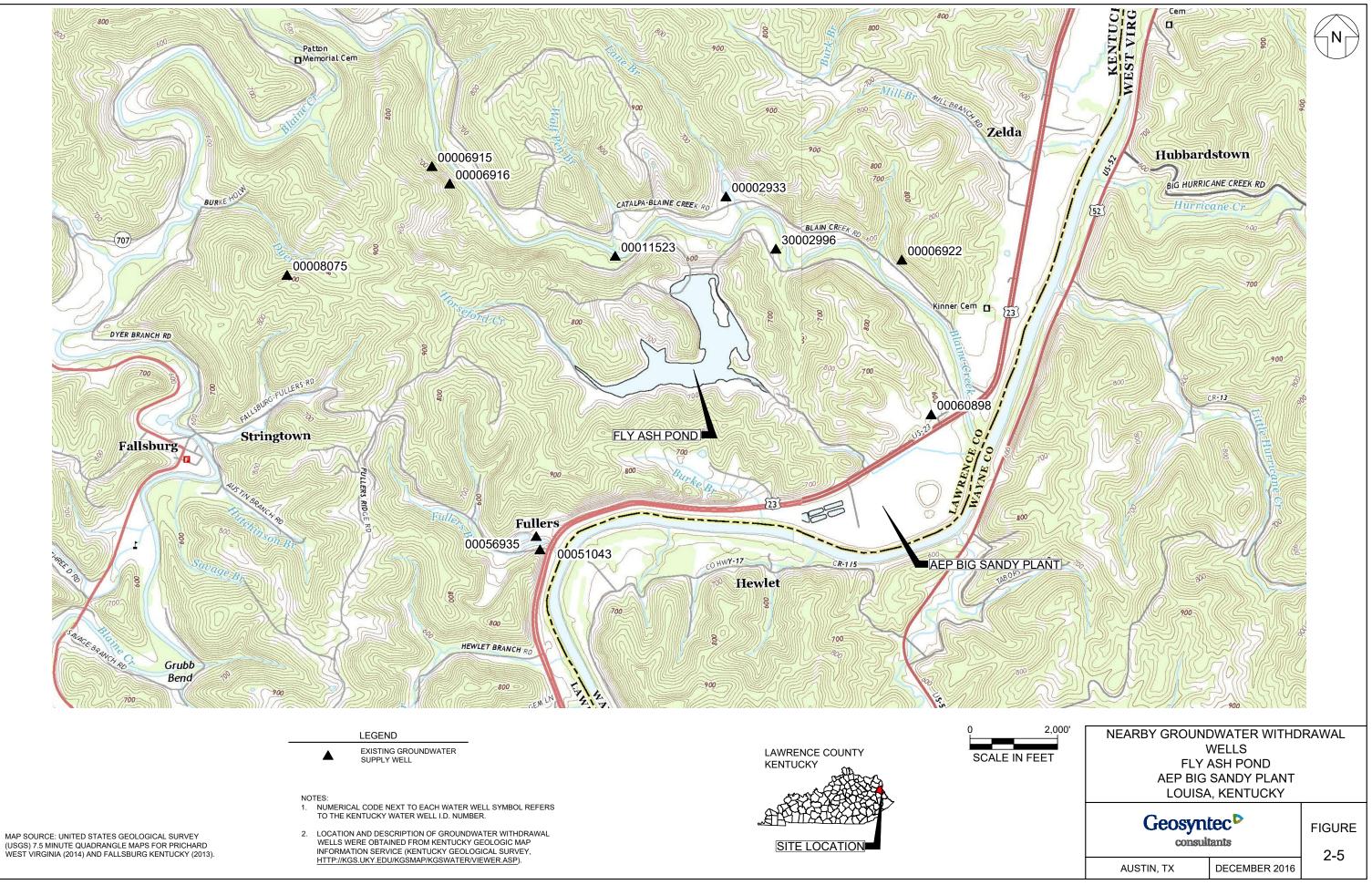
BTOC = Below Top Of Casing

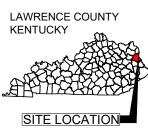
FIGURES

0

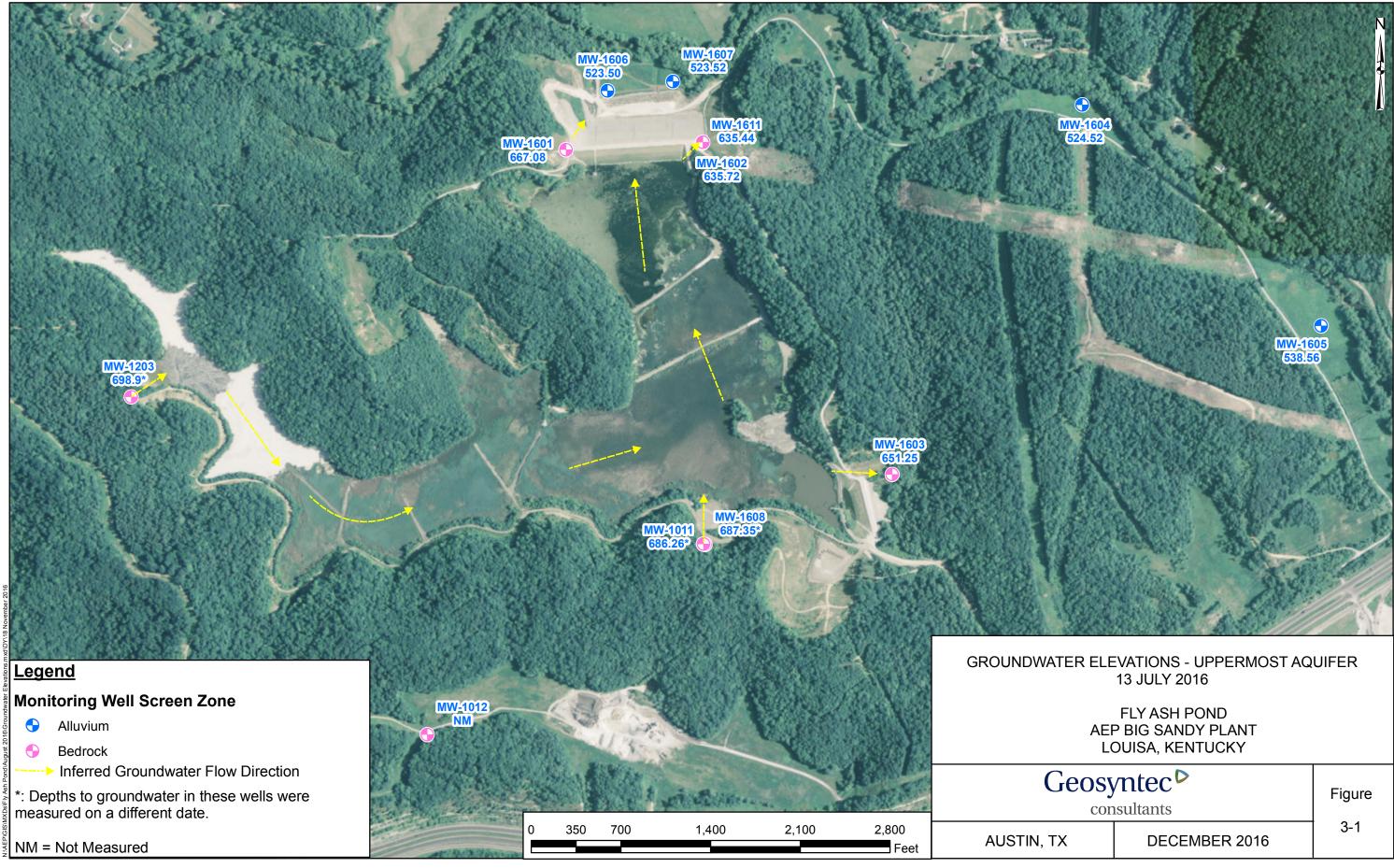
BASE MAP SOURCE: AERIAL IMAGERY ACCESSED VIA ArcGIS ONLINE IN JULY 2015 AND PROVIDED BY MICROSOFT. IMAGE IS DATED 17 AUGUST 2011.

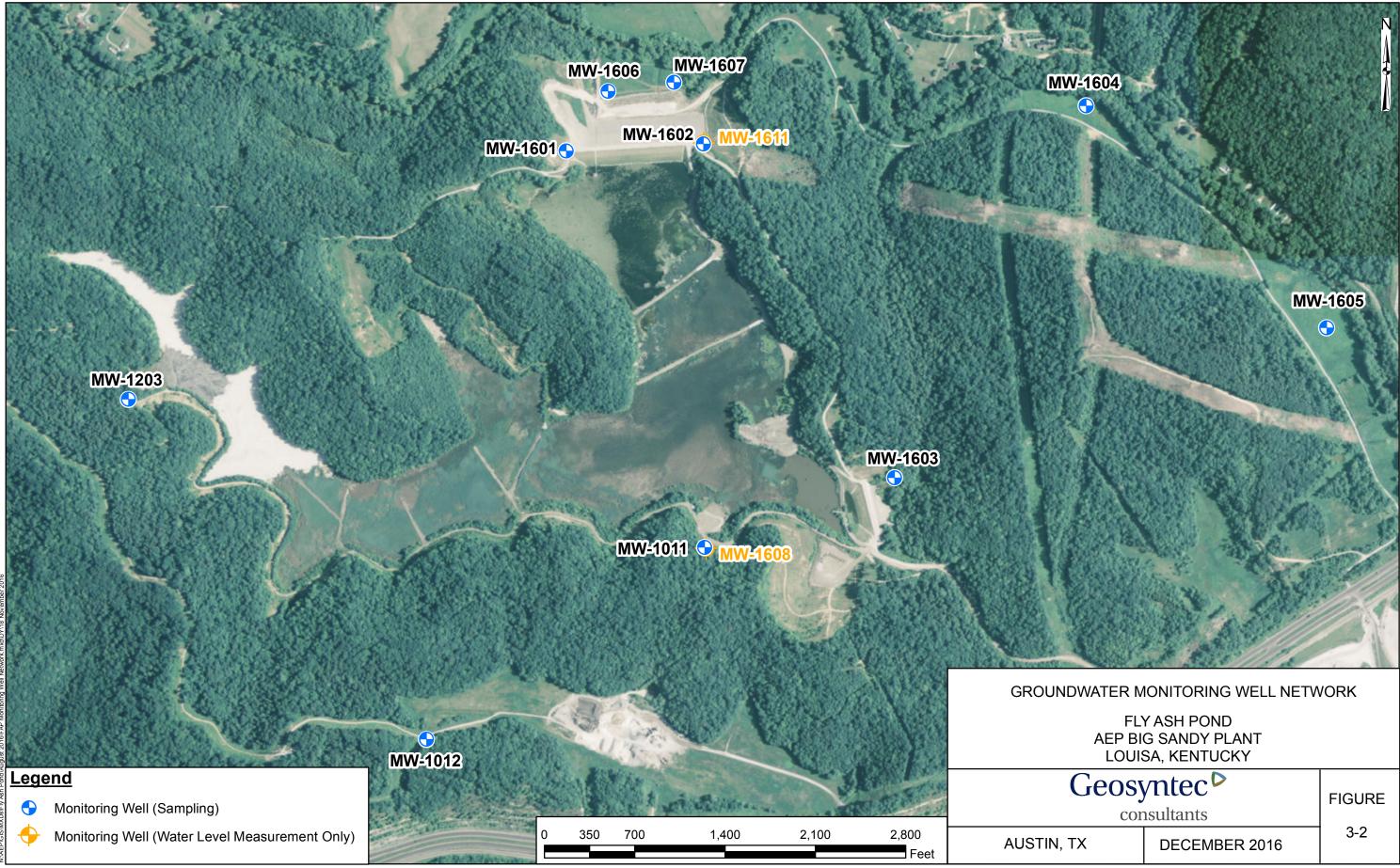

PLANT AND CCR UNIT LOCATION MAP FLY ASH POND AEP BIG SANDY PLANT LOUISA, KENTUCKY

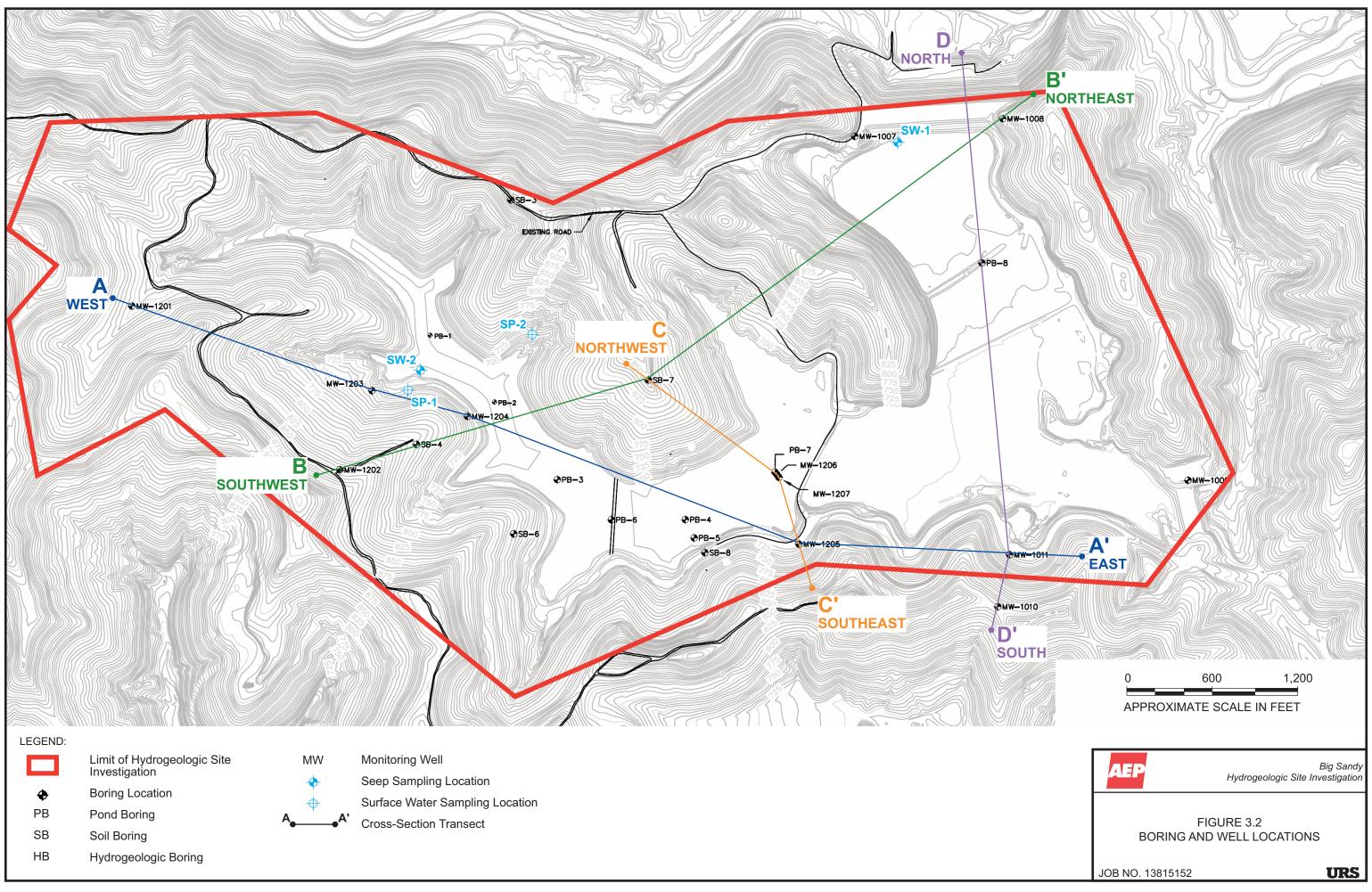

FIGURE

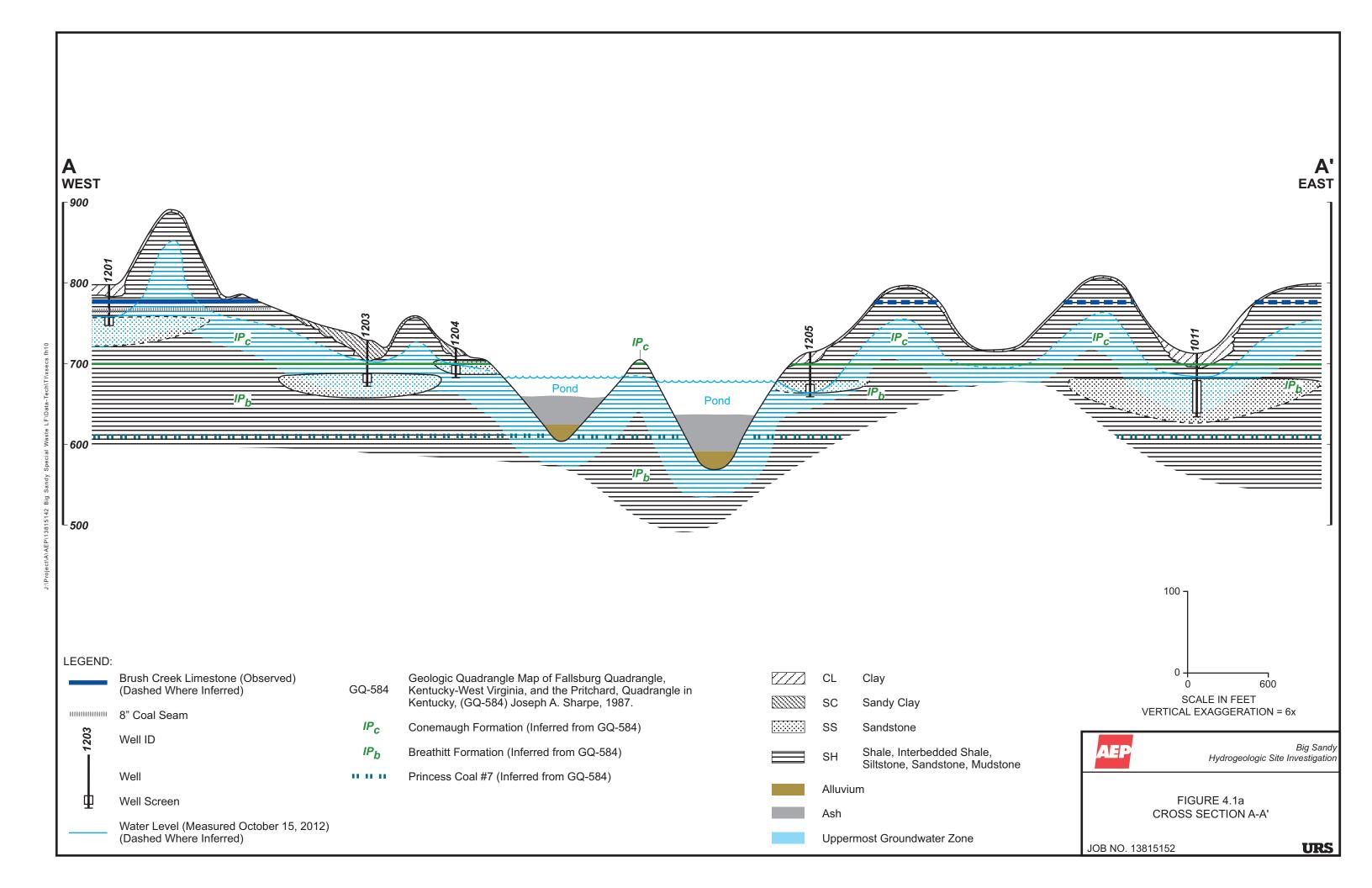

2-2

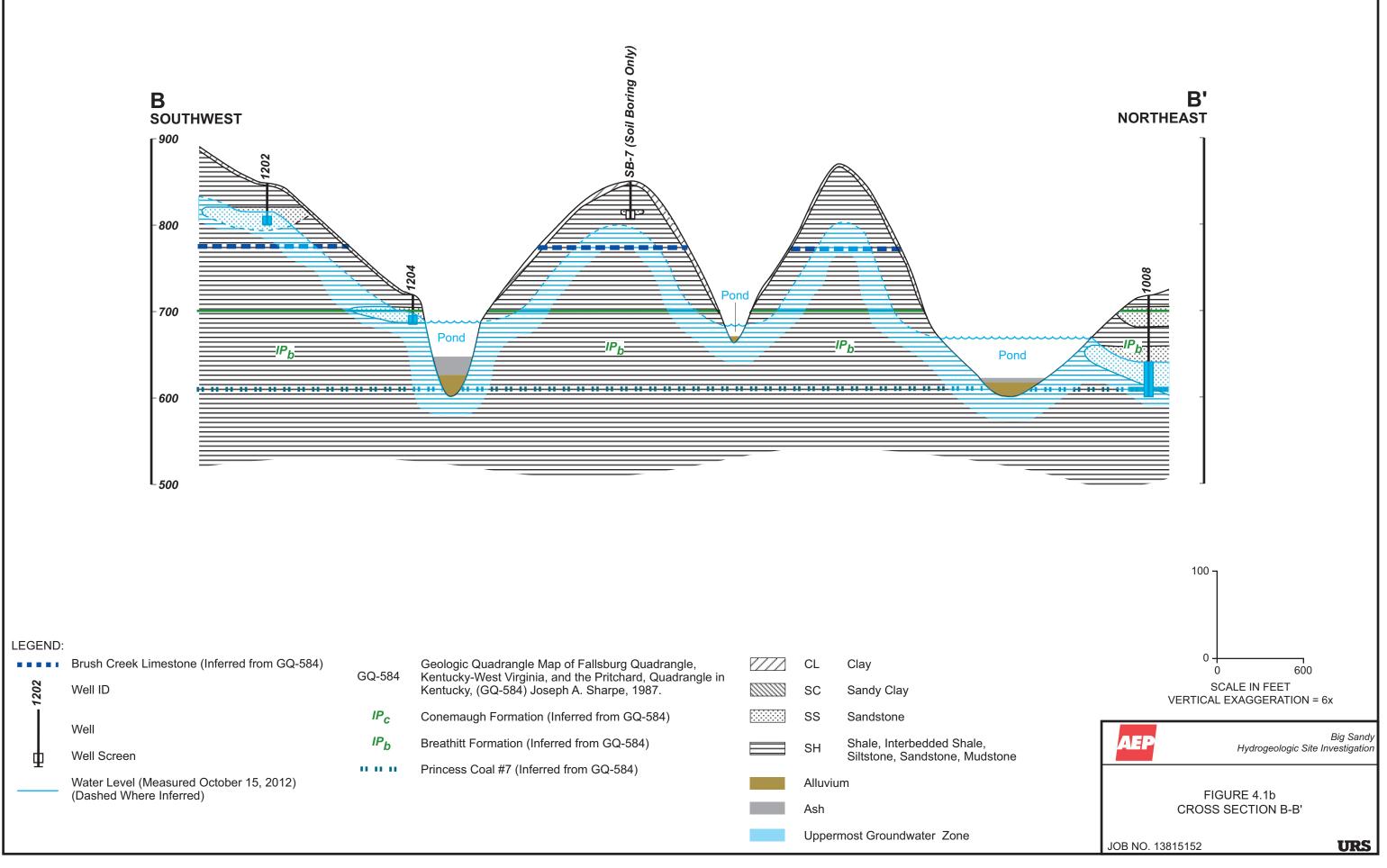
DECEMBER 2016

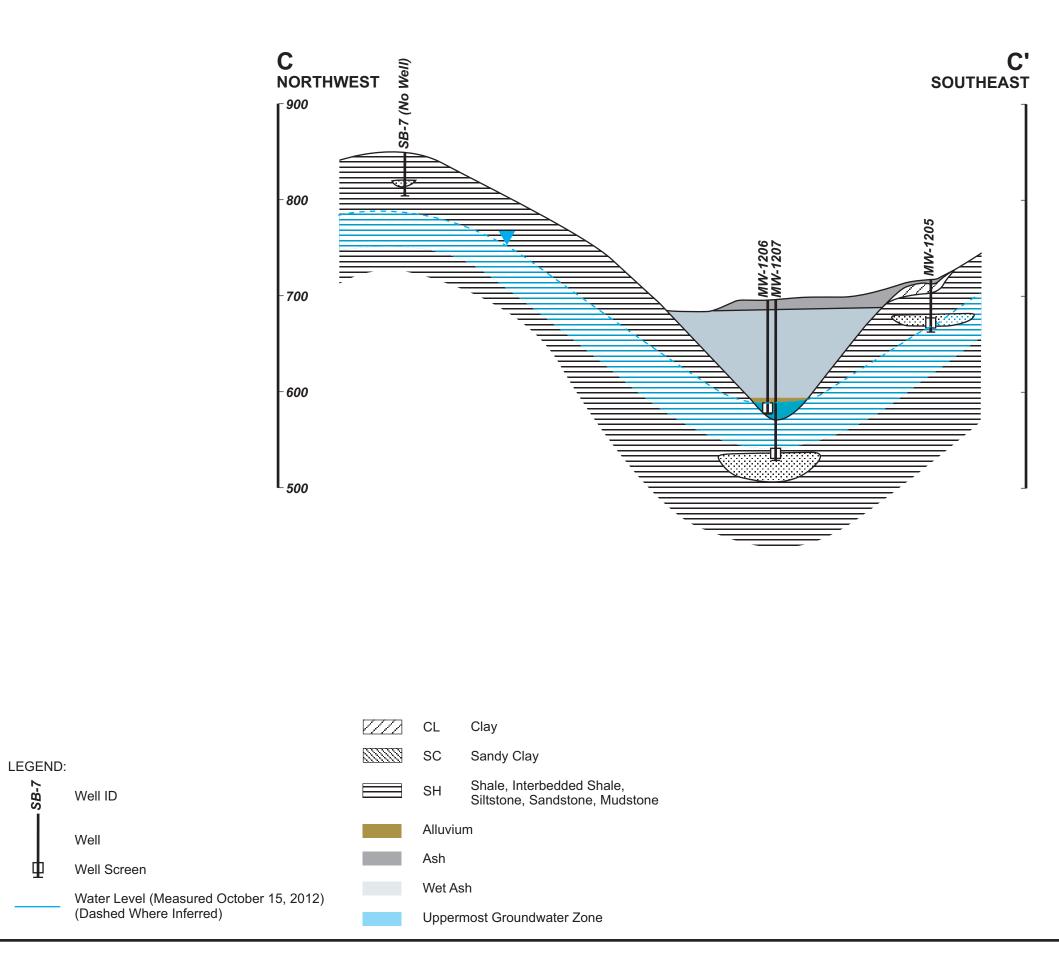


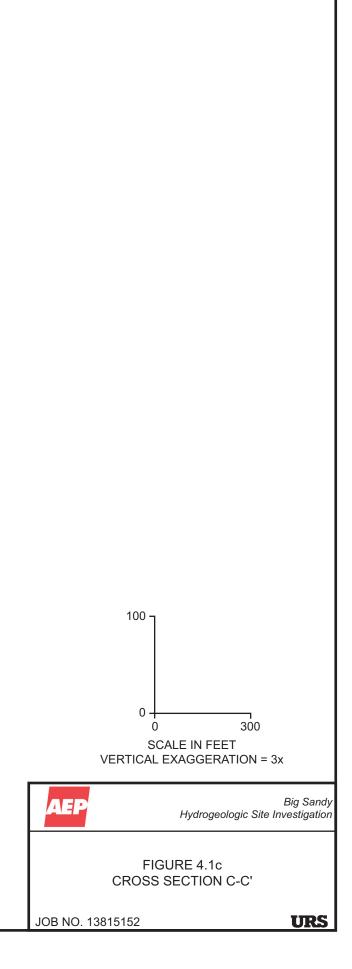


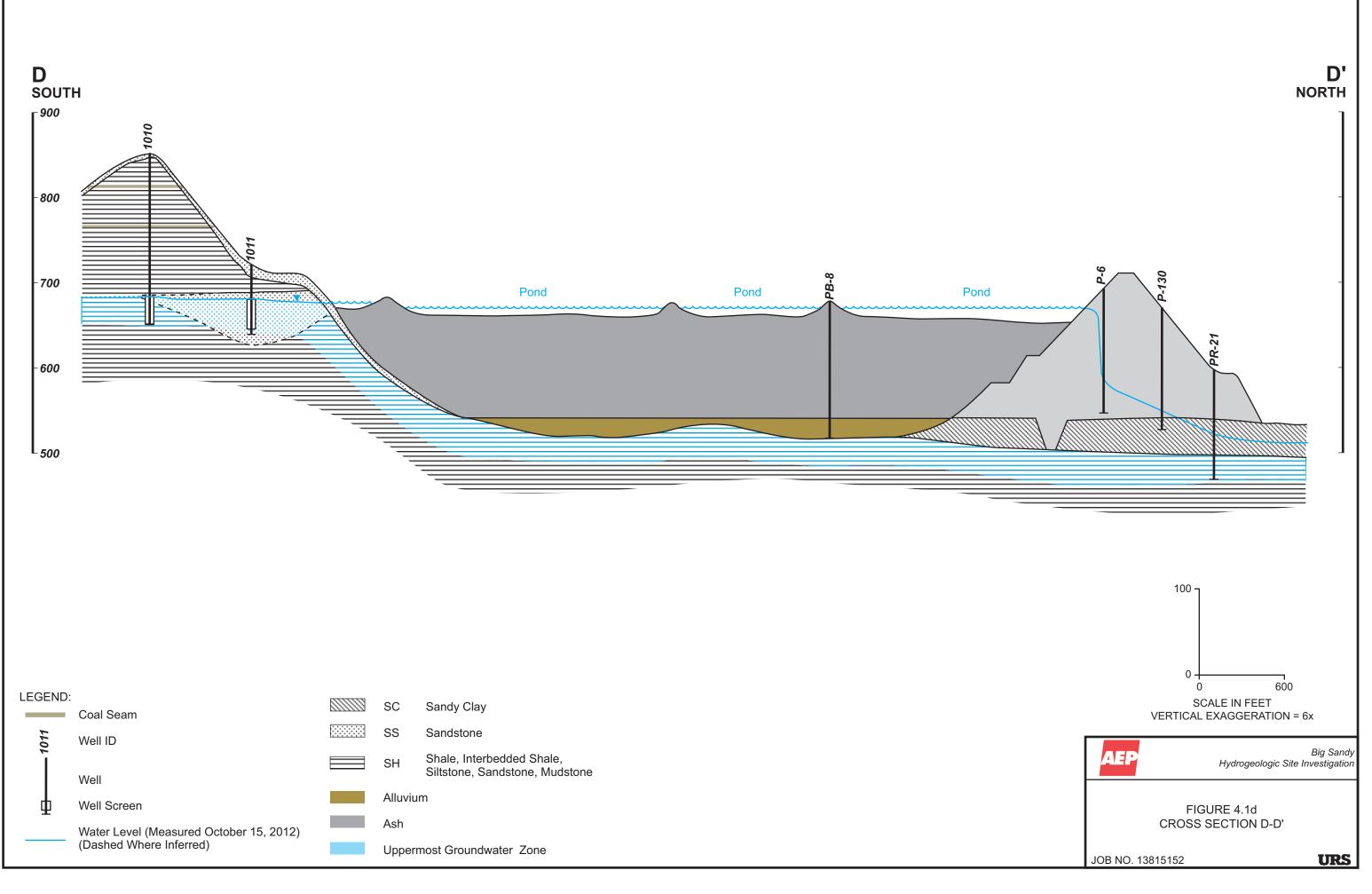


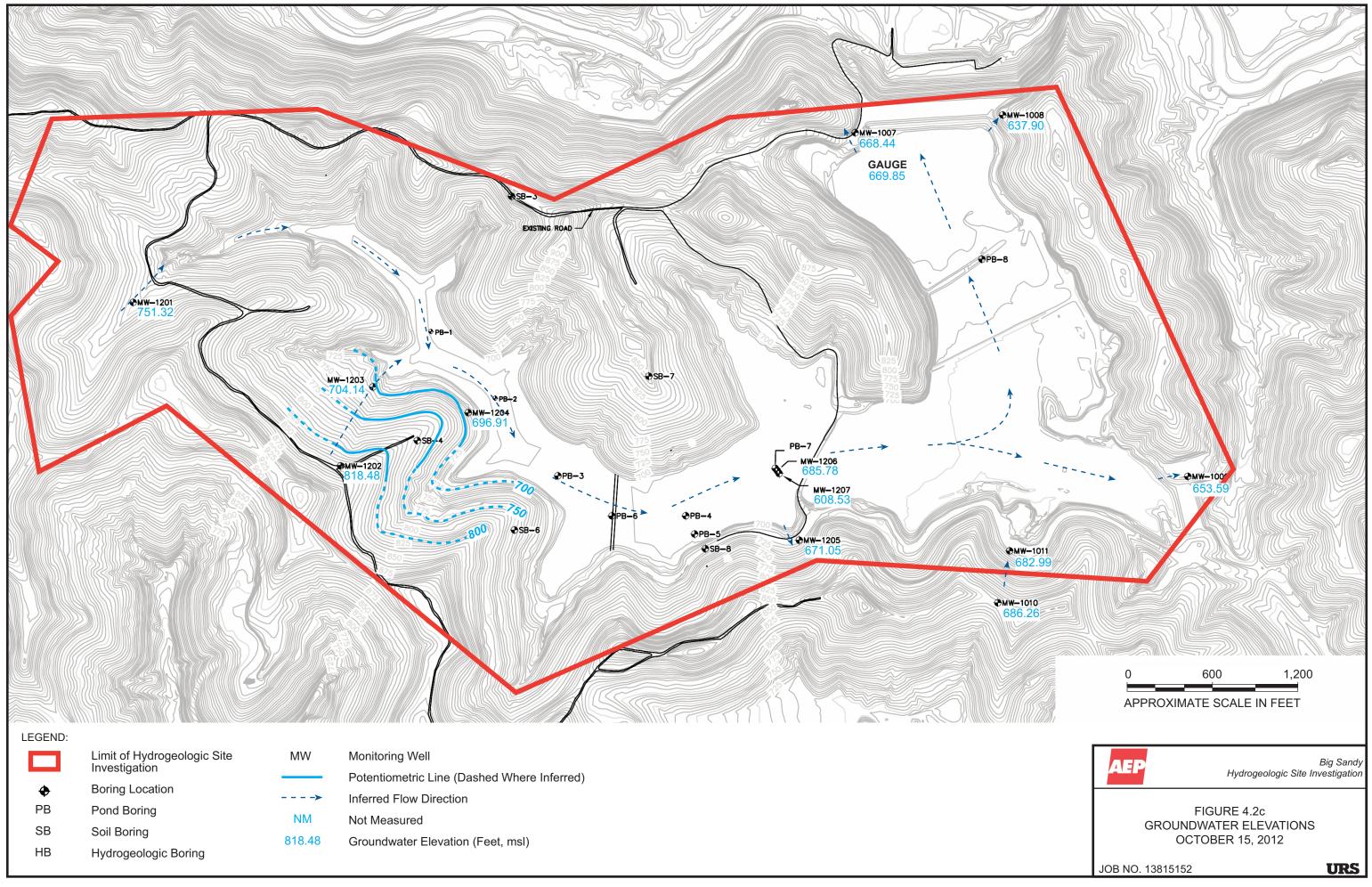

APPENDIX A REFERENCES

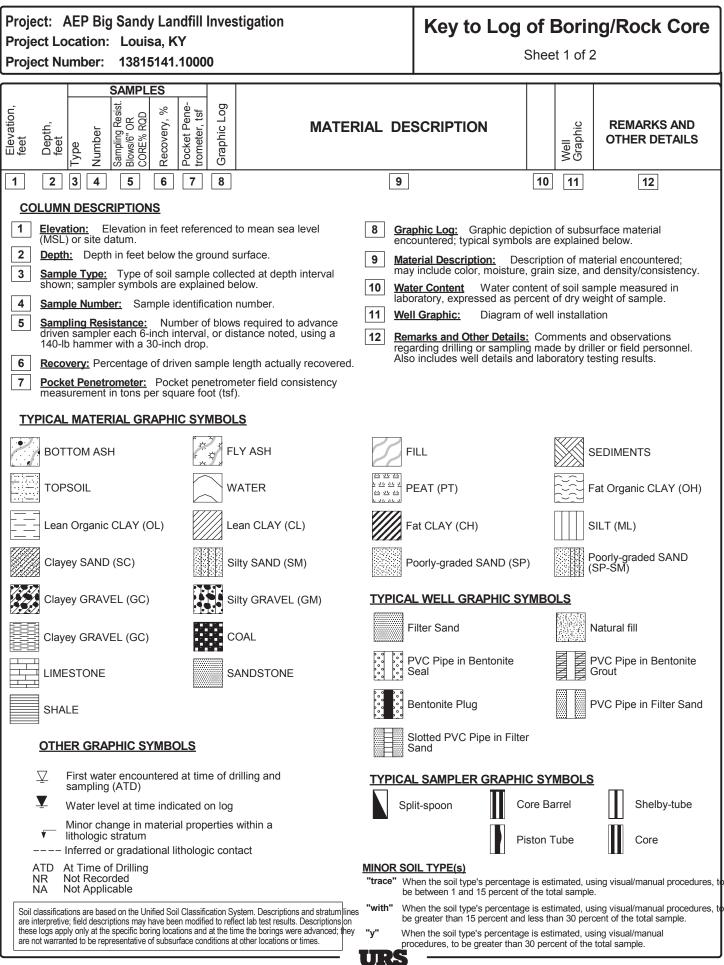

- AEP (American Electric Power), 2015a. Big Sandy Plant: Post-Conversion and Decommissioning Water Balance Flow Diagram (Interim and Final), May, 2015.
- AEP (American Electric Power), 2015b. 2015 Inspection Report, Horseford Creek Dam ID#:0367, Saddle Dam, Bottom Ash Complex, September 2015.
- Geosyntec (Geosyntec Consultants, Inc.), 2015. Big Sandy Fly Ash Pond: Report on Hydrogeology and Groundwater Quality. June 2015.
- Geosyntec (Geosyntec Consultants, Inc.), 2016. *Monitoring Well Installation Report: Fly Ash Pond*, AEP Big Sandy Plant, October 2016.
- Lloyd, Jr., O.B., and Lyke, W.L., 1995. Ground Water Atlas of the United States, Segment 10: Illinois, Indiana, Kentucky, Ohio, Tennessee. Hydrologic Investigations Atlas 730-K. U. S. Geological Survey, Reston, VA.
- URS, 2012. Geotechnical Summary Report Proposed Pond Closure American Electric Power Big Sand Plant. November, 2012.
- URS, 2013a. *Final Report Hydrogeologic Site Investigation, AEP Big Sandy, Horseford Creek.* June 2013.
- URS, 2013b. Report Groundwater Monitoring Plan, AEP Big Sandy, Horseford Creek. June 2013.
- Huddle, J.W., E.J. Lyons, H.L. Smith, and J.C. Ferm. 1963. *Coal reserves of eastern Kentucky, USGS Bulletin 1120.*


APPENDIX B

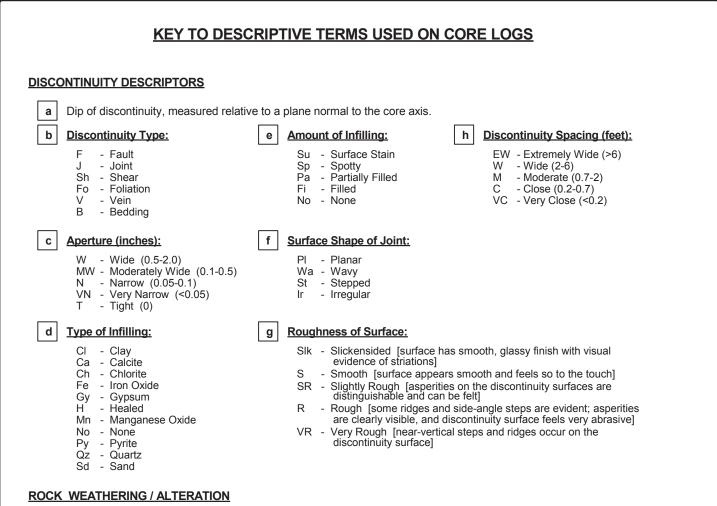

SUPPLEMENTAL DOCUMENTATION FROM 2010 AND 2012 INVESTIGATIONS







	Limit of Hydrogeologic Site Investigation	MW
\$	Boring Location	>
PB	Pond Boring	NM
SB	Soil Boring	818.48
HB	Hydrogeologic Boring	010.40


2012 BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

Project: AEP Big Sandy Landfill Investigation Project Location: Louisa, KY Project Number: 13815141.10000

Key to Log of Boring

Sheet 2 of 2

Description	Recognition
Residual Soil	Original minerals of rock have been entirely decomposed to secondary minerals, and original rock fabric is not apparent; material can be easily broken by hand
Completely Weathered/Altered	Original minerals of rock have been almost entirely decomposed to secondary minerals, although original fabric may be intact; material can be granulated by hand
Highly Weathered/Altered	More than half of the rock is decomposed; rock is weakened so that a minimum 2-inch-diameter sample can be broken readily by hand across rock fabric
Moderately Weathered/Altered	Rock is discolored and noticeably weakened, but less than half is decomposed; a minimum 2-inch-diameter sample cannot be broken readily by hand across rock fabric
Slightly Weathered/Altered	Rock is slightly discolored, but not noticeably lower in strength than fresh rock
Fresh/Unweathered	Rock shows no discoloration, loss of strength, or other effect of weathering/alteration

OCK STRENGTH Description	Recognition	Approximate Uniaxial Compressive Strength (psi
Extremely Weak Rock	Can be indented by thumbnail	35 - 150
Very Weak Rock	Can be peeled by pocket knife	150 - 700
Weak Rock	Can be peeled with difficulty by pocket knife	700 - 3,500
Medium Strong Rock	Can be indented 5 mm with sharp end of pick	3,500 - 7,200
Strong Rock	Requires one hammer blow to fracture	7,200 - 14,500
Very Strong Rock	Requires many hammer blows to fracture	14.500 - 35.000
Extremely Strong Rock	Can only be chipped with hammer blows	> 35.000

ROCK STRENGTH

Key

Project Location: Louisa, KY

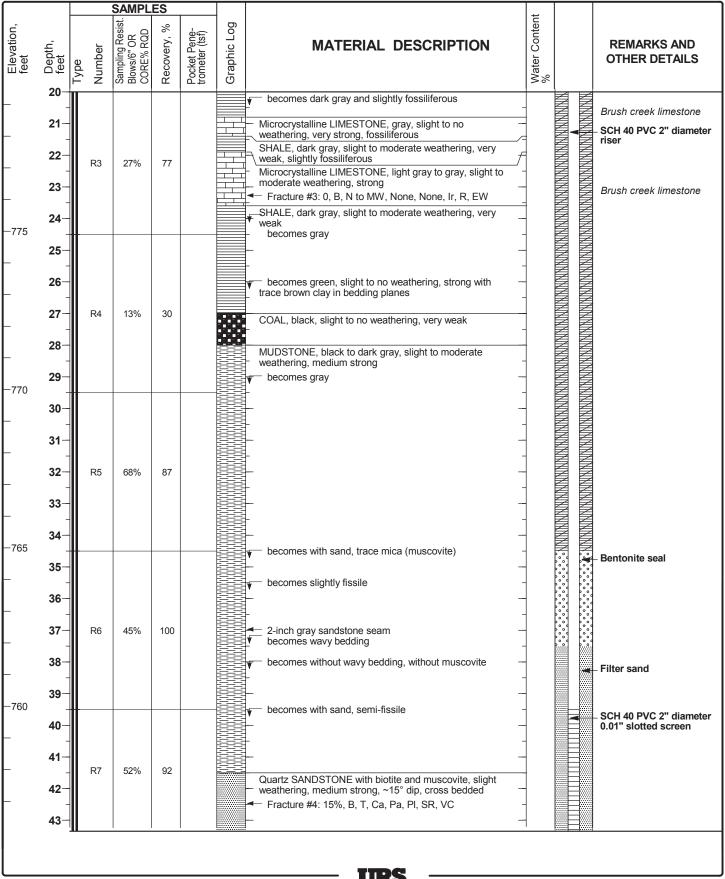
Project Number: 13815141.10000

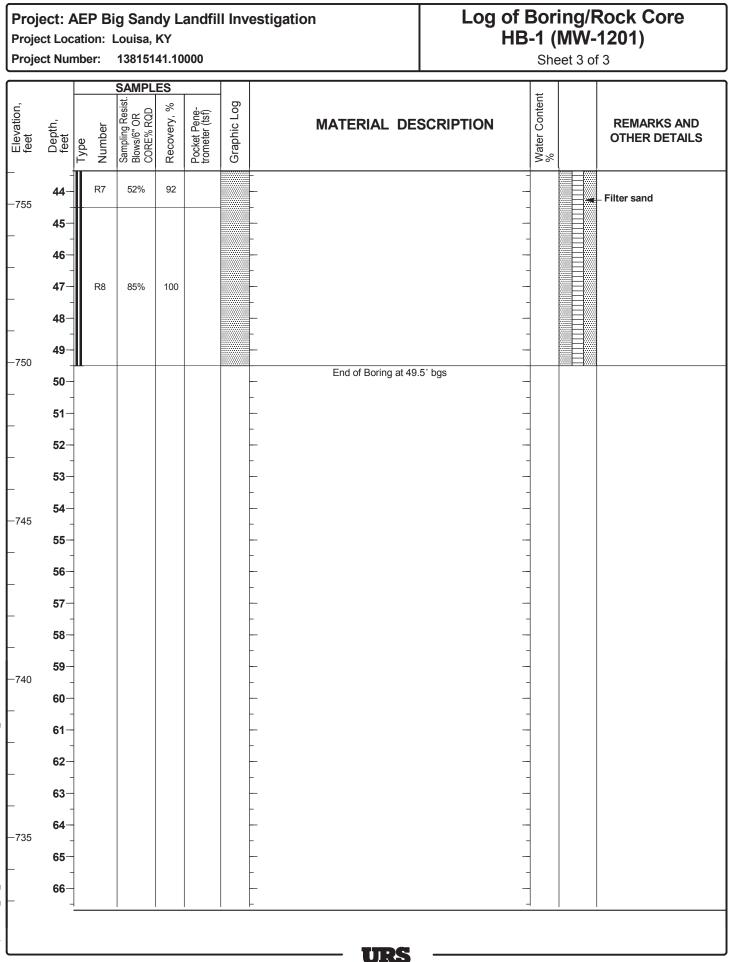
Log of Boring/Rock Core HB-1 (MW-1201)

Sheet 1 of 3

Date(s) Drilled	4/10/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	HSA, HQ Wireline Core	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	49.5 ft
Drill Rig Type	CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	799.4 ft above msl
Borehole	Backfill Borehole finished as monitoring well MW-1201	Sampling Method(s)	Split-spoon, HQ Wireline	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 252,798.0 E 2,099,724.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES				+			
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %			REMARKS AND OTHER DETAILS
\vdash	-0		WOH		1.0		Stiff, moist, brown to reddish brown lean CLAY (CL), trace - silt and sand	-	NN		– Grout
	1-	SS-1	2	50	2.0 2.0		Stiff to very stiff, moist, brown to reddish brown, very fine	+	NN.		– SCH 40 PVC 2" diameter
	2-		3		3.25		- sandy lean CLAY (CL) [RESIDUUM]			NN	riser
\vdash	-		5		3.5		-	-	NNNNNN	NN	
	3	SS-2	5 5	50	4.5 3.5			17.7			PL=17 LL=35 PI=18 %F=67.9
	4-		7		4.5					NNN	
-795	-		2 2		1.75 3.0		becomes mottled reddish brown and light gray	-		NNN	
L	5	SS-3	5	63	3.0 4.0			-		NNN	
-	6		7		3.0		-				
-	-		7 10		3.5		Medium dense, moist, dark reddish brown fine to medium clayey SAND (SC) with trace oxidized sandstone gravel,	-		NN	
	7	SS-4	11	100	4.5		_ with tan and light gray mottling [RESIDUUM]	-			
	8-		11		4.25		Very stiff to hard, moist, light gray to light tan, fat CLAY				
_	-		3 6		3.5 >4.5		 (CH), trace sand [RESIDUUM] 	_		MM	
-790	9-	SS-5	7	92	3.5		 1/4" dark red-brown, highly weathered shale seam 			NNN	
	10-		9		>4.5			-		NNN	
-	-		2 5		3.75 4.0		-			NN	
	11-	SS-6	9	92	4.25					NN	
	12-	SS-7	15 50/5"	8	4.25 >4.5		becomes gray to light gray –	-		NN	
790 	42		50/5	0			Quartz SANDSTONE, gray, slight to no weathering, very	+			Auger/spoon refusal at 12.5 ft bgs
	13-	R1	24%	50			strong, slight to moderate HCL reaction (4.5"-6"), grading - more flaggy and micaceous at 9"			MN	
	14-						Fracture #1: 0, B, N, None ,None, Ir, SR, M				
-785	15-						-				
—785 —	-							-		NNN	
	16-							-		NNN	
	17-	R2	30%	50			 SHALE, gray, slight to moderately weathered, very weak Fracture #2: 0, B, 0, None, None, PI, SR, VC 	1		INN	
\vdash	-			20			- Hacture #2. 0, 0, 0, 110/16, 110/16, FI, 3R, VC	-			
	18-										
	19-								NNNNNNNNNNNNNNNNNN		
-780	-	R3	27%	77			-			MM	
_	20-		1		L			1	H		
							URS				


Project Location: Louisa, KY


Project Number:

13815141.10000

Log of Boring/Rock Core HB-1 (MW-1201)

Sheet 2 of 3

Project Location: Louisa, KY

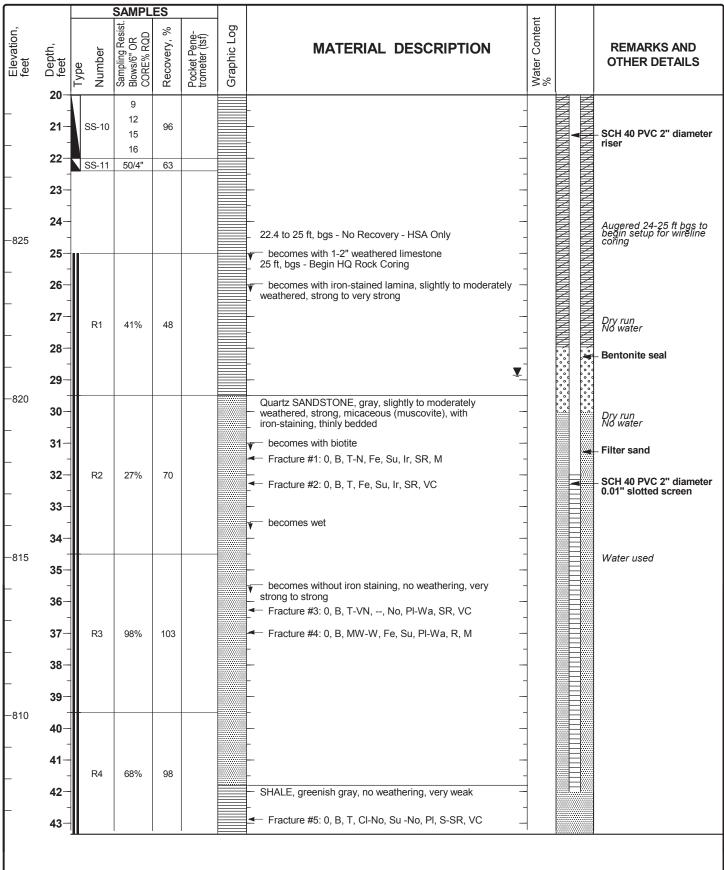
Project Number: 13815141.10000

Log of Boring/Rock Core HB-2/SB-1 (MW-1202)

Sheet 1 of 3

Date(s) Drilled 4/13/12	Logged By	S. Becker	Checked By	J. Lach/V. Gautam
Drilling Method HSA, HQ Wireline Core	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	44.5 ft
Drill Rig Type CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	849.6 ft above msl
Borehole Backfill Finished as monitoring well MW-1202	Sampling Method(s)	Split-spoon, HQ Wireline	Hammer Data	140#/30" Drop Auto
Boring Location N 254,651.6 E 2,101,180.0	Groundwater Level(s)	Water level @ 28.85 ft bgs		

			SAMPL	ES								
Elevation, feet	D epth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION		water Content %			REMARKS AND OTHER DETAILS
-	-		2		1.5 3.5		Loose, moist, brown, sandy CLAY (SC), trace gravel	Л		NNNNN	NNN	– Grout
	1-	SS-1	3	100	2.0 1.5		 Loose, moist, brown sandy CLAY (SC), trace gravel [RESIDUUM] becomes mottled brown and gray 	_		NNN		SCH 40 PVC 2" diameter riser
	2-		3		2.5		Stiff to very stiff moist tannish brown and gray mottled	_				
╞	-		4		2.5		 lean CLAY (CL), trace sand, trace gravel [RESIDUUM] 	-			M	
	3	SS-2	5	83	2.75		becomes reddish brown and gray mottled					
F	4-		5		2.5		-				NN	
-845	-		2					_			M	
045	5	SS-3	4	21			_	_				
F	-		5				-	-			MN	
	6-		4				$\mathbf{v}^{}$ becomes without shale fragments, hard					
┢			6		3.25		-	-				
	7-	SS-4	8	13			=				NN	
F	8-		9				- ☞— becomes gray and tan mottled, without sand, dry to					
	0		3		3.0		moist, without gravel				MN	
Γ	9	SS-5	6	58	4.5		_	_	17.7		NN	PL=21 LL=45 PI=24 %F=91
-840	-		9 12		4.5 3.5		-	-		\leq		/0[-9]
	10-		3		4.25		▼ becomes light gray	-			M	
╞	-		5		3.0		-	-				
	11-	SS-6	8	79	2.5			-				
F	12-		11								NN	
	12		6		4.0		⊌ becomes gray to light gray, without silt					
Γ	13-	SS-7	10	63	4.5			_			MN	
	-		13 12		4.5		-	-			NN	
	14-				- 4 5		_	_				
-835	-		6 16		>4.5		SHALE, greenish gray, highly weathered, very to				MM	
1	15	SS-8	16	75			extremely weak	-				
F	40		24				- becomes brownish grav, day	_			MM	
1	16-		24				Ţ — becomes brownish gray, dry					
Γ	17-	SS-9		75			⊌ becomes greenish gray					
L	-		50/4"					_			MN	
1	18-						L	-			M	
\vdash	-						-	-				
1	19-						<u>–</u>	-		NNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNNN	18 to 20 ft bgs - No Split Spoon Collected
-830	_						-	-				
-830	20				•					. –	17-	
\square							URS					


Project Location: Louisa, KY

Project Number: 13

: 13815141.10000

Log of Boring/Rock Core HB-2/SB-1 (MW-1202)

Sheet 2 of 3

Project Location: Louisa, KY

Project Number: 1

r: 13815141.10000

Log of Boring/Rock Core HB-2/SB-1 (MW-1202)

Sheet 3 of 3

\square				SAMPL	ES						
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
-	44		R4	68%	98					-	– Filter sand
-805	45							End of Boring at 44.5′ bgs			
	46								-		
	47										
	48 —										
-800	49										
-	50 -										
-	51 -										
-	52— - 53—										
-	- 54										
-795	- 55										
-	- 56										
-	- 57—										
-	58										
— —790	59										
-790 -	60										
_	61 -								-		
_	62 -										
_	63										
-785	64 -										
╞	65— - 66—										
-	-								1		
								URS			

Project Location: Louisa, KY

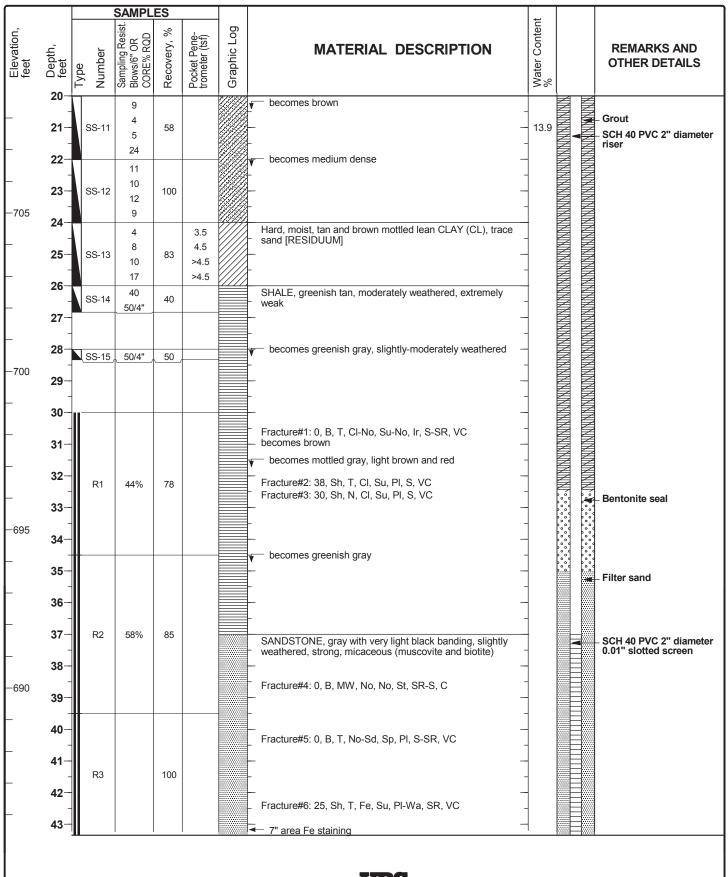
Project Number: 13815141.10000

Log of Boring/Rock Core HB-7/SB-2 (MW-1203)

Sheet 1 of 3

Date(s) Drilled	4/16/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	HSA, HQ Wireline Coring	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	54.5 ft
Drill Rig Type	CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	728.7 ft above msl
Borehole	Backfill Finished as monitoring well MW-1203	Sampling Method(s)	Split-spoon/Wireline	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 252,205.1 E 2,101,406.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES				Ţ			
Elevation, feet		Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %			REMARKS AND OTHER DETAILS
_	0 - 1	SS-1	3 2 2 4	50	0.75 1.5		Loose, moist, brown clayey SAND (SC), trace sandstone gravel [FILL]	- 16.4	NNNNNNNN	INNNNNNNNNN	– Grout PL=18 LL=31 PI=13 %G=8.3 %S=44.5 %F=47.2 – SCH 40 PVC 2" diameter
- 	2 3	SS-2	4 4 5 6	71	3.5 3.0 3.0		Stiff to very stiff, moist, reddish brown, lean CLAY (CL) [FILL] [I'red-brown medium sand seam [I'red-brown reddish brown sand seam with sandstone [I'ragments]	-	NNNNNNNN		riser
_	4 5	SS-3	3 4 7 7	83	3.5 4.5 4.5 3.5		 becomes with sandstone fragments (gravel) with red-brown sand iron-staining 	- 16.7	NNNNNNNN	NNNNNNNNN	PL=17 LL=31 PI=15
_	6 - 7 -	SS-4	14 15 17 20	92	4.5 4.5 >4.5 >4.5		Dense, dry to moist, red to brown, clayey SAND (SC) with gravel [ALLUVIUM]		NNNNNNNNN	NNNNNNNNNNN	Iron staining on sand and gravel
-720	8— - 9— -	SS-5	7 12 13 16	100	4.0 4.0 4.5 4.0			10.4	NNNNNNNN	NNNNNNNNNNNNN	%G=19.3 %S=49.8 %F=30.9
_	10- - 11-	SS-6	5 13 14 12	100				-	NNNNNNN	NNNNNNN	
 715	12 - 13 -	SS-7	11 17 27 17	92	3.5 3.25 3.5 >4.5		Very stiff to hard, moist red-brown fat CLAY (CH) trace sand and gravel [ALLUVIUM]	17.6	NNNNNNNN	NNNNNNN	
_	14 - 15	SS-8	3 6 10 8	100	1.0 2.0 3.0		4" reddish brown sand layer with trace clay Medium stiff to stiff, moist, red-brown silty, clayey SAND (SC-SM) with weathered sandstone gravel [ALLUVIUM]	+	INNNNNNNN	NNNNNNNNNNNNNNNNNN	
_	16 - 17	SS-9	23 15 13 12	83	1.0 3.0 2.5 3.5		 2" sandstone fragment in spoon 	- 12.2	NNNNNNNNN	NNNNNNNNN	PL=15 LL=20 PI=5 %G=16.6 %S=53.6 %F=29.8
—710 —	18 - 19 -	SS-10	4 3 6 6	63			Loose, moist to wet, red-brown clayey SAND (SC), trace sandstone gravel [ALLUVIUM]	-	INNNNNNNNN	UNNNNNNNNNNNNNNNNNNN	
	20-				1	r / y J / A /	URS				

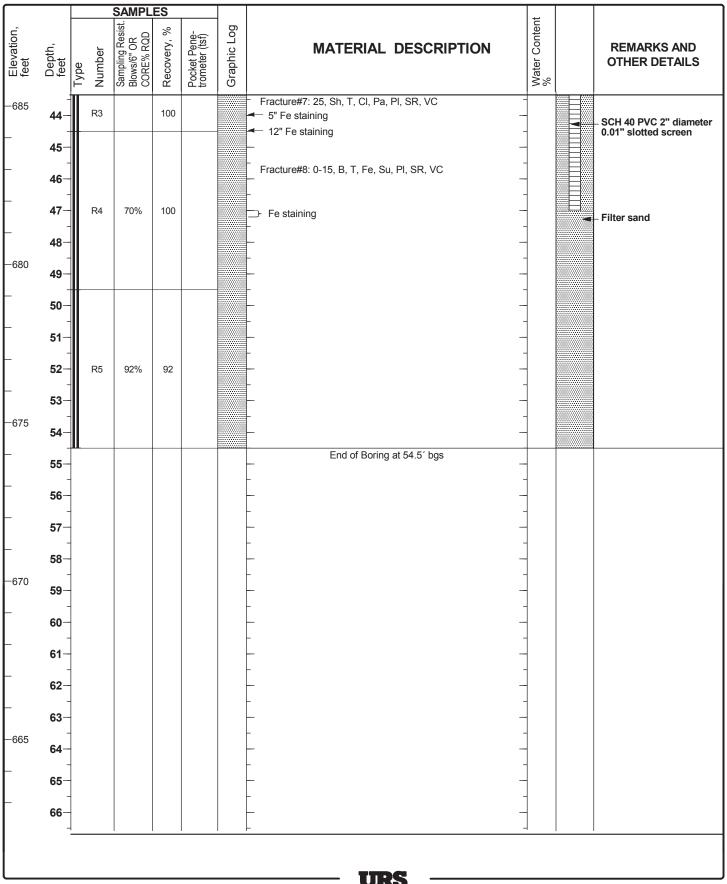

Project Location: Louisa, KY

Project Number: 1

: 13815141.10000

Log of Boring/Rock Core HB-7/SB-2 (MW-1203)

Sheet 2 of 3



Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring/Rock Core HB-7/SB-2 (MW-1203)

Sheet 3 of 3

Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring/Rock Core HB-4/SB-5 (MW-1204)

Sheet 1 of 2

Date(s) Drilled 4/18/12	Logged By	J. Lach	Checked By	V. Gautam
Drilling Method HSA, HQ Wireline Coring	Drill Bit Size/Type	6 1/4" HSA, 6" OD bit with HQ core	Total Depth of Borehole	35.0 ft
Drill Rig Type CME 550 Truck	Drilling Contractor	Frontz Drilling	Surface Elevation	721.3 ft above msl
Borehole Backfill Finished as monitoring well MW-1204	Sampling Method(s)	Split-spoon, HQ Wireline	Hammer Data	140#/30" Drop Auto
Boring Location N 252,025.3 E 2,102,075.0	Groundwater Level(s)	Not encountered	•	

			ç	SAMPLI	ES				4			
Elevation, feet	Depth, feet	Type		Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content	, r		REMARKS AND OTHER DETAILS – 2.5 ft stickup
F	0-			6				Light brown, heavily weathered sandstone (access road)				- Grout 20% mix ~30
-720	1-			22 42 50/3	86	>4.5		Hard, dry, light brown, lean CLAY (CL) [RESIDUUM OR		NNNN	NNNNN	gallons used - SCH 40 PVC 2" diameter
-	2- - 3-							 Heavily weathered SANDSTONE, light brown, with some – lean clay, dry (Auger Cuttings) 			NNNNN	riser
-	4-							-	-	NNNNNN	NNNNNN	No recovery - HSA cuttings consist of mixture of lean clay and heavily weathered sandstone fragments - all dry
-	5							Fine to medium grained SANDSTONE, brown, moderately weathered, strong	-		NNNNN	Auger refusal at 5.0 ft bgs
—715 —	6 - 7 - 8	R	1	18%	70			 MUDSTONE, greenish brown, moderately weathered, weak Fracture #1: 0, B, No, W, VN, Pl, SR Fracture #2: 0, B, No, W, VN, Pl, SR - 	-	NNNNNNNNNN	NNNNNNNNNNN	
_	9 - 10							- 2" brown lean clay seam Fracture #3: 0, B, No, W, VN, PI, SR ↓ becomes lightly weathered, extremely weak, micaceous,	-	NNNNNNN	NNNNNNNN	
710 	11- - 12- - 13-	R	2	22%	23			with iron staining	-			Driller reported constant down pressure Little to no H20 loss
-	14- - 15-							 Micaceous SANDSTONE, greenish gray, strong becomes brown, moderately weathered (14.5 to 14.6 ft) becomes greenish gray, very strong 		NNNNN	NNNNN	
 705 	16- 16- 17-	R	3	85%	90			 becomes greenish gray, very strong becomes brown, slightly weathered becomes greenish gray, micaceous, cross-bedded, very weak Fracture #4: 0, B, No, W, VN, PI, SR 	-		؞ۣ؞ۣ؞ؚ؞ؚ؞ۣ؞ۣ؞ۣ؞ؚ؞؊	– Bentonite Hydrated
-	18- - 19- -							 becomes mottled with partial brown iron staining and greenish gray, strong in brown stained portions 	-			_ #5 filter sand
	20	U						becomes greenish gray, weak, with iron staining URS				<u>.</u>

Project Location: Louisa, KY

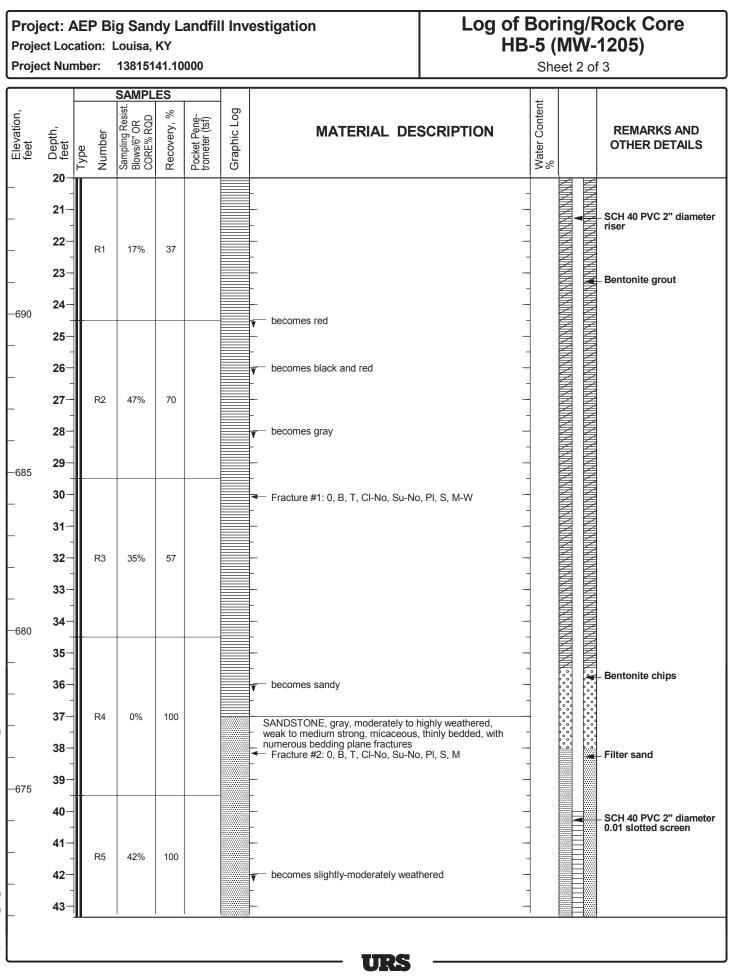
Project Number: 13815141.10000

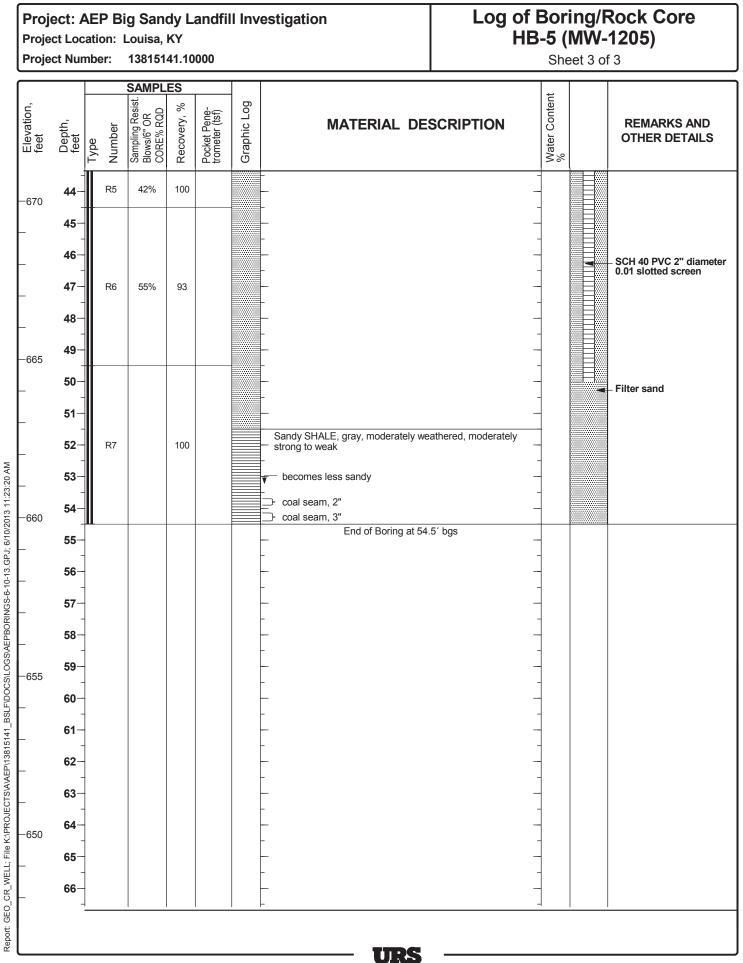
Log of Boring/Rock Core HB-4/SB-5 (MW-1204)

Sheet 2 of 2

-700 21 - <th></th> <th></th> <th></th> <th>SAMPL</th> <th>ES</th> <th></th> <th></th> <th></th> <th>Τ.</th> <th></th> <th></th> <th></th>				SAMPL	ES				Τ.			
-700 21 -700 22 22 R4 23 R4 24 - 25 - 26 - 27 R5 85 80% 100 - 26 - 27 R5 86 80% 100 - 26 - 27 R5 80% 100 28 - 29 - 29 - 29 - 29 - 20 - 29 - 20 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 30 - 31 - <	Elevation, feet		Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log		Motor Conton	water Conten		OTHER DETAILS
700 22 R4 60% 62 Fracture #5: 0, B, No, W, VN, PJ, SR Decomes greenish gray, storing, wety micacoous becomes greenish gray, coarse-gray storing with some sections of slight weathering, brown #5 filter sand 695 26 - - - - - 695 26 - - - - - 695 27 R5 80% 100 - - - - 7 Decomes greenish gray, coarse-grained, micaceous, weak with - - - - - - 690 31 -	┢	20						becomes greenish gray, micaceous, weak	_		-	SCH 40 PVC 2" diameter 0.1" slotted screen
25 26 27 R5 80% 100 T becomes gray, coarse-grained, micaceous, weak with stained sections (strong where stained) 28 29 Fracture #6: 90, J, Su, W, VN, Ir, VR Fracture #6: 90, J, Su, W, VN, PI, SR 2" diameter sump 690 31 SHALE, gray, fissile, strong MUDSTONE, gray, very weak, slightly fissile 2" diameter sump 33 R6 75% 88 End of Boring at 35' bgs 2" diameter sump 34 MUDSTONE, gray, very weak, not fissile MUDSTONE, gray, very weak, not fissile 40 38 End of Boring at 35' bgs 41 40 40 40 41 43 44 44	—700 — —	22 - 23 -	R4	65%	82			 becomes brown, coarse, very strong, micaceous becomes greenish gray, strong, very micaceous, wet, coarse grained becomes brown, coarse, very strong 				
30 Fracture #6: 90, J, SU, W, WN, P, SR -690 31- 32- SHALE, gray, fissile, strong -33- MUDSTONE, gray, very weak, slightly fissile -34- SHALE, gray, fissile, weak -34- SHALE, gray, fissile, weak -585 36- -685 36- -685 36- -680 41- -40- - -43- -	_ 695 	25- - 26- - 27- -	R5	80%	100							
690 32- 33- R6 34- SHALE, gray, fissile, weak 35- Decomes with decreasing fissility 36- MUDSTONE, gray, very weak, not fissile 36- MUDSTONE, gray, very weak, not fissile 37- Becomes with brown staining 38- End of Boring at 35' bgs 38- - 38- - 38- - 40- - 40- - 40- - 41- - 42- - 43- -	-	- 30— -						- Fracture #7: 0, B, No, W, VN, PI, SR -	-			– 2" diameter sump
-685 36- - <td>-690 - -</td> <td>32- 33- 33- 34-</td> <td>R6</td> <td>75%</td> <td>88</td> <td></td> <td></td> <td> MUDSTONE, gray, very weak, slightly fissile becomes with decreasing fissility SHALE, gray, fissile, weak becomes with brown staining </td> <td></td> <td></td> <td></td> <td></td>	-690 - -	32- 33- 33- 34-	R6	75%	88			 MUDSTONE, gray, very weak, slightly fissile becomes with decreasing fissility SHALE, gray, fissile, weak becomes with brown staining 				
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	 685 	36 - 37 -						End of Boring at 35′ bgs 				
	 680	- 40 -						- - - - -				
	_	_						URS	-			

Project Location: Louisa, KY


Project Number: 13815141.10000


Log of Boring/Rock Core HB-5 (MW-1205)

Sheet 1 of 3

Date(s) Drilled 4/19/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method HSA, HQ Wireline Coring	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	54.5 ft
Drill Rig Type CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	714.3 ft above msl
Borehole Backfill Finished as monitoring well MW-1205	Sampling Method(s)	Split-spoon, HQ Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,131.0 E 2,104,397.0	Groundwater Level(s)	Not encountered	•	

			(SAMPL	ES							
Elevation, feet	D epth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	, r		REMARKS AND OTHER DETAILS
╞	0			2				Very loose, moist, black bottom ash, trace gravel [BOTTOM ASH]		Z		Bentonite grout
-	1	SS	6-1	1 2 1	100				-	INNNN		– SCH 40 PVC 2" diameter riser
	2-			2					1			
-	- 3	SS	3-2	1 3	33	0.0			-	NNNN		
	4-			4		2.0		Medium stiff to very stiff, moist, brown to tan lean CLAY — (CL) with sand and trace gravel [RESIDUUM] —	-			
-710	-			9 5		2.75 1.0		-	-			
L	5-	SS	5-3	э 8	100	2.75			15.8			PL=17 LL=33 PI=16 %F=47.6
	_			8		1.5		- 3" red sand seam	1		NNNNNNN	%F=47.6 Shelby tube sample 5-7 bgs Down pressure (psi) = 200-600 psi
╞	6			9		2.0		becomes stiff to very stiff, reddish-brown, trace sand -	1			200-600 psi
-	7	SS	5-4	6 7 8	83	1.75 3.5 >4.5		→ → → → → → → → → → → → → → → → → → →	16.1	NNNN		PL=16 LL=32 PI=16 %F=49.5
	8					24.0		SHALE, tan, moderate to highly weathered, weak to	-			
Γ	-			8 15				 extremely weak, dry to moist 	-			
-705	9-	I SS	S-5	12	75				1			
	40			12				- · ·	1			
╞	10-			4]			
-	11	SS	5-6	17 23 19	100				-			
L	12-			21					-			
Γ	-			28					-			
F	13-	I SS	5-7	29	83				1			
1	- 14-			35]			
-700	-			11						M		
1	15	s	5-8	20	100			w becomes white/gray	-			
F	-			21 20					-			
L	16-	L SS	S-9	50/3"	100				-			Outside of spoon wet
1	-								1			
\vdash	17-								1			
1	18-]			
\vdash									-			
	19-								-	NNNNNN		
-695	-	F	21	17%	37			becomes gray, slight weathering, very weak to extremely	-			Auger to 19.5 ft to begin coring.
	20		CI .	17/0	51			weak		Ø		coring.
								URS				

Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring HB-3 (MW-1206)

Sheet 1 of 6

Date(s) Drilled	4/23/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	Rotosonic (No vibration), Wireline	Drill Bit Size/Type	8.0" ID steel casing, 4.0" ID core barrel	Total Depth of Borehole	124.5 ft
Drill Rig Type	Versa-Sonic	Drilling Contractor	Frontz Drilling	Surface Elevation	695.4 ft above msl
Borehole	Backfill Finished as monitoring well MW-1206	Sampling Method(s)	Rotosonic Core Barrel	Hammer Data	Not Applicable
Boring Lo	ocation N 251,617.9 E 2,104,243.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES					Τ		
Elevation, feet	Depth, feet	Type Number	Sampling Resist Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content	%		REMARKS AND OTHER DETAILS
-695	0						See log for PB-7 from 0-111 ft bgs		NN		Bentonite chips
-	1- 2- 3-							-			ANN ANN ANN ANN ANN ANN ANN ANN ANN ANN
 690	4 - 5 6						-	-		NNNNNNNNNNN NNNNNNNNNNNN	
_	- 7 8						-	-		NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN	
- 	9— - 10— -						 - 	-		NNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
_	11- - 12-							-		NNNNNNNN N	
-	13— - 14— -									NNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNN	
-680 -	15— - 16— -						-	-		NNNNNNNNN MANNANNNNN	
_	17 - 18 - 19							-			
	20—						URS	1			

	Loc	ation:	i g San Louisa, 138151	KY		l Inv	estigation	Log of Boring HB-3 (MW-1206) Sheet 2 of 6					
			SAMPL	ES									
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content %		REMARKS AND OTHER DETAILS		
—675 —	- 21-								-		– Bentonite chips		
_	22- 23-						-		-	NNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNN			
— —670	24– 25–								-				
_ 070	26- _ 27-						-		-				
_	- 28						-		-	NNNNNNN			
— —665	29- - 30-								-	NNNNNNNN NNNNNNNNN			
_	31- - 32-								-	NNNNNNNN NNNNNNNN			
_	33- - 34-						-						
— —660	- 35						-		-	NIN MANANANANANANANANANANANANANANANANANANA			
	36- - 37-						-		-	NNNNNNNN NNNNNNNNN			
_	38- - 39-						-		-	NNNNNNN			
— —655	40-						-			NNNNNNN NNNNNNNN			
_	41- 42-						-		-	<u>INNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN</u>			
	43-						-		_	NNNN NNNN			

Project: AEP Big Sandy Landfill InvestigationLog of BoringProject Location: Louisa, KYHB-3 (MW-1206)

Sheet 3 of 6

SAMPLES Water Content % Sampling Resist. Blows/6" OR CORE% RQD Elevation, feet Graphic Log % Pocket Pene-trometer (tsf) Recovery, **REMARKS AND** MATERIAL DESCRIPTION Depth, feet Number **OTHER DETAILS** Type 44 **45** Bentonite chips -650 46 47 SCH 40 PVC 2" diameter riser **48 49 50** -645 51 52 53· 54 55 -640 56 **57 5**8 **5**9 60 635 61 62 63-64 65 -630 **NINININ** 66

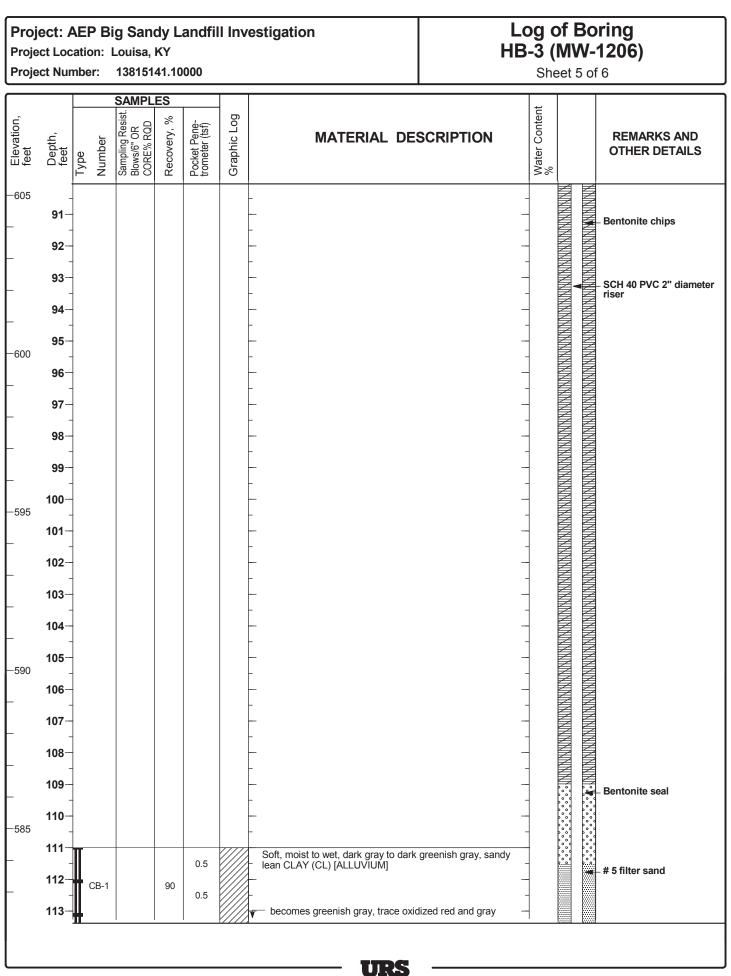
Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:14 AM

Project Number:

13815141.10000

Project Location: Louisa, KY

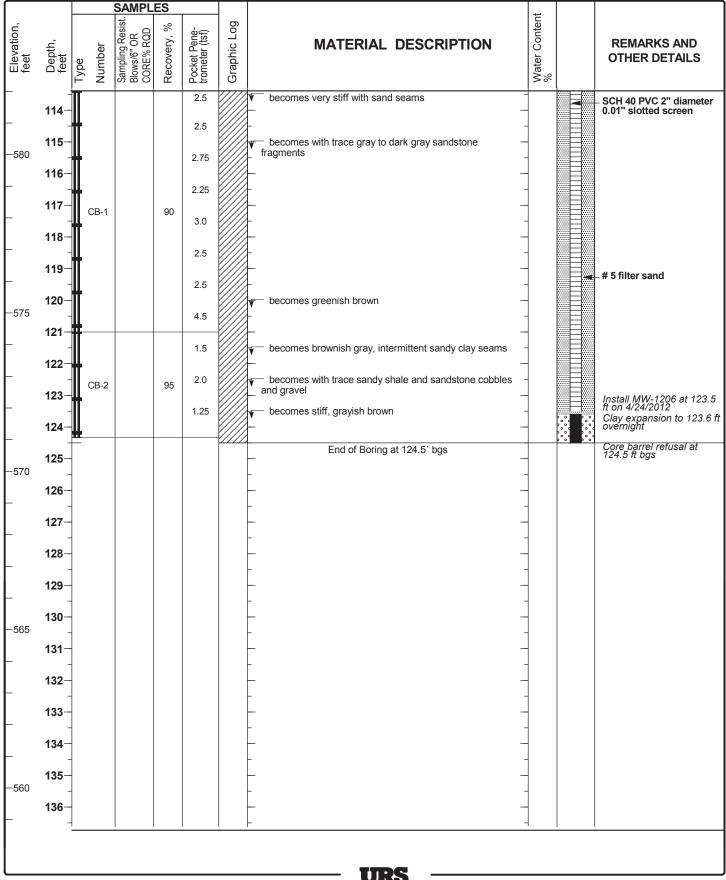
Project Number:


: 13815141.10000

Log of Boring HB-3 (MW-1206)

Sheet 4 of 6

			SAMPL	ES				+		
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
	67-								UNNNNNNN UNNNNNNNNNNNNNNNNNNNNNNNNNNNN	– Bentonite chips
-	68— _								NNNNN NNNNN	
-	69— _								NNNNNN NNNNNNN	SCH 40 PVC 2" diameter riser
-625	70								NNNNN NNNNN	
-	71-								אואואואואואואואואואואואואואואואואואואו	
-	72								NNNNN NNNNN	
-	73 - 74								NNNNN NNNNN	
-	74 - 75								NNNNN NNNNN	
-620	73 - 76								NNNNN	
-	- 77								ANNNN AN	
-	- 78—								NNNN	
-	- 79								NNNNN NNNNNN	
-	- 80—								NNNNI NNNNN	
—615 	- 81-								NNNNN NNNNNN	
	82-								NNNNN MNNNN	
	83-								NNNNN NNNNN	
L	84								NNNNN NNNNN	
-610	85— _								NNNNN	
-	86— -								ANNNN TUNNNN	
_	87								NNNNN INNNNI	
-	88								NININININININININININININININININININI	
-	89								NINKIN KININ KI	
	90							-		
L							URS			


Project Location: Louisa, KY

Project Number: 1

: 13815141.10000

Log of Boring HB-3 (MW-1206)

Sheet 6 of 6

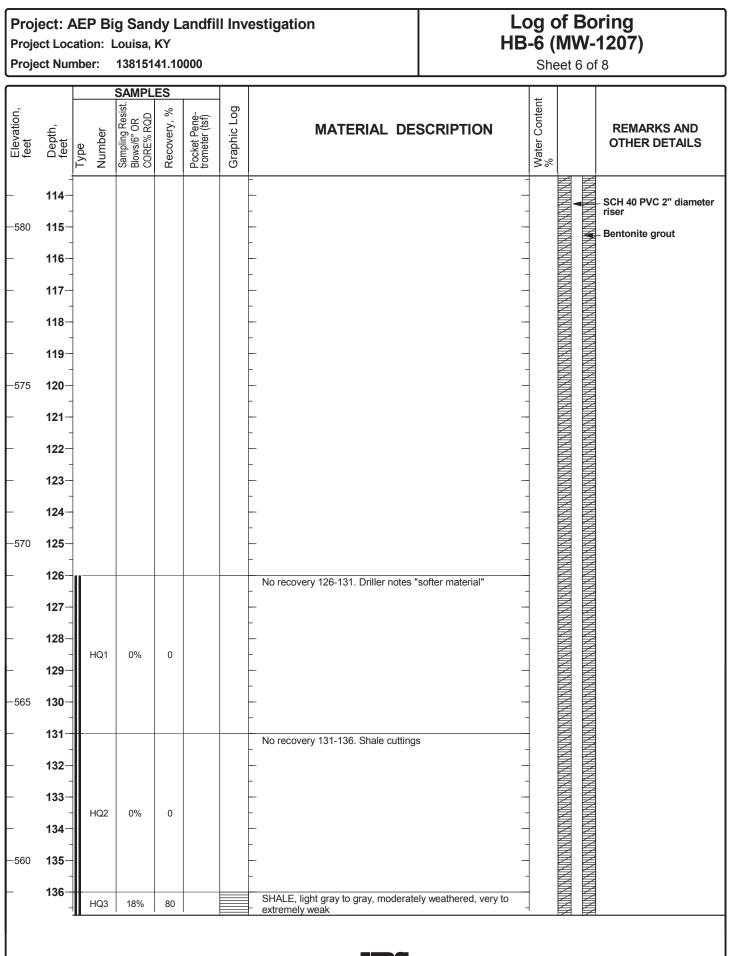
Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring HB-6 (MW-1207)

Sheet 1 of 8

Date(s) Drilled	4/24/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	Rotosonic (No vibration), Wireline HQ	Drill Bit Size/Type	8" ID steel casing, 6" OD bit HQ Wireline	Total Depth of Borehole	166.0 ft
Drill Rig Type	Vibra-Sonic	Drilling Contractor	Frontz Drilling	Surface Elevation	695.0 ft above msl
Borehole	Backfill Finished as monitoring well MW-1207	Sampling Method(s)	HQ Wireline	Hammer Data	Not applicable
Boring Lo	ocation N 251,598.3 E 2,104,256.0	Groundwater Level(s)	Not encountered		

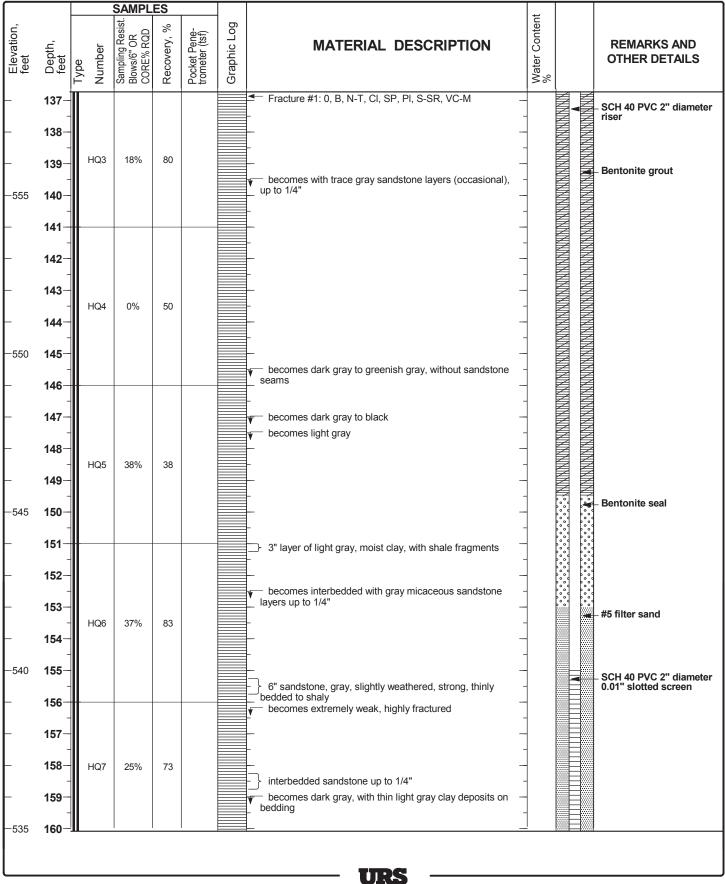

			SAMPL	ES					t		
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	ESCRIPTION	Water Content %	r	REMARKS AND OTHER DETAILS
-695	0-						See log for boring PB-7			NNNN	Bentonite grout
_	1- - 2-						- -	-		NNNNNNN	Bentonite grout SCH 40 PVC 2" diameter riser Augered to 126 ft without ampling
-	3-						-	-		NNNNN	Augered to 126 ft without sampling
-	4- -						- 	-		NNNNN	
-690	5 - 6						-	-		NNNNN	
	6 - 7						-	-			
_	- 8						-	-		NNNNN	
-	9						-	-		NNNNN	
-685	10 - 11						-	-		NNNNN	
_	- 12						-	-		NNNNN	
-	- 13 -						- 	-		NNNNN	
	14- - 15						-	-		INNNNN	
680 	15 - 16						-	-		INNNNN	
-	- 17-						-	-		NNNNN	
	- 18 -						-	-		NNNNNNNNNNNNNNNNNNNNNN	
-675	19						-			NNNNN	
	20						URS				

Projec	t Loc	ation:	i g San Louisa, 138151	KY		l Inv	L HE	8-6 (of Bo MW-	1207)	
			SAMPL	ES							
Elevation, feet	0 Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
	-						-		-		
	21-						-		-		SCH 40 PVC 2" diameter riser
-	22						-	-	-	NNNNNN	Bentonite grout
-	23						-		-		
-	24						-		_		
-670	25-						-		-	UNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUN	
_	26-								-	NNNN	
-	27-						-		-		
_	28-						-		-	NINNANANANANANANANANANANANANANANANANANA	
_	- 29-						-		-	NNNN NNNN	
-665	30-						-		-		
	31-						-		-		
	32-						-		-		
	-						_		-	NNNNNNN	
-	33-						-		-		
-	34-						-		-	NNNN	
-660	35						-		-	NNNN NNNN	
╞	36-						-		-	NNNN NNNN	
-	37-						-		-	<u>INNNN</u>	
-	38-						-		-	<u>INNNN</u>	
_	39-						_		-		
-655	40-						-		_	<u>INNNN</u>	
-	41-						-		-		
╞	- 42						-		-	<u>NNNN NNNN NNNN NNNN NNNN NNNN NNNN NN</u>	
L	- 43-						-		-	AN KUMANA MANA MANANA MANANA MANA MANANA MANANA MANANA MANANA MANANA A MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA	
							URS				

Proje	ct Loc	ation: I	g San Louisa, 138151	KY		l Inv		-6 (ring 1207) f 8	
			SAMPL	ES							
Elevation, feet	Depth, feet		Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content %	<u> </u>	REMARKS AND OTHER DETAILS
_	44						-	-	-	NNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	– SCH 40 PVC 2" diameter riser
—650 —	45 - 46						-		-		
_	- 47-						-	-	-		– Bentonite grout
_	48-						-	- -	-		
_	49-						-	-	-	MANANANANANANANANANANANANANANANANANANAN	
—645 —	50 - 51						-	-	-	<u>INNNNNN</u>	
-	52						-	_		WNNNNN WNNNNN	
_	53- -						-	- - -	-		
— —640	54— - 55—							-	-		
_	- 56						-	-	-	NNNNNN	
_	57- -						-		-		
_	58 - 59							-	-	NNNNN	
-635	- 60-						-	-	-	NNNNN	
_	- 61						-		-	<u>NNNNNN</u>	
-	62						-	-	-	<u>INNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</u>	
	63- - 64-						-	-	-	NNNNN	
-630	65						-		-	AN IMAMANA MANANA MA	
_	66						-				
							urs				

	t Loc	atio	n: I	g San Louisa, 138151	KY		l Inv	Log of Boring HB-6 (MW-1207) Sheet 4 of 8					
				SAMPL	ES								
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content	e	REMARKS AND OTHER DETAILS	
-	67-							-		-		– SCH 40 PVC 2" diameter riser	
-	6 8	-						_		-			
-	69-							-			NANANANANANANANANANANANANANANANANANANA	– Bentonite grout	
-625	70										NNNNN NNNNNN		
	71- - 72-							-		-			
_								-		-	NNNNN		
_	- 74	-						-		-	NININININININININININININININININININI		
-620	- 75	-						-		-			
_	76-							-		_			
-	77-	-						-		_			
-	78	-						-		-			
-	79	-						-		-	NNNNNNN		
-615	80- - 81							-		-	NNNNN		
	81- - 82-							-		-	NNNNN NNNNN		
	83-							-		-			
_	- 84							-		-	NNNNN NNNNNN		
—610	- 85—	-						-		-	NNNNN NNNNN		
_	- 86							-		_			
-	87-	-						-		_	NNNNN		
-	88							-			NNNN		
-	89— -	-						-			ALINIMI MARAMANAN MANANANA MARANA MARANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANA Manana manana mana mana mana		
-605	90-							-					

Proje		ation:	ig San Louisa, 138151	KY		ll Inv	Log of Boring HB-6 (MW-1207) Sheet 5 of 8				
			SAMPL	FS				-			
Elevation, feet	Depth, feet	R S Sesist.					MATERIAL DE	SCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
_	- 91- - 92-						-		-		SCH 40 PVC 2" diameter riser
_	- 93— -						- -	- - -	-		– Bentonite grout
— —600	94— - 95— -						 - - -	 - 	-	UNIVERSI MANANANA MANANANANANANANANANANANANANANA	
- -	96— _ 97— _						 - 	- - -	-	MNNNNNNN MNNNNNNNN	
_	98— _ 99—						-	-	-		
—595 —	- 100- - 101-						- -	- - -	-		
_	- 102— - 103—						- -	- - -	-		
_	- 104— -						-		-		
—590 —	105— - 106— -						 - 		-	NNNNNNNNN NNNNNNNNNN	
-	107- - 108-						 - 	- - -	-	NNNNNNNN	
_ —585	109— _ 110—							-	-	UNIN KUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKU	
_	- 111- - 112-						- -	- - -	-	NNNNNNNN NNNNNNNNN	
_							-	-		<u>INNNNI</u> NNNNNN	


Project Location: Louisa, KY

Project Number: 1

13815141.10000

Log of Boring HB-6 (MW-1207)

Sheet 7 of 8

Project Location: Louisa, KY

Project Number: 13

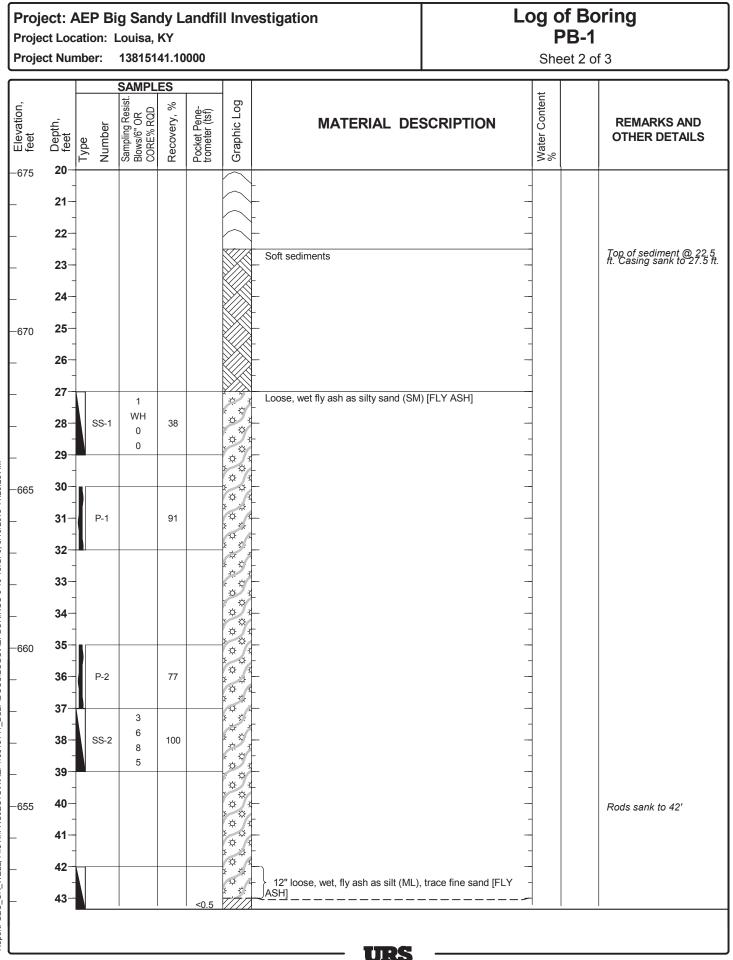
13815141.10000

Log of Boring HB-6 (MW-1207)

Sheet 8 of 8

SAMPLES									
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
	-	HQ7	25%	73				-	
F	161						SANDSTONE, gray, moderately weathered medium strong to very strong, flaggy, with thinly interbedded shale, micaceous]	SCH 40 PVC 2" diameter 0.01" slotted screen
-	162-						_ micaceous	-	0.01 Slotted Screen
	- 163-								- #5 filter sand
	-	HQ8	42%	100			-	-	
-	164-								
-530	165								
	166						-		
	-						End of Boring at 166´ bgs	-	
Γ	167-							1	
F	168-]	
-	169-							-	
-525	170-								
020	-								
F	171-								
F	172-							-	
F	173-								
L	- 174-								
	-								
-520	175-								
-	176							-	
F	177-								
	-						-	-	
Γ	178-								
F	179-								
-515	180-								
L	- 181-								
	-						-	-	
Γ	182-								
F	183–								
							URS		

Project Location: Louisa, KY


Project Number: 13815141.10000

Log of Boring PB-1

Sheet 1 of 3

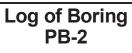
Date(s) Drilled	4/18/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method	Rotary/Water	Drill Bit Size/Type	4"	Total Depth of Borehole	57.0 ft
Drill Rig Type	Acker	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	Top of water el. 695.1 ft above msl
Borehole	Backfill Cement Bentonite Grout	Sampling Method(s)	Piston tube/Split-spoon	Hammer Data	140#/30" Manual drop
Boring Lo	ocation 38°10'57.4" N 83°38'41.3" W	Groundwater Level(s)	0' bgs		

	SAMPLES												
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log		MATERIAL	DESCRIPTIO		Water Content %	REMARKS AND OTHER DETAILS
-695	0-			ол Ш О	<u> </u>			Water			<u> </u>		Barge drilling- water @ 695.1.
	1-						\frown	-			_		
	-	-						_			-		
F	2-							-			-		
-	3-	-											
	4-						\frown	-			_		
	-	-						-			-		
-690	5							-			-		
╞	6-	-									-		
	7-						\frown	_					
	- 8	-						_			-		
F	0							-			-		
╞	9-												
-685	10-						\frown						
	- 11–						\bigcirc	-			-		
	-	-						-			-		
F	12-						\frown	-			-		
╞	13-	-											
	- 14							_			_		
	45	-						-			-		
-680	15	-					$\left \right\rangle$	-			-		
╞	16-										_		
\vdash	17-	-											
L	- 18						\square	_			-		
	-							-			-		
F	19- -	1						-			-		
	20-												
L									— UF	ls ——			

Project Location: Louisa, KY

Project Number: 13815141.10000

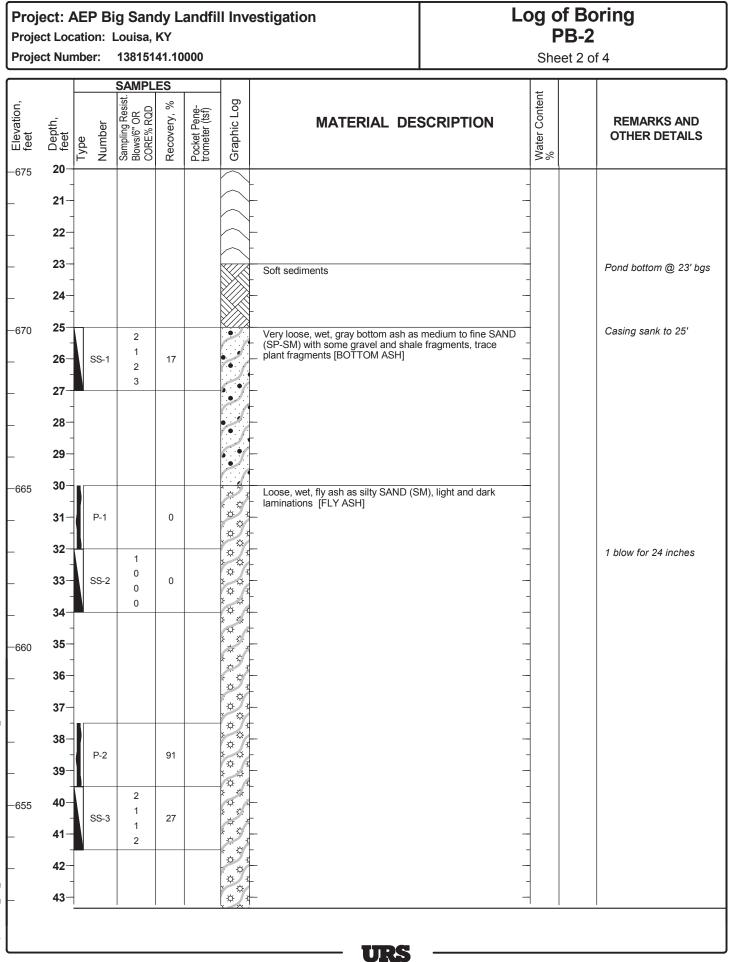
Log of Boring PB-1

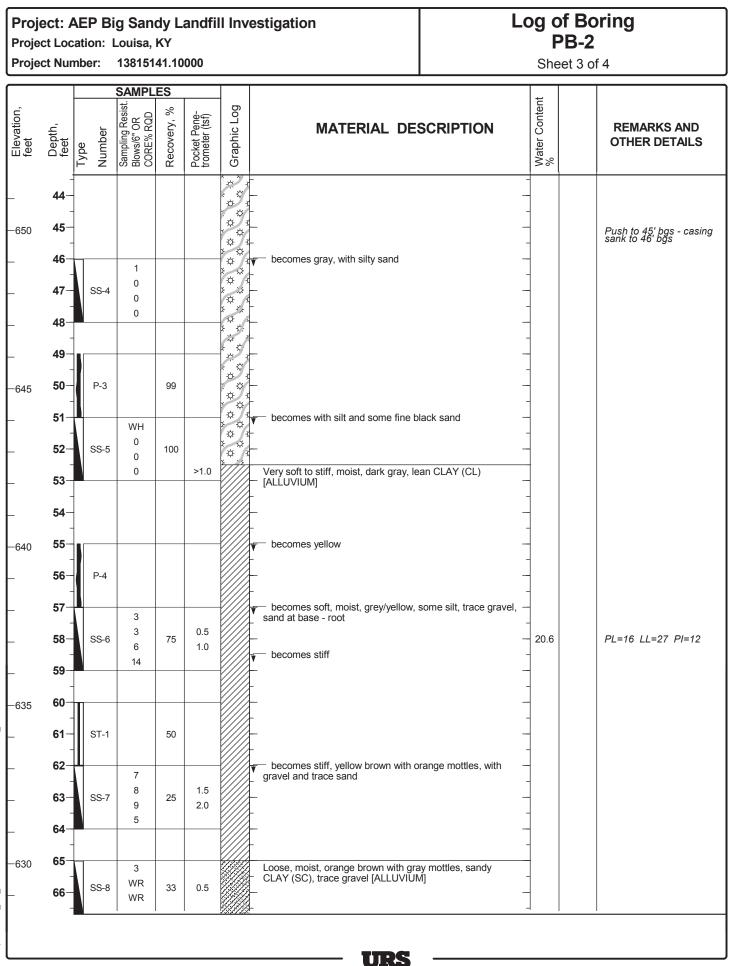

Sheet 3 of 3

			SAMPL	ES					
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
	44				2.0		Soft, moist, dark gray, lean CLAY (CL) [ALLUVIUM]		
 -650 	44 45- - 46- - 47-	SS-3	3 3 4 5	38	2.5		■ becomes very stiff, yellow brown with orange iron = staining, with sand, trace gravel	-	
_	48- 49-							-	
—645 —	50	SS-4	6 7 12 12	33	1.0 2.5		becomes stiff to very stiff, sandy, trace gravel	-	
_	- 53 - 54 -						Shale, gray, dry, crushed	-	Drilling change encountered @ 53.5 ft bgs
640 	55	SS-5	45 50/2"	33			End of Boring at 57′ bgs	-	
_	- 58 - 59 -							-	
-635 -	60- - 61- - 62-							-	
_	63- 64-							-	
—630 —	65- 66-							-	
							URS		

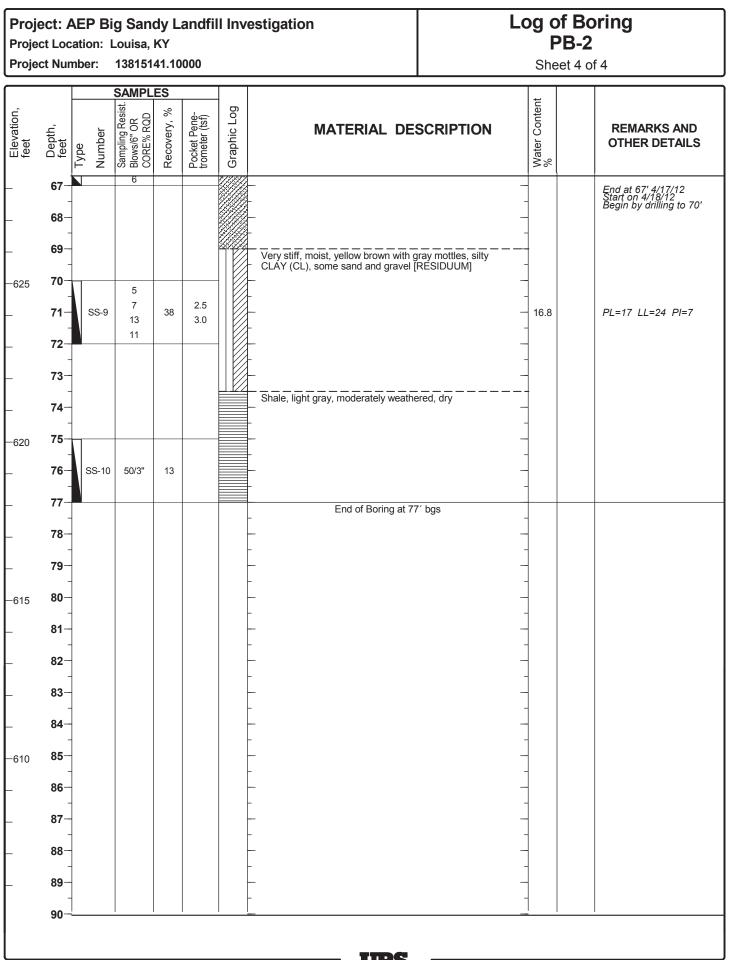
Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:28 AM

Project Location: Louisa, KY


Project Number: 13815141.10000


Sheet 1 of 4

Date(s) Drilled	4/17/12-4/18/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method	Rotary/Water	Drill Bit Size/Type	4"	Total Depth of Borehole	77.0 ft
Drill Rig Type	Acker	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	Top of water el. 695.1 ft above msl
Borehole	Backfill Bentonite chips	Sampling Method(s)	Piston/Split-spoon/Shelby-tube	Hammer Data	140#/30" Manual drop
Boring Lo	ocation 38°10'52.5" N 83°33'35.2" W	Groundwater Level(s)	0 ft bgs		


- Elevation, - 699 	, Depth, 1 - 2 - 6 1 - 7 7 - 7 1 - 1 1	Sampling Resist Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	Water 	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS Pond elevation - 695.1 ft
-	0 1 2 3 4 5 -	0,20				Water			Pond elevation - 695.1 f
 690 	2 3 4 5			, , , , , , , , , , , , , , , , , , , ,		-			
 690 	3 - 4 5							-	
 690 	3 - 4 5				\sim	_		1 1	
 690 	 4 5				í Y			_	
	5 -				\frown	_		_	
—690 —	5 -				\frown	_		_	
—690 —	_				\frown			-	
_	6				\frown	_		-	
_						-		_	
	7-				\frown	_		_	
	_				\frown			-	
_	8-				\frown	_		_	
_	9—				\square	-		_	
-685	10-				$ \frown $	_		-	
005	_				\frown			-	
	11-				\frown	_		_	
_	12—				\square	-		_	
_	13-				\sim	_		_	
	_				\frown			-	
_	14-				\frown	_			
-680	15—				\square	-		-	
	- 16				\sim	_			
	-				\frown			-	
–	17				\frown	_			
_	18—				\frown	-		-	
_	- 19					_			
	_				$ \rightarrow $			-	
	20								

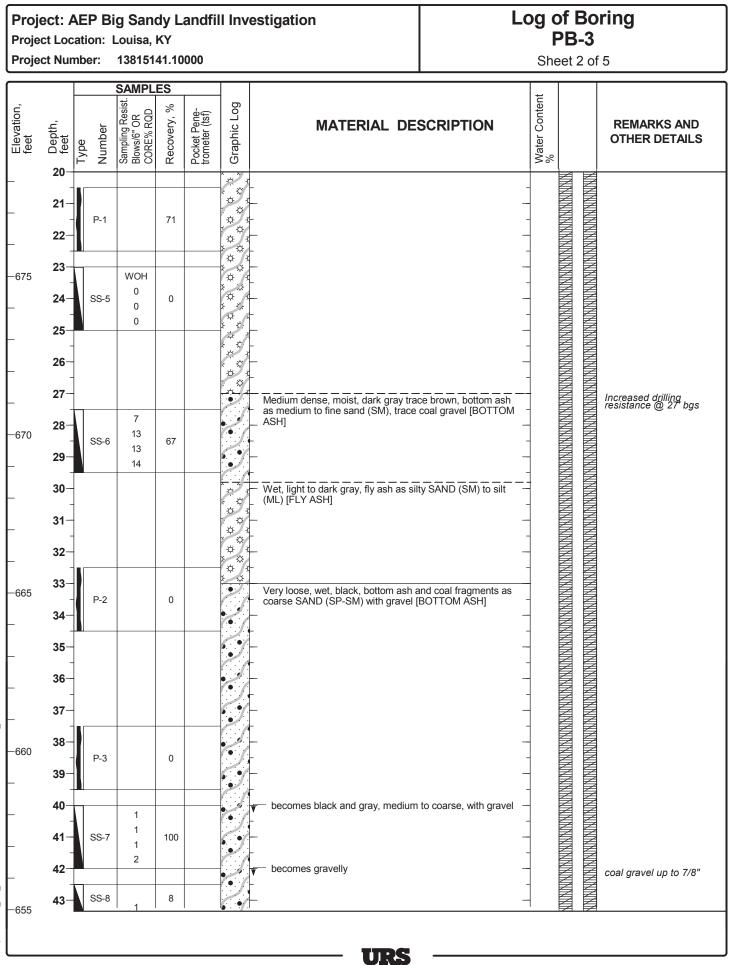
Report: GEO_CR_WELL; File K:/PROJECTS/A/AEP/13815141_BSLF/DOCS/LOGS/AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:29 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBOR\NGS-6-10-13.GPJ; 6/10/2013 11:23:30 AM

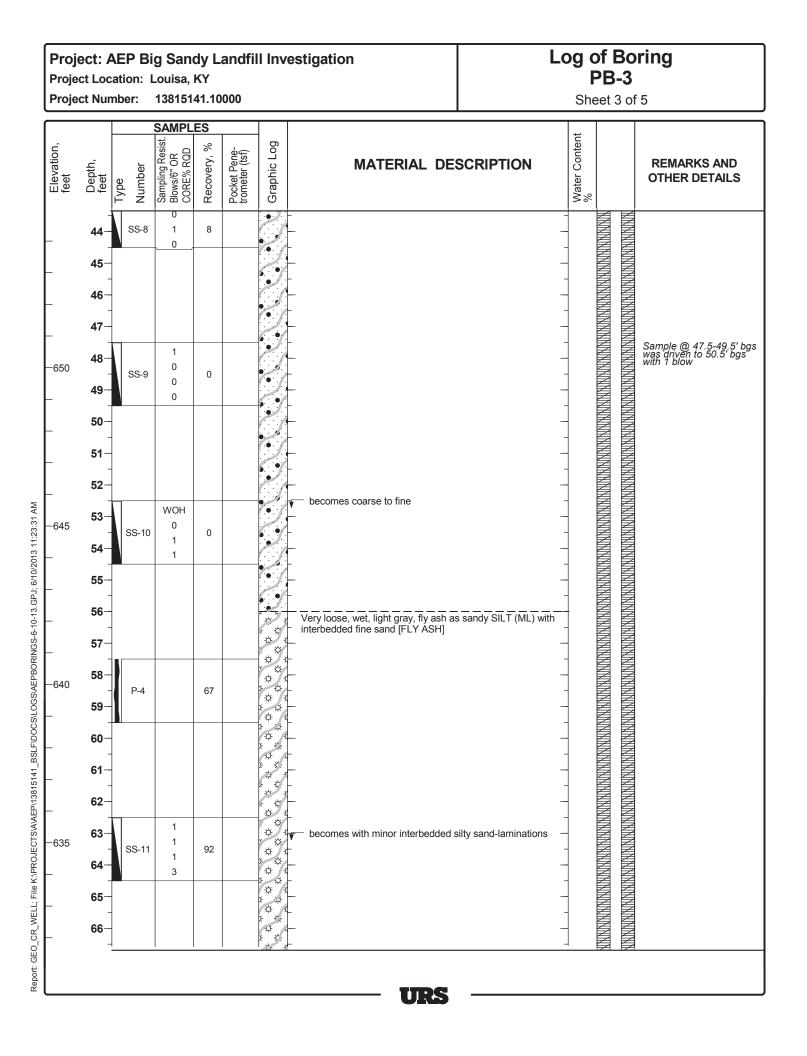
Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:30 AM

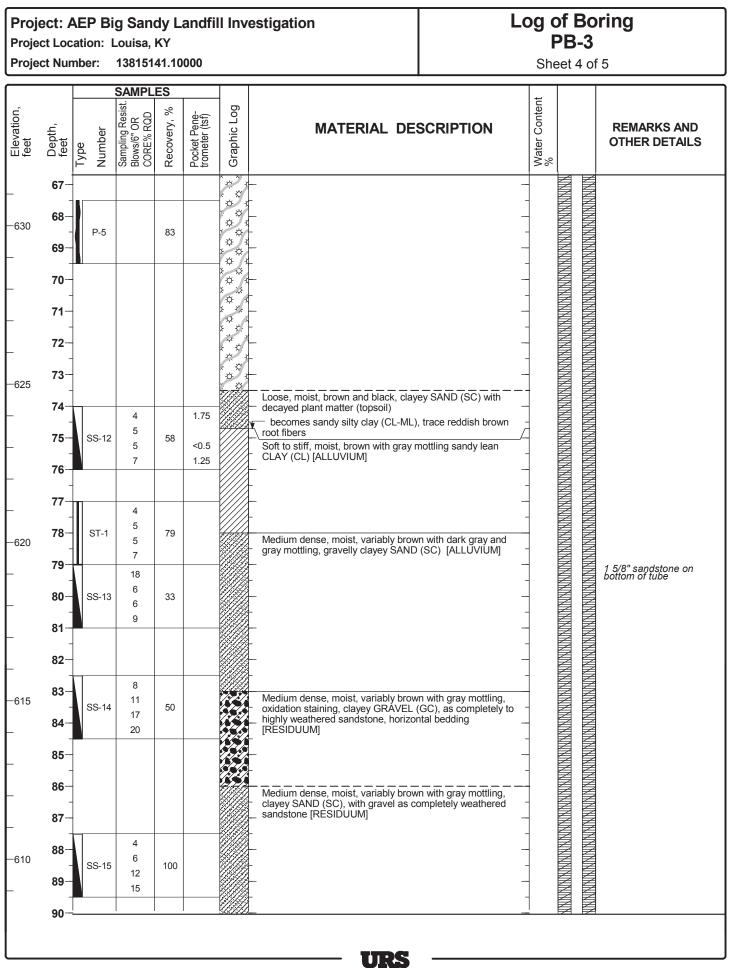
Project Location: Louisa, KY

Project Number: 13815141.10000


Log of Boring PB-3

Sheet 1 of 5


Date(s) Drilled	4/9/12-4/10/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method	HSA, Mud rotary with recirculated mud	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricore mud-rotary	Total Depth of Borehole	93.0 ft
Drill Rig Type	CME 55 Track Mounted and ATV-remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	698.3 ft above msl
Borehole	Backfill Finished as 2" PVC riser pipe set w/ grout	Sampling Method(s)	Split-spoon/Piston/Shelby-tube	Hammer Data	140#/30" Drop Auto
Boring Lo	Decation N 251,582.4 E 2,102,704.0	Groundwater Level(s)	4' ATD		


		SAMPLES								t		
Elevation, feet	Depth, feet	Type		Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION		Water Content %		REMARKS AND OTHER DETAILS – 2.5' stickup
	0-		_					Bottom ash access road [BOTTOM ASH]				· ·
	- 1 -							- 	-		NNNNN NNNNN	
-	2							-	_		NNNN	
-695	3						Ś	-			NNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Augered to 6' without sampling
-	4-							-	⊻_ -		NNNNN	
╞	5 - 6							-	-		NNNNN NNNNN	
- - - - - - - - - - - - - - - - - - -	- 7 -	SS	-1	1 2 WOH 1	63			Very loose, wet, fly ash as interbedded light and dark sandy SILT (ML) and silty SAND (SM), trace root fibers [FLY ASH]	-			
-690	8 - 9	SS	2	1 2			☆ ⊰ ≯ ☆ ☆ ⊰	-	-		NNNNN	
-	- 10-	33	-2	1 1				-	-		NNNNN NNNNN	
	- 11-							-	-			
	- 12							-	_		NNNNN NNNNN	
-685	13-			WOH			; ¢ ; ↓ ; ; ↓ ;	becomes without root fibers	_		NNNN NNNN	
	- 14 -	SS	-3	0 0	79		☆ 3 ≯ ☆ ☆ 3 ⊁ √	- 	-		NNNNNN NNNNNN	
$\left \right $	15			0				-				
╞	16- -							-				
╞	17							-	-			
-680	18			WOR 0			; ☆ ☆ 3 r ☆	-	-			
'-	19 - 20	SS	-4	0 1	75			_	-		NNNNN	
	20							URS				

Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:31 AM

Report: GEO_CR_WELL; FIIe KAPROJECTSIAIAEP113815141_BSLFIDOCSILOGSIAEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:31 AM

Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:32 AM

Project Location: Louisa, KY

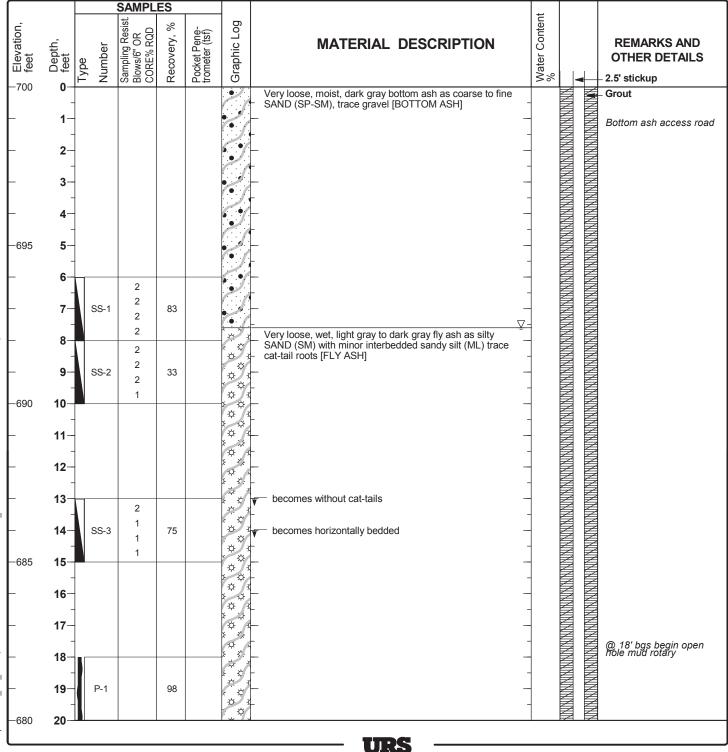
Project Number: 138

13815141.10000

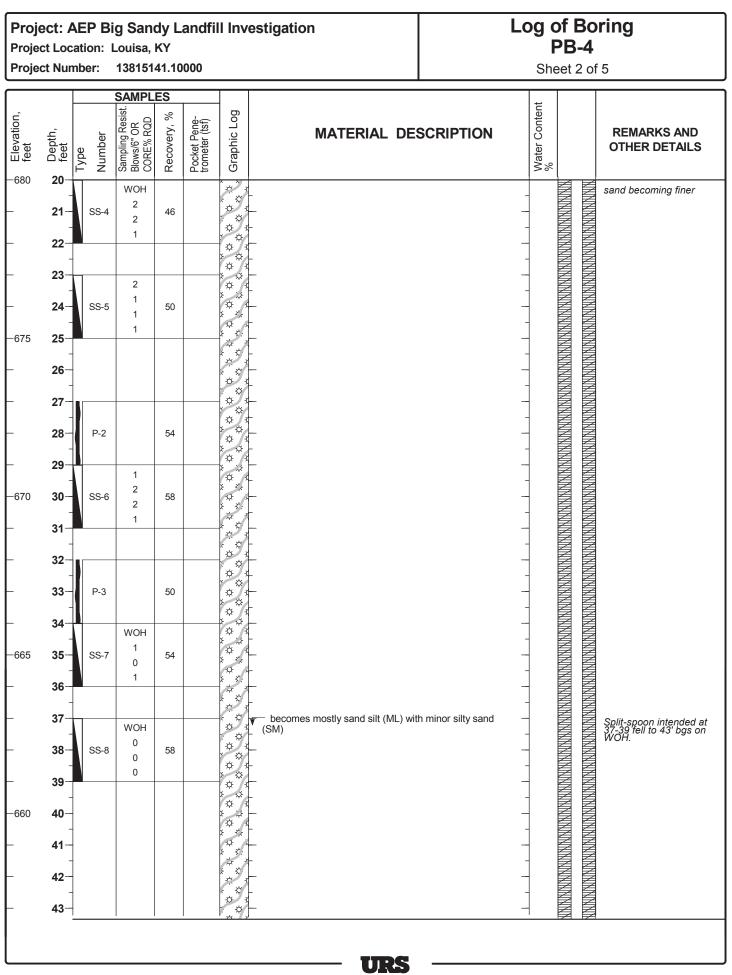
Log of Boring PB-3

Sheet 5 of 5

			SAMPL	ES						
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
-	- 91 - 92						Sandy silty shale, gray with oxidation staining, moderately weathered, weak	-		
— —605	93— -	SS-16	50/4.5"	100			End of Boring at 93' bgs	-		Set PVC casing at 93' bgs. Cement-bentonite grout placed using tremie pipe
	94— _ 95—							-		pipe '
-	96— _ 97—							-		
— —600	- 98 - 99									
-	- 100 -						- · ·	-		
-	101- - 102-							-		
-595	103- - 104-							-		
-	- 105- - 106-							-		
-	100 - 107 -						- · ·	-		
—590 —	108— - 109—							-		
_	110- - 111-							-		
-	- 112 - 113						· · ·			
-585							URS			

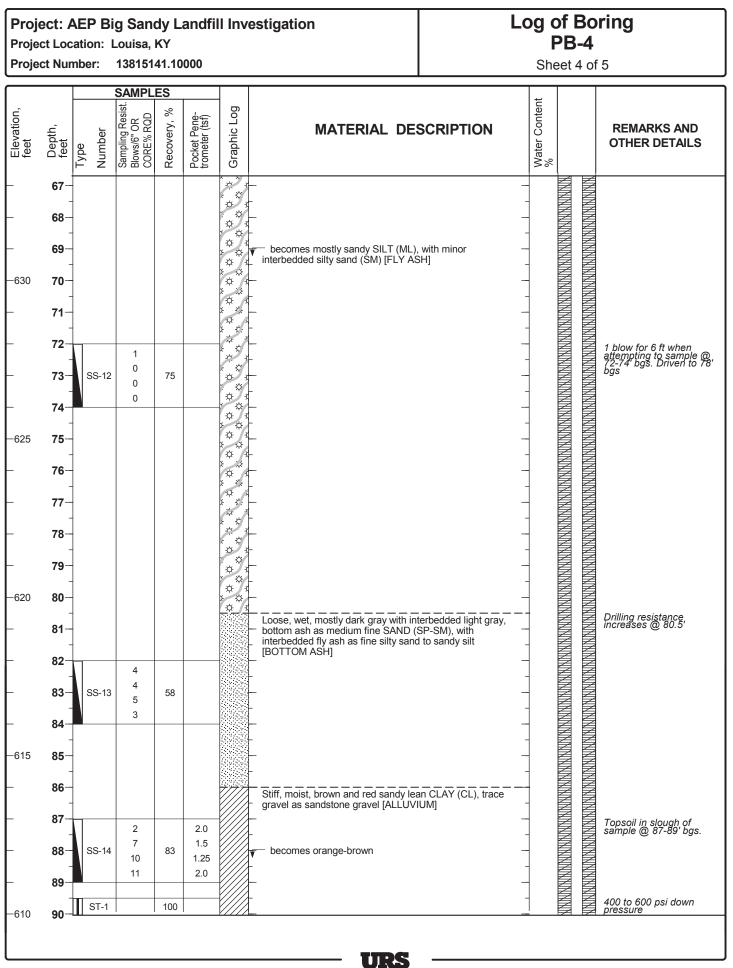

Project Location: Louisa, KY

Project Number: 13815141.10000


Log of Boring PB-4

Sheet 1 of 5


Date(s) Drilled	4/11/12-4/13/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method	HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricone bit	Total Depth of Borehole	112.2 ft
Drill Rig Type	CME 55 Rubber Track ATV, Remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	700.0 ft above msl
Borehole	Backfill 2" PVC riser pipe set with grout	Sampling Method(s)	Piston/Split-spoon/Shelby-tube	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 251,302.5 E 2,103,601.0	Groundwater Level(s)	Encountered at 7.6' bgs ATD		


Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:34 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:34 AM

Report: GEO_CR_WELL; FIIe KAPROJECTSIAIAEP113815141_BSLFIDOCSILOGSIAEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:34 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:34 AM

Project Location: Louisa, KY

Project Number: 1

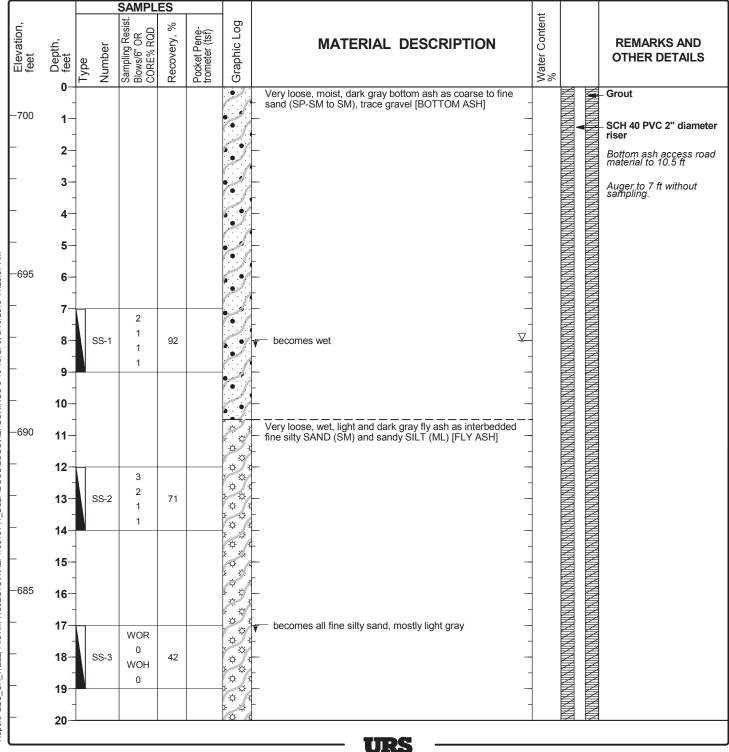
13815141.10000

Log of Boring PB-4

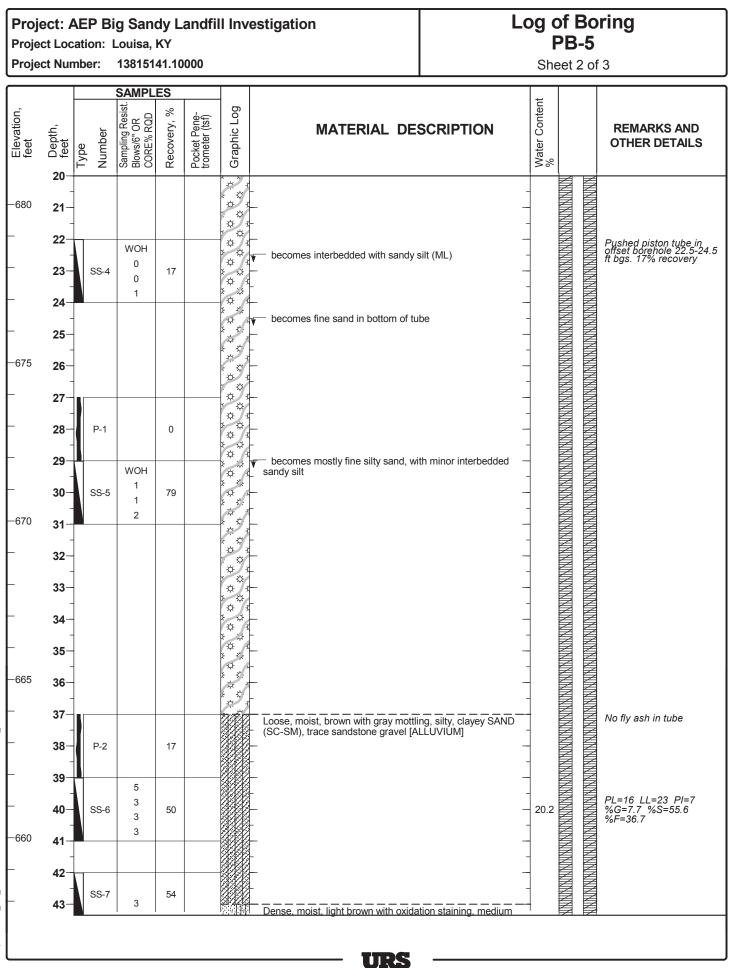
Sheet 5 of 5

			SAMPL	ES						
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
-	91-	ST-1		100	2.5			-	NNNNNN	N.N.N.N.N.N.
_	92— 93— 94—	SS-15	10 7 7 12	63	2.0 0.75 1.0		Medium dense, moist, variably orange-brown with trace black and gray mottling, clayey SAND (SC) to sandy lean clay (CL), trace weathered sandstone gravel, trace coal particles [ALLUVIUM]	-	NNNNNNNNNNNN	
—605 —	- 95— _ 96—						· · ·	-		
-	- 97— -		WOH 0		0.75		 becomes brownish-gray Medium stiff, moist, gray with black peat particles, organic CLAY (OH), trace sand seams [ALLUVIUM] 	-	NNNNNNN I	
	98— _ 99—	SS-16	14 5	100	0.75 0.5	() () () () () () () () () ()	 CLAY (OH), trace sand seams [ALLUVIUM] Medium stiff, moist, dark brownish-gray fibrous PEAT (PT) with interbedded clayey SAND (SC), trace undecayed stems [ALLUVIUM] 	-	NNNNNN	150 to 300 psi down pressure
-600 -	- 100- - 101-	ST-2		100	0.5	76 76 76 76 76 76 76 76		-		150 to 300 psi down pressure
	- 102 - 103	SS-17	WOH 0	83	0.75 0.75		Medium stiff, moist, brown, organic lean CLAY (OL) with greenish-gray sand seams, trace peat particles [ALLUVIUM]	+		
-	- 104		3 7		0.75		· · ·	-		
—595 —	105— _ 106—						Medium dense, moist, greenish-gray with brown oxidation	-		Increased drilling resistance @ 106' bgs.
-	- 107— -		11				staining, clayey SAND (SC) with horizontally bedded	-		
	108— - 109—	SS-18	9 11	38			 	12.0	<u>INNNNNNN</u>	R PL=15 LL=25 PI=10 %G=24.8 %S=35.3 %F=39.9
-590	- 110 -							-	NNNNNN	
-	111- - 112-	SS-19	50/1/2" [100 /			Sandstone, medium to fine, gray, slightly weathered, medium strong	-		Increased drilling resistance @ 111' bgs. Set PVC casing at 112' Cement-bentonite grout
-	113-						End of Boring at 112.15' bgs	-		placed using tremie pipe.
							URS			

Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:34 AM


Project Location: Louisa, KY

Project Number: 13815141.10000


Log of Boring PB-5

Sheet 1 of 3

Date(s) Drilled	4/13/12,4/16/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method	HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricone bit	Total Depth of Borehole	57.1 ft
Drill Rig Type	CME 55 Rubber Track ATV, Remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	700.9 ft above msl
Borehole	Backfill 2" SCH 40 PVC riser grouted in place	Sampling Method(s)	Piston/Split-spoon	Hammer Data	140#/30" Drop Auto
		Groundwater Level(s)	Encountered 8' bgs ATD, W.L. @ 10.5	' bgs on 4/16	/12

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:37 AM

Report: GEO_CR_WELL; FIIe KAPROJECTS/A/AEP1/3815141_BSLF/DOCS/LOGS/AEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:37 AM

Project Location: Louisa, KY

Project Number: 13

Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:37 AM

: 13815141.10000

Log of Boring PB-5

Sheet 3 of 3

		SAMPLES								
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
-	44-	SS-7	5 25	54			to fine SAND (SP-SM), with completely weatheredsandstone gravel [ALLUVIUM]	-	NNNN NNNN	
-	- 45		2					-	NNNN NNNNN	
-655	46-							-	ANNNN ANNN ANNN ANNN ANNN ANNN ANNN AN	Lose mud return between 42-47' bgs
	47-						Loose, moist, dark brown, clayey SAND (SC) to sandy lean CLAY (CL) with decayed plant matter [ALLUVIUM]	-	NUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKUKUK	
Ļ	48-	SS-8	3 4	75			Loose, moist, light brown, medium to fine SAND (SP-SM) with gravel as completely weathered sandstone		NNNNN NNNNN	
L	 49-		5 10				[ALLUVIUM]		NNNN NNNNN	
	- 50-								NNNN	
-650	51-								NNNN	
	52-						Very dense, moist, brown with gray mottling, oxidation staining, silty SAND (SM) as completely to highly weathered sandstone [RESIDUUM]	-	NNNN NNNNN	
	53-	SS-9	22 38	85					NNNNNN	%G=4.0 %S=56.6 %F=39.4
	54-		46 50/2"					-	ANNNN ANNN ANNN ANNN ANNN ANNN ANNN AN	%F=39.4
	-							-		
-645	55						Sandstone, fine to medium, gray, slightly weathered to fresh, medium strong		NNNNN NNNNN	
	56 -								NNNN	
L	57	SS-10	50/1/4"	100			End of Boring at 57.1' bgs			Set PVC casing at 57' bgs. Cement-bentonite grout placed using tremie pipe
	58									pipe
	59- -									
	60- -							-		
-640	61-							-		
-	62									
F	63-									
F	64							-		
F	65							-		
-635	66									
							URS]

Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring PB-6

Sheet 1 of 5

Date(s) Drilled	4/2/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method	HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricone bit	Total Depth of Borehole	100.0 ft
Type	CME 55 Track Mounted Remote-control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	698.6 ft above msl
Borehole	Backfill 2" SCH 40 PVC riser grouted in place	Sampling Method(s)	Piston/Split-spoon/Shelby-tube	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 251,301.0 E 2,103,083.0	Groundwater Level(s)	Not encountered		

		SAMPLES								Τ		
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		-	REMARKS AND OTHER DETAILS - 2.6' stickup
	0		~	0000	<u> </u>	цт Т Т		Bottom ash access road [BOTTOM ASH]				- Grout
-	- 1- - 2-							- - - -	-	MMMMMMM		Drilled without sampling to 13' bgs.
	3-							-	-	MNNN		2" SCH 40 PVC riser pipe
- 095	4							-	-	NNNNN	NNNNN	
-	5— - 6—							- - -	-	INNNNN	INNNNN	
	- 7							- -	-	NNNNN	MMMMM	
-690	8 - 9							-	-	MNNNNN	NNNNNN	
-	- 10-							-	-	MNNNN	NNNNN	
	- - 11							- 	-	MMMM	NNNNN	
_	12— - 13—							- - 	-	NNNNN	NNNNN	
	10 	S	S-1	1 2 1	25		÷	Very loose, wet, gray with dark gray streaks fly ash as fine silty SAND (SM) [FLY ASH]	-			
	15 -			2				-	_	MNNNN	NNNNN	
-	16— - 17—	F	P-1		75		* * * * * * * * * * * * * * * * * * *	-	-			
	- 18 -						\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-	-	UNNNNNNNNNNNNNNNNNNNNN		
' _	19 - 20							-	-			
								URS				

Report: GEO_CR_WELL; FIIe KAPROJECTSIAIAEP113815141_BSLFIDOCSILOGSIAEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:39 AM

Project Location: Louisa, KY

Project Number: 1

13815141.10000

Log of Boring PB-6

Sheet 3 of 5

Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content	%	REMARKS AND OTHER DETAILS	
655 	44- - 45-	P-4		0		<u>*</u> ***	Very loose, wet, dark gray and black sandy coal as GRAVEL (GM)				
-	46 - 47	P-5		88			Loose, wet, light and dark gray fly ash as fine silty SAND (SM) [FLY ASH]		NNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN		
— —650	- 48 -	SS-4	3 3 4 3	33		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	 becomes mostly sandy silt (ML) with interbedded silty clay (CL-ML) [FLY ASH] 	-			
_	49 - 50					*					
_	51- - 52-					τ, τ	 - -		NNNNNNNNN NNNNNNNNNN		
— —645	53- - 54-	P-6		73		x	-	-			
_	55- - 56-	SS-5	WOH 0 0	0		☆ ⊀ ≯ ↓ ↓ ☆ ≮ ⊁ **	- - - - becomes mostly silty SAND (SM), trace decayed root _ fibers [FLY ASH]	-	UNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNN		
_	57- - 58-	SS-6	0 WOH 1 2	92		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	→ 3/4" brown and gray mottled/layered lean clay (CL)	-			
—640 —	- 59 - 60		3			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- -				
	- 61- - 62-						-	_	NNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		
— —635	63- -					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	 - ▼ becomes light gray -	_	NININANANANANANANANANANANANANANANANANAN		
_	64 - 65	P-7	23	96		* * * * * * * * * * * * * *	- } 12" loose, wet, gray fly ash as sandy silt		NNNNNNNNN		
-	66- -	SS-7	5	100			becomes light and dark gray		NNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		

URS

Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:39 AM

Report: GEO_CR_WELL; FIIe KAPROJECTS/A/AEP1/3815141_BSLF/DOCS/LOGS/AEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:39 AM

Project Location: Louisa, KY

Project Number: 13

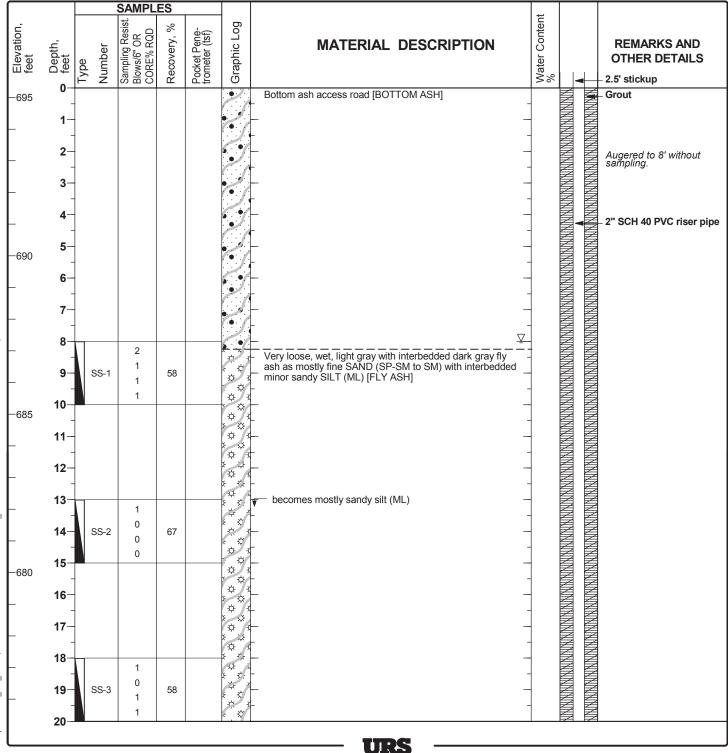
: 13815141.10000

Log of Boring PB-6

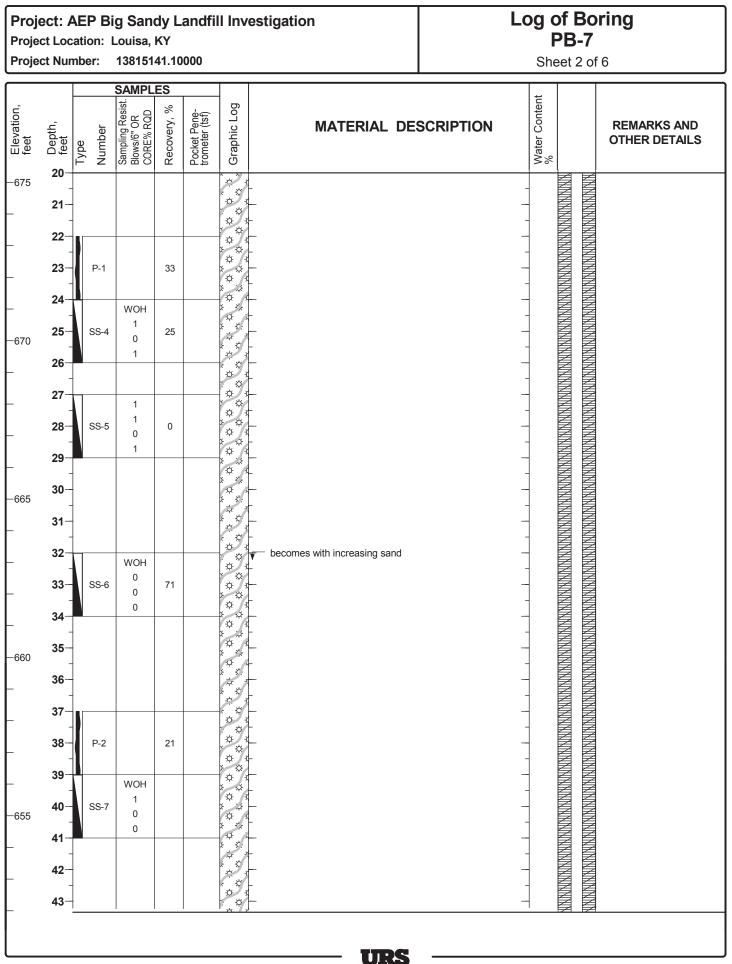
Sheet 5 of 5

			SAMPL	ES				+		
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	<u>}</u>	REMARKS AND OTHER DETAILS
	91- 92- 93- 93- 94- 95- 96- 97- 98- 99- 100- 101- 102- 100- 100- 100- 100- 100	SS-12	й ш С 5 3 5 5 WOR 12 50/3"	2	<0.5 1.0 1.25	9	Loose, moist, greenish-gravish brown to brown with oxidation staining, fine to medium clayey SAND (SC), with interbedded lean clay seams, trace sandstone gravel [ALLUVIUM] Stiff, moist, gravish-brown, sandy lean CLAY (CL), trace peat [ALLUVIUM] Sandstone, fine, gray with oxidation staining, moderately weathered, very weak to weak End of Boring at 100' bgs			PL=17 LL=31 PI=14 %F=60.7 Set PVC casing @ 100' bgs. Cement-bentonite grout placed using tremie pipe.
	113-						URS	1		

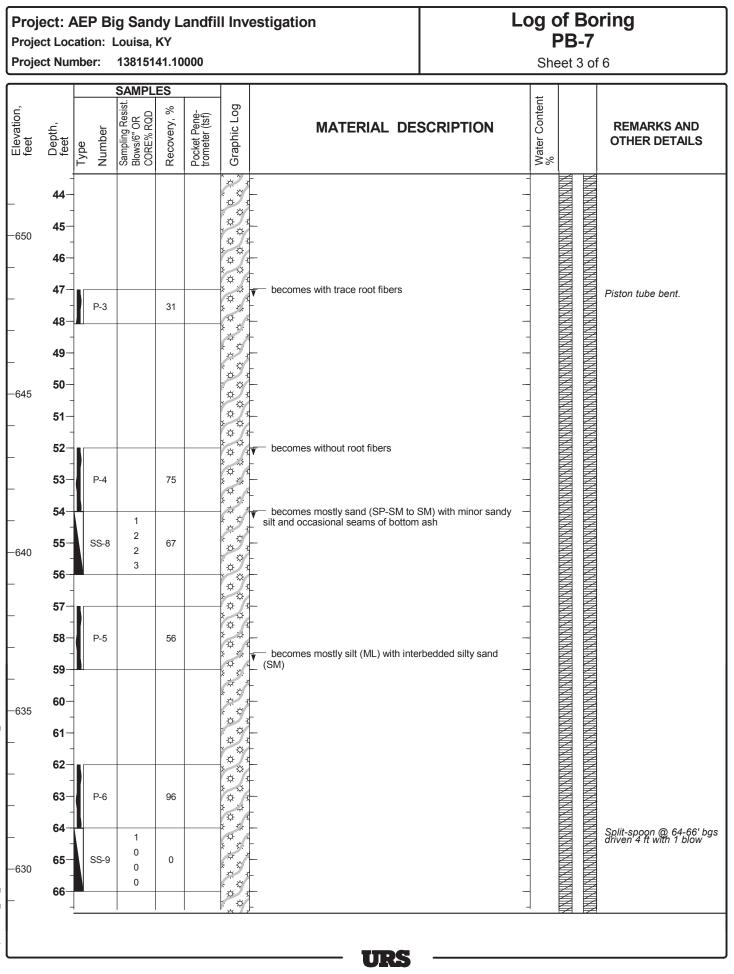
Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:39 AM

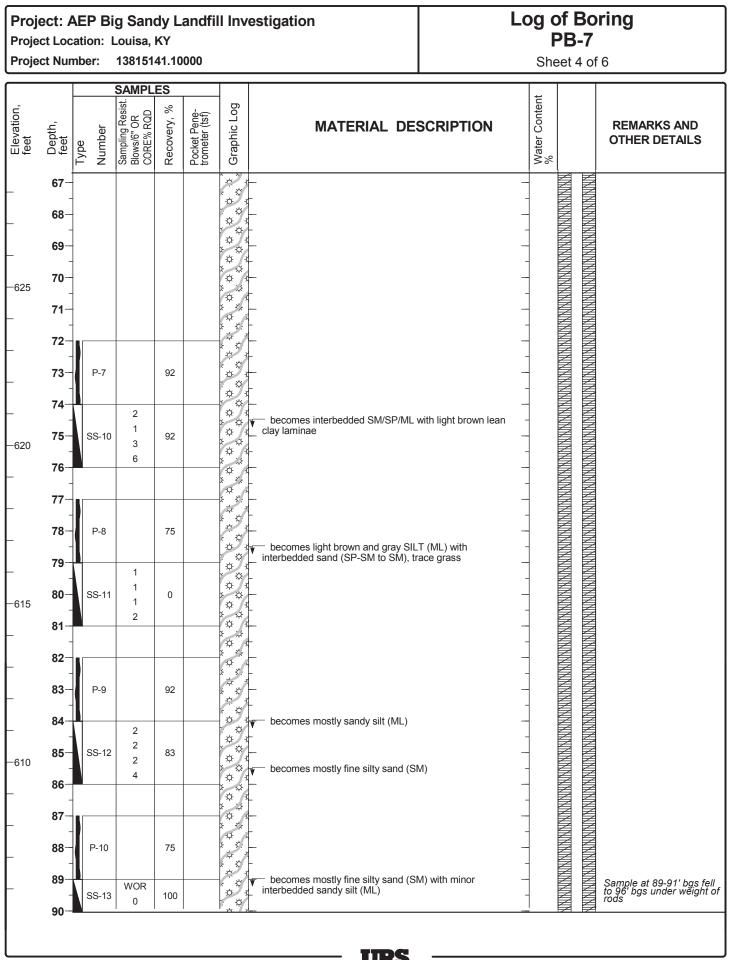

Project Location: Louisa, KY

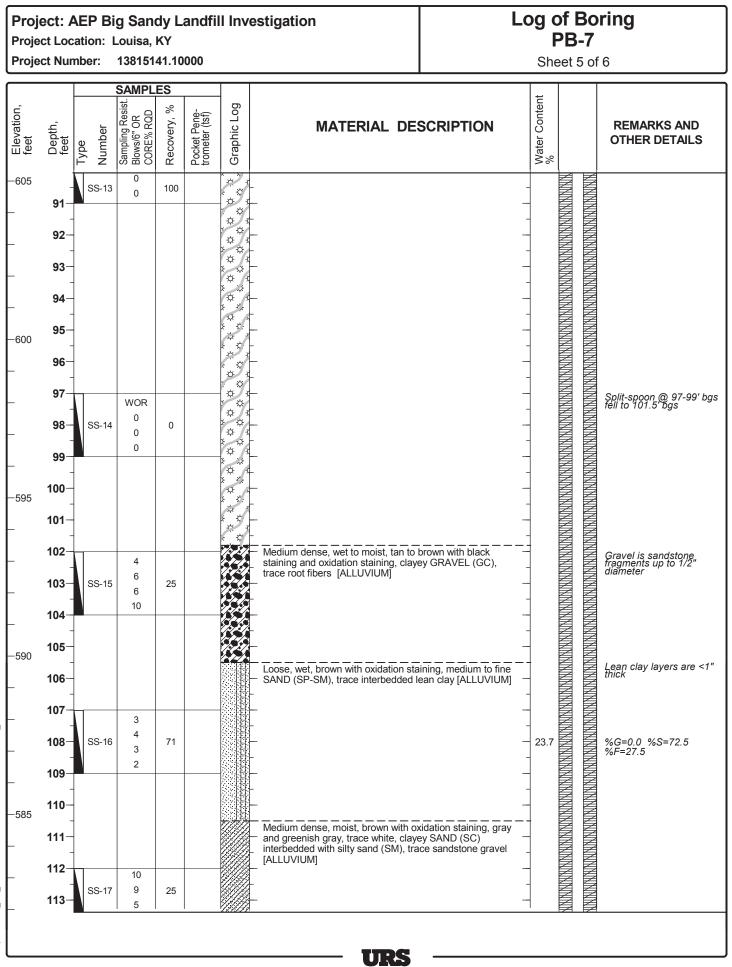
Project Number: 13815141.10000


Log of Boring PB-7

Sheet 1 of 6


Date(s) 4/17/12-4/19/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricore mud-rotary	Total Depth of Borehole	127.0 ft
Drill Rig Type CME 55 Tracked ATV	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	695.3 ft above msl
Borehole Backfill 2" SCH 40 PVC riser grouted in place	Sampling Method(s)	Piston/Split-spoon	Hammer Data	140#/30" Drop Auto
Boring Location N 251,635.0 E 2,104,228.0	Groundwater Level(s)	Encountered 8' ATD		


Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:42 AM


Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:42 AM

Report: GEO_CR_WELL; FIIe KAPROJECTSIAIAEP113815141_BSLFIDOCSILOGSIAEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:42 AM

Report: GEO_CR_WELL; FIIe KAPROJECTSIAIAEP113815141_BSLFIDOCSILOGSIAEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:42 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:42 AM

Project Location: Louisa, KY

Project Number: 1

13815141.10000

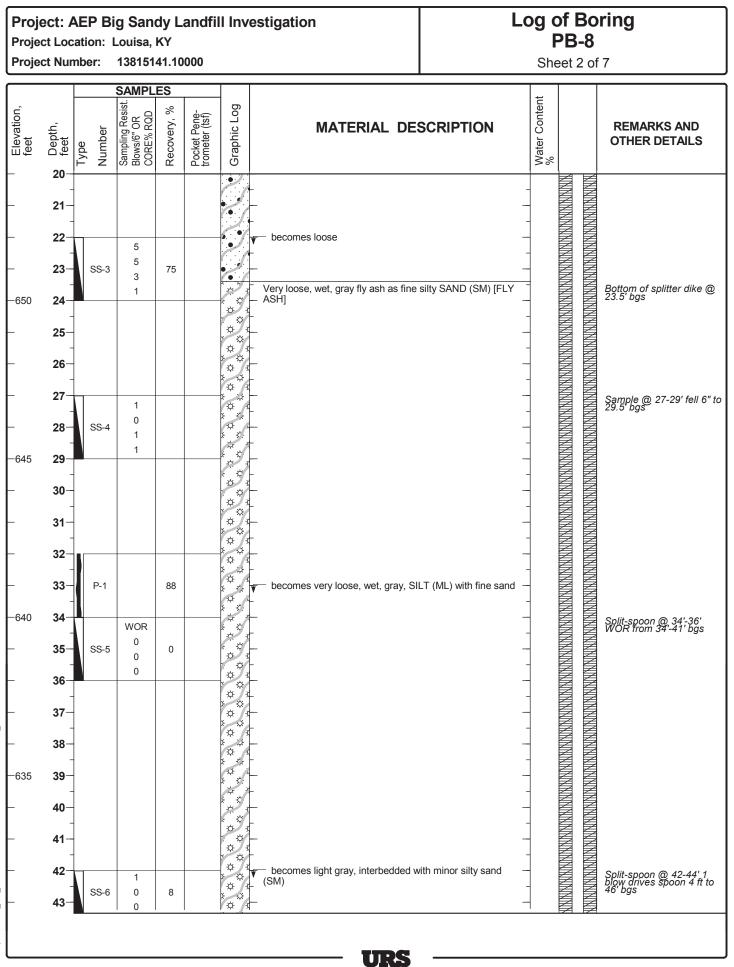
Log of Boring PB-7

Sheet 6 of 6

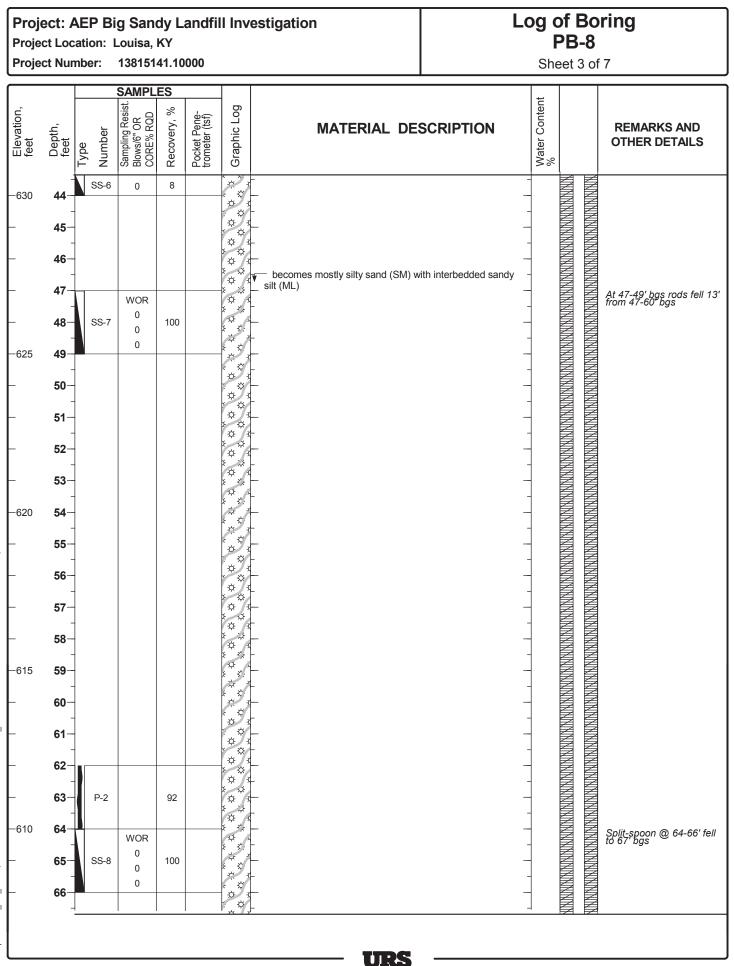
			SAMPL	ES					
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
580 	114 115 115 116 117 117 117 117 118 119 120 121 122 123 123 124 125 125 125 125	SS-17 SS-17 SS-18 SS-19	4 12 11 11 11 10 30 33 50/11/2"	25 54 71			Very stiff, moist, gray to dark brown and greenish gray lean CLAY (CL) with sand, trace sandstone gravel [ALLUVIUM] Very dense, moist, variably brown with gray mottling, with oxidation staining, medium to fine SAND (SP-SM), with gravel as sandstone fragments [RESIDUUM] Gray and dark gray shale, moderately weathered, weak	15.1	%G=11.8 %S=53.3 %F=34.9 %G=11.1 %S=67.8 %F=21.1 Hard drilling 124-127' bgs
-570 - - - -565 - - - -560 -	126 - 127 - 128 - 127 - 128 - 129 - 130 - 131 - 133 - 133 - 133 - 133 - 133 - 135 - 135 - 135 - 136	<u>SS-20</u>	50/1⁄2"]	100 /			End of Boring at 127' bgs		Set PVC casing at 127' bgs. Cement-bentonite grout placed using tremie pipe.

Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:42 AM

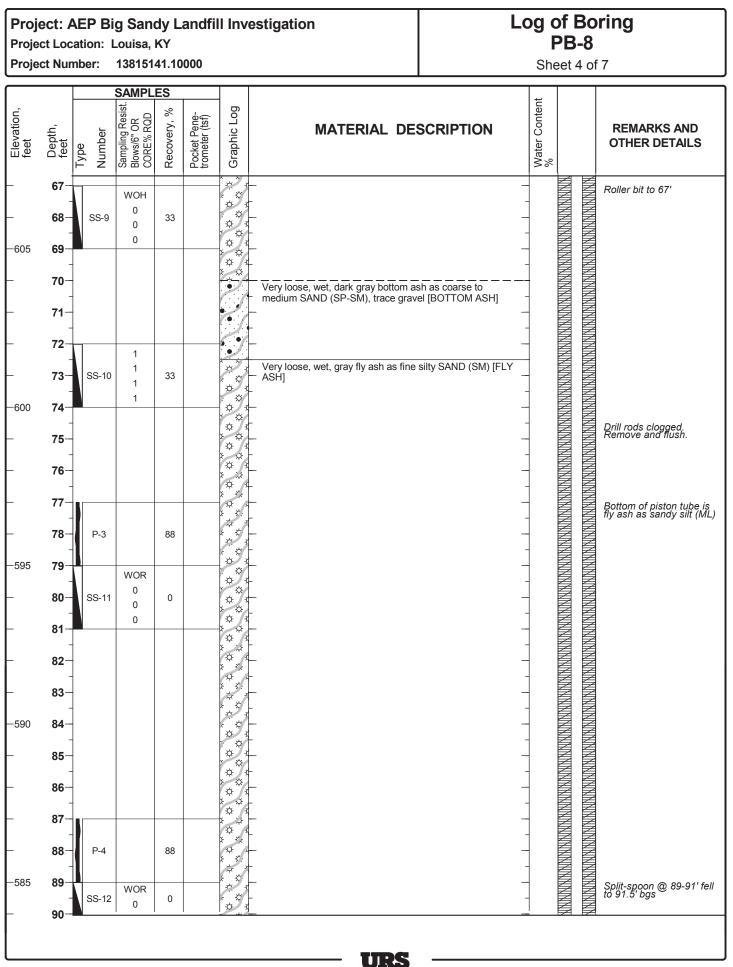
Project Location: Louisa, KY

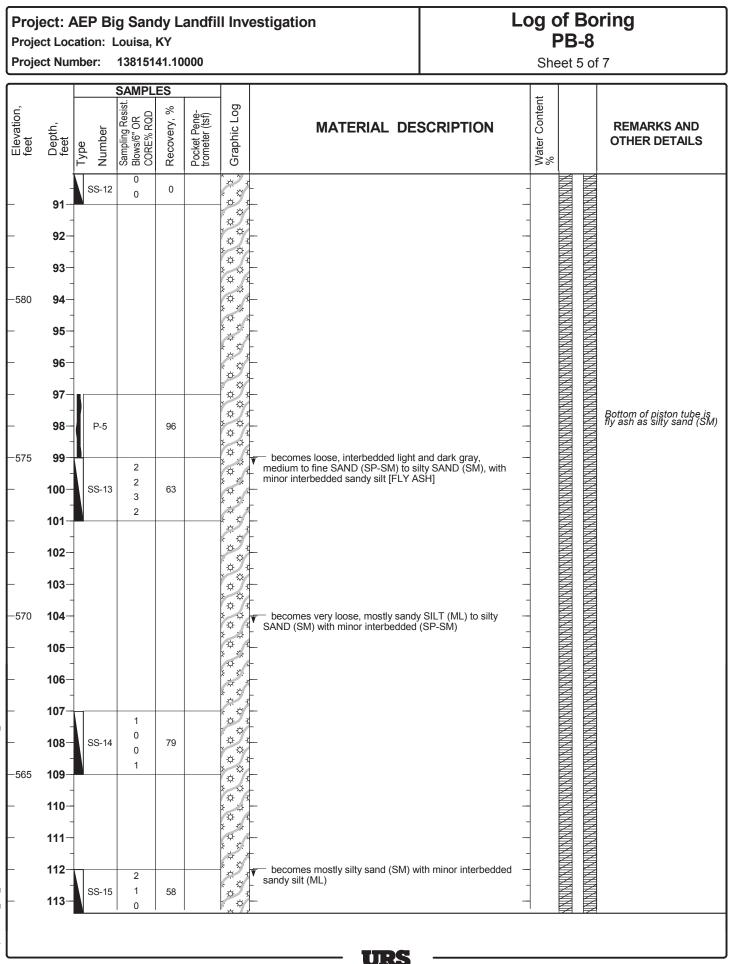

Project Number: 13815141.10000

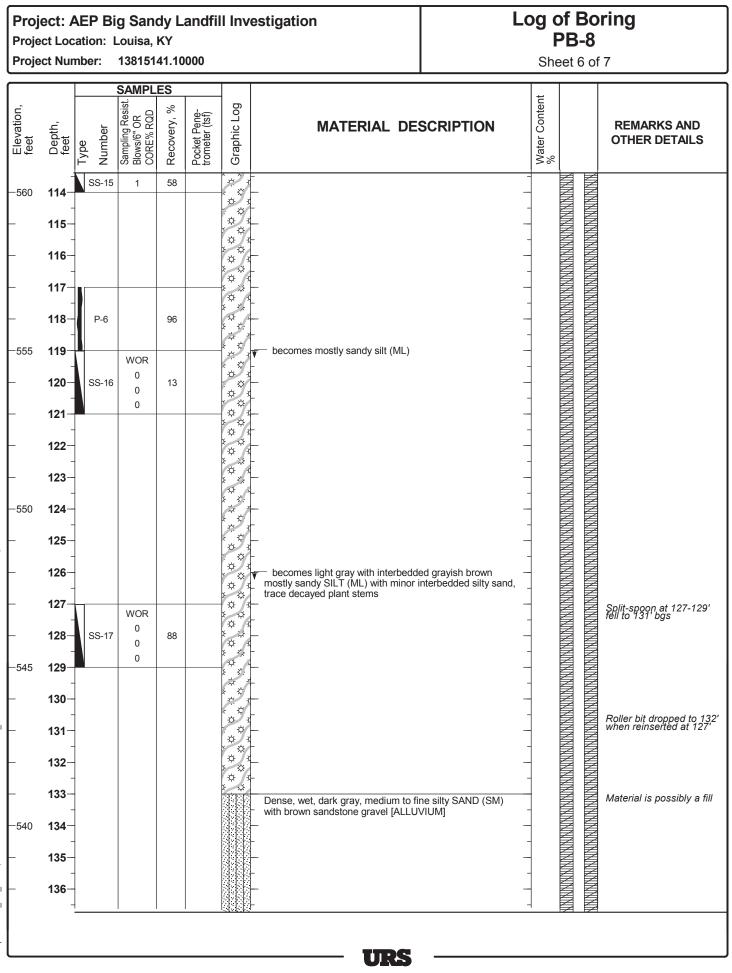
Log of Boring PB-8

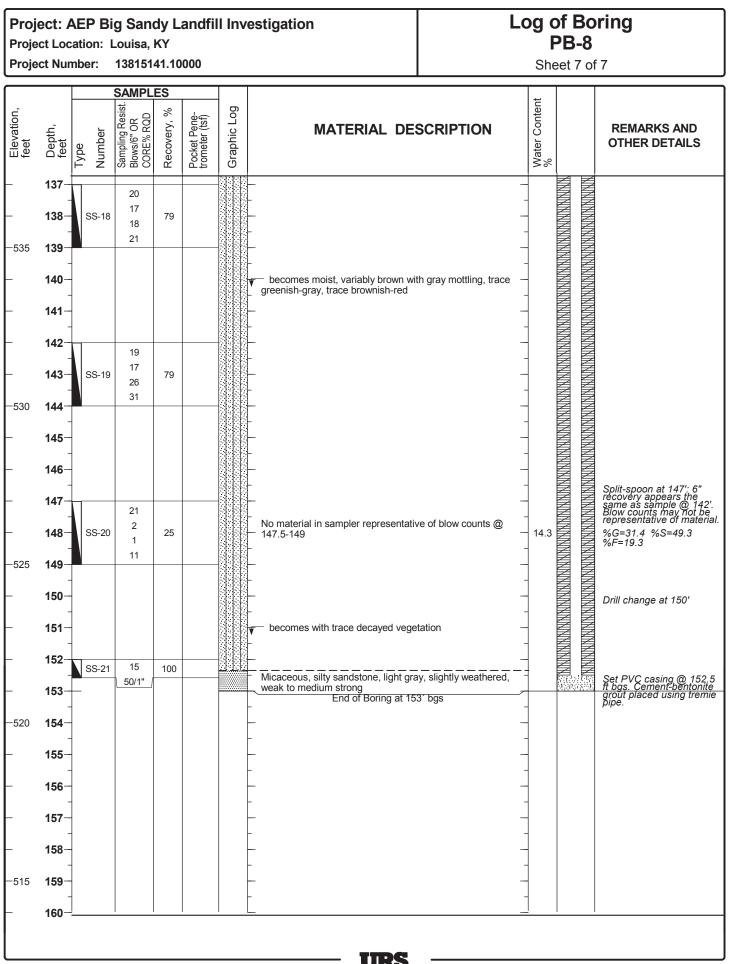

Sheet 1 of 7

Date(s) Drilled	4/20/12,4/23/12-4/25/12	Logged By	T. George	Checked By	
Drilling Method	HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricore mud-rotary	Total Depth of Borehole	153.0 ft
Drill Rig Type	CME 55 Rubber Track ATV, Remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	674.0 ft above msl
Borehole	Backfill 2" SCH 40 PVC riser grouted in place	Sampling Method(s)	Piston/Split-spoon	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 253,100.3 E 2,105,679.0	Groundwater Level(s)	3.1 ft ATD		


		SAMPLES								
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content		REMARKS AND OTHER DETAILS – 3.0' stickup
F	0						Bottom ash splitter dike [BOTTOM ASH]			- Grout
-	1-						- 			
F	2-	-					_	_		
-	- 3-	-					- <u> </u>	_ 	KIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKI	Drilled to 13' bgs without sampling
-670	4-	-				• •	_	_		
	-	-				-	-	-		
F	5						_			
F	6-	-						_		
	-	-					-	-		
╞	7-	-					_	-		
L	- 8						-	_		
	- -	-					-	_		
-665	9-	-						_		
	-	-					-	-		
F	10-					•	_	_		
L	11-						-	_		
	-	-					-	-		
╞	12-	-					_	-	NNNNNNNN NNNNNNNNNN	
L	12_						-			
	13		1				Very loose, wet, dark gray, bottom ash as coarse to fine SAND (SP-SM) trace gravel [BOTTOM ASH]	_		Split-spoon @ 13' driven with 1 blow to 16'
-660	14-	SS-1	0	100			- (_		Bottom ash splitter dike
	-		0				-	-	WWWWW WWWWW	
F	15-						-	_		
F	16-	-					_	_		4
	-	-					-	-		
F	17-	-				•	_	-		
L	- 18						-			
Γ.	10		1				-			~6" heave noted
-655	19-	SS-2	1	100			-	_		
- - -665 - - - - - 660 - - - - - - - - - 55	20-		0							
							URS			


Report: GEO_CR_WELL; FIIe KAPROJECTS/A/AEP/13815141_BSLF/DOCS/LOGS/AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:45 AM

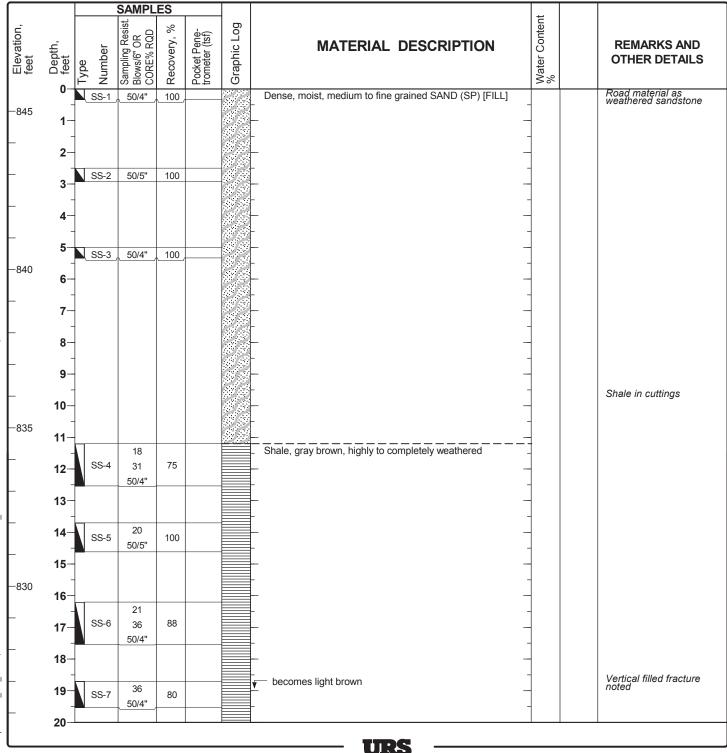

Report: GEO_CR_WELL; FIIe KAPROJECTS/A/AEP/13815141_BSLF/DOCS/LOGS/AEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:45 AM


Report: GEO_CR_WELL; FIIe KAPROJECTSIAIAEP113815141_BSLFIDOCSILOGSIAEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:46 AM

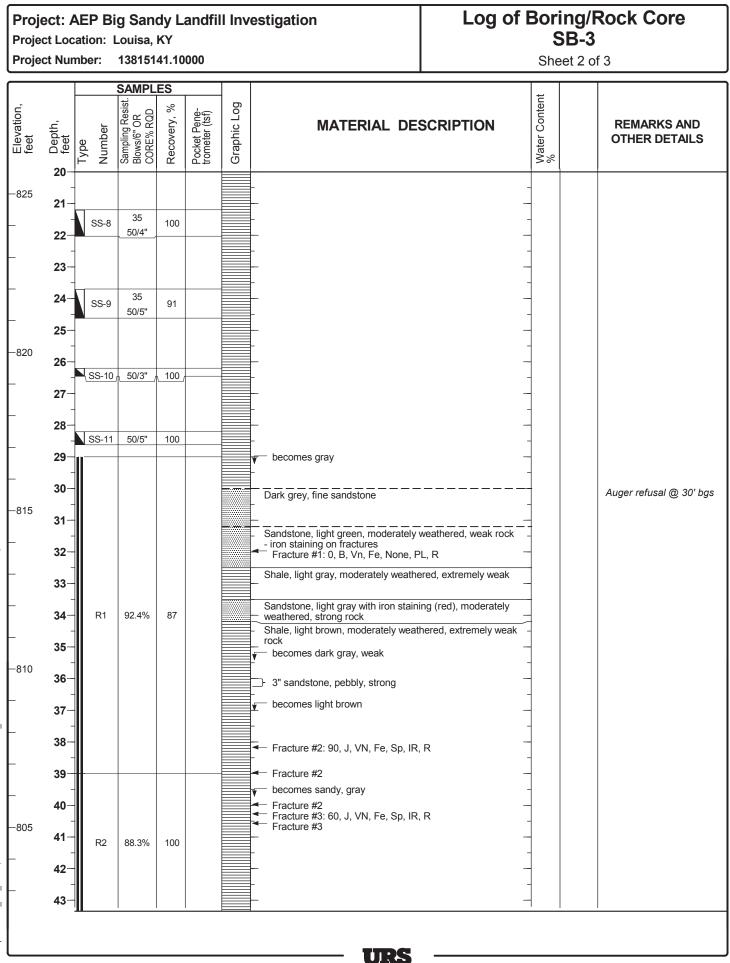
Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:46 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:46 AM

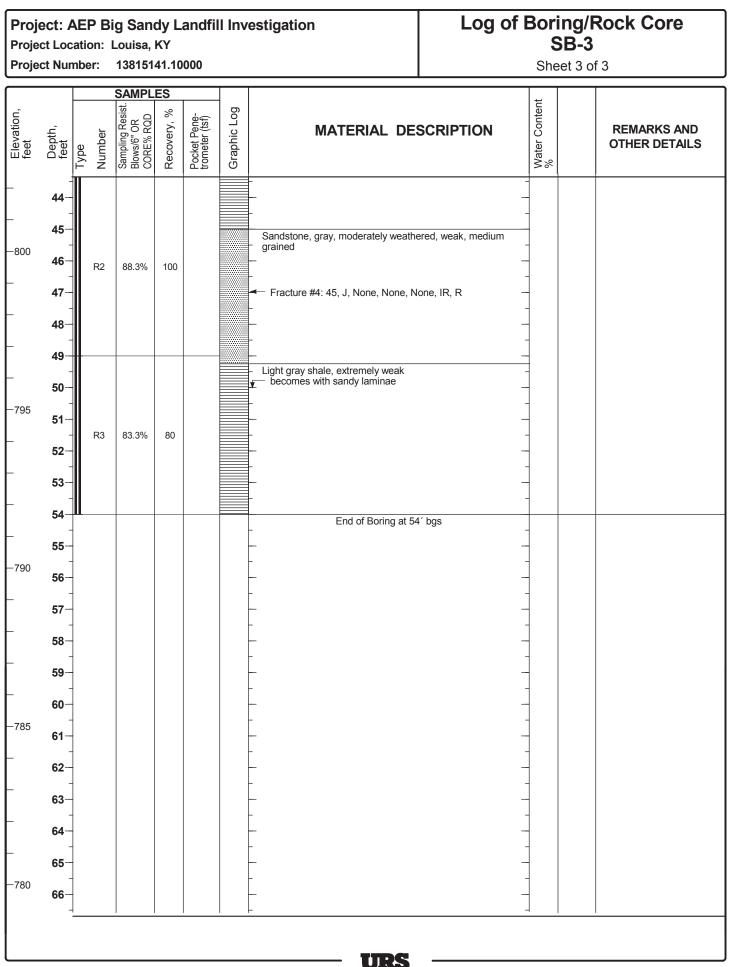
Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:46 AM


Project Location: Louisa, KY

Project Number: 13815141.10000


Log of Boring/Rock Core SB-3

Sheet 1 of 3

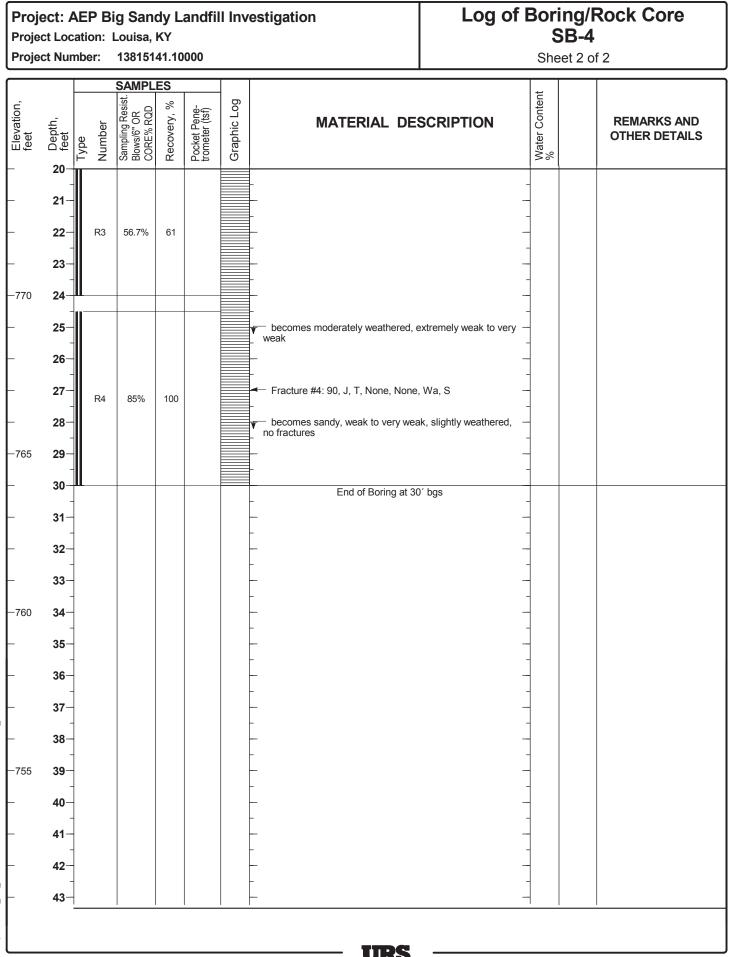

Date(s) 4/11/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA/NX Core	Drill Bit Size/Type	3 1/4" HSA/2" Core	Total Depth of Borehole	54.0 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	845.7 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 253,542.1 E 2,102,379.0	Groundwater Level(s)	Not encountered		

Report: GEO_CR_WELL; FIIe K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:49 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBOR\NGS-6-10-13.GPJ; 6/10/2013 11:23:49 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:49 AM

Project Location: Louisa, KY


Project Number: 13815141.10000

Log of Boring/Rock Core SB-4

Sheet 1 of 2

Date(s) 4/10/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA	Drill Bit Size/Type	3 1/4" HSA/NX Core	Total Depth of Borehole	30.0 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	794.0 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,829.7 E 2,101,718.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES					
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
	- 1- 2-	SS-1	3 4 5 9	21			Stiff, moist, light brown with gray mottling lean CLAY (CL) [RESIDUUM]	- 23.8	
_ _790	3- - 4-	SS-2	4 6 10 22	67			<pre>becomes very stiff with no mottling</pre>	20.2	PL=23 LL=45 PI=22 %F=96.5
_	5 - 6	SS-3	5 15 26 50/1"	89			 becomes with gray mottling becomes buff to tan, sandy Sandstone, light brown to tan, moderately weathered, 	12.6	
-	7 - 8 - 9 -	R1	84.7%	100			strong, mica on split surfaces	-	
785 -780	10- 11- 12- 	R2	50%	60			 Fracture #2: 90, J, VN, Fe, Fi becomes orange-stained 1" sandstone, strong becomes with iron staining, orange to gray, extremely weak Sandstone, dark brown, strong, quartz crystal lined, iron stained Fracture #1 Fracture #3: 90, B, VN, Fe, Pa, Ir 		
- - - - - 775	15	R3	56.7%	61			 becomes fine-grained, iron staining Fracture #1 Fracture #3 Fracture #3 Shale, gray to black, extremely weak 		
	20						URS		

Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:51 AM

Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring/Rock Core SB-6

Sheet 1 of 2

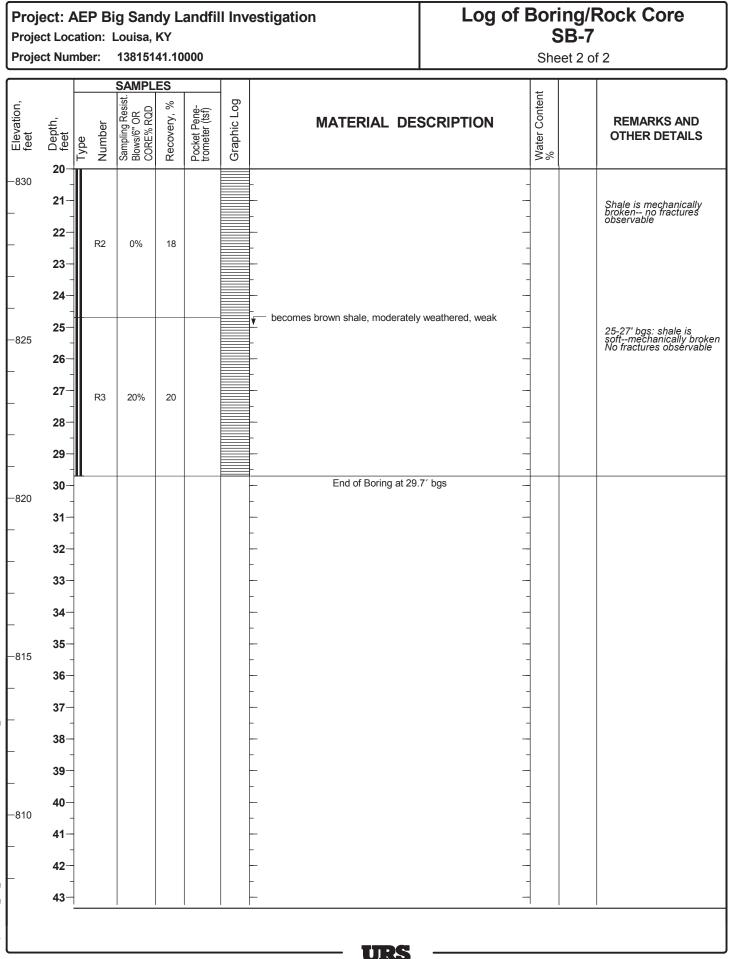
Date(s) 4/12/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA/NX Core	Drill Bit Size/Type	3 1/4" HSA/2" Core	Total Depth of Borehole	39.3 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	768.8 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,202.5 E 2,102,399.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES				L.	
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
1	•		4				1" dark brown topsoil		
╞	1-	SS-1	3 7	38	2.25		Stiff, moist, light brown with trace dark brown mottling, fat CLAY (CH) [RESIDUUM]		
\vdash	2-		6						
1	<u> </u>						_		
F	3-		2				becomes stiff to very stiff, with brown mottles		
1	• -	SS-2	3	58	2.25 to		-	26.3	PL=23 LL=62 PI=37
-765	4-	001	5		3.25		→ 2" cemented shale with red/orange iron stains		%F=89.6
	-		11			<i>\///</i>			
F	5					<i>\///</i>	▼ becomes hard -	4	
1	-		3				-	4	
F	6-	SS-3	5	83	>4.5		becomes black	29.5	PL=30 LL=59 PI=29
1	-		9				-	-	
F	7-		22			-////		-	
1	-					-////	-	-	
F	8-		19					-	
	-	SS-4	25	96	>4.5			-	
-760	9-		21 38				becomes with coal	-	
	-					-////	-	-	
	10-		40			-////		-	
1	-		12 21				5 1/2" coal seam	-	
Г	11-	SS-5	27	100	2.5		becomes stiff, black and gray	-	
L	-		50/3"				→ 2 1/2" coal seam becomes with black coal	-	
	12-							-	
	-		30				-	-	
1	13-	SS-6	50/5"	100				1	
-755	-					V///	 → 3" shale, light gray, very weathered → 3" coal seam 	1	
	14–						Shale, gray with some black partings	1	
\vdash	4 -							1	
1	15-	SS-7	49	100				1	
\vdash	16						-		
1	16-								
\vdash	- 17								
1							_		Back of spoon wet Auger refusal @ 17.2' bg
\vdash	18-						🚛 becomes light gray, moderately weathered, weak	1	
							-	4	
-750	19	R1	70.7%	97			 Fracture #1: 60, V, N, CI, Fi, Wa, R 	4	
	-						-	4	
	20-								
1									
<u> </u>							URS		

Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:52 AM

Project Location: Louisa, KY

Project Number: 13815141.10000


Log of Boring/Rock Core SB-7

Sheet 1 of 2

Date(s) 4/10/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA/Core	Drill Bit Size/Type	3 1/4" HSA/3" Core	Total Depth of Borehole	29.7 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	850.4 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 252,280.4 E 2,103,342.0	Groundwater Level(s)	Not encountered		

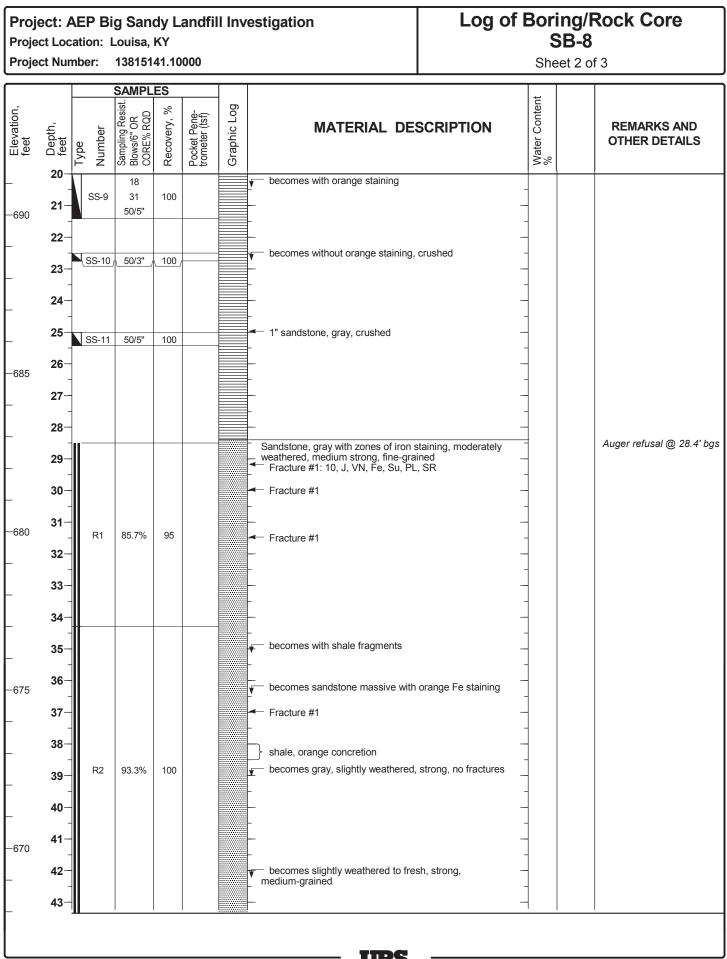
			SAMPL	ES					
Elevation, feet		Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
-850	0-		4		1		Medium stiff, moist, brown, lean CLAY (CL) (topsoil)		
-	1- - 2-	SS-1	3 3 8	38	2.0		becomes stiff, trace brown mottles [RESIDUUM]	-	
-	2 3-	SS-2	3 5 8	42	3.5 to 4.5		- ▼	_	
-	4-		15					-	
-845	5 - 6	SS-3	10 22 40	86	3.5 >4.0		→ becomes dark red	10.4	PL=19 LL=39 PI=20 %F=71.7
	7-						↓ becomes with red mottles		
	8 9 10 11	R1	15%	29			Shale, sandy, light brown, moderately weathered, weak	-	
	12 - 13 - 14 -							-	
-835	15 - 16 - 17	R2	0%	18			weak with iron-staining	-	
	- 18- - 19- - -	TY2	0.70	10			8" sandstone fragments, brown with iron staining, strong,but fractured vertically and horizontal	-	
	20						URS		

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:53 AM

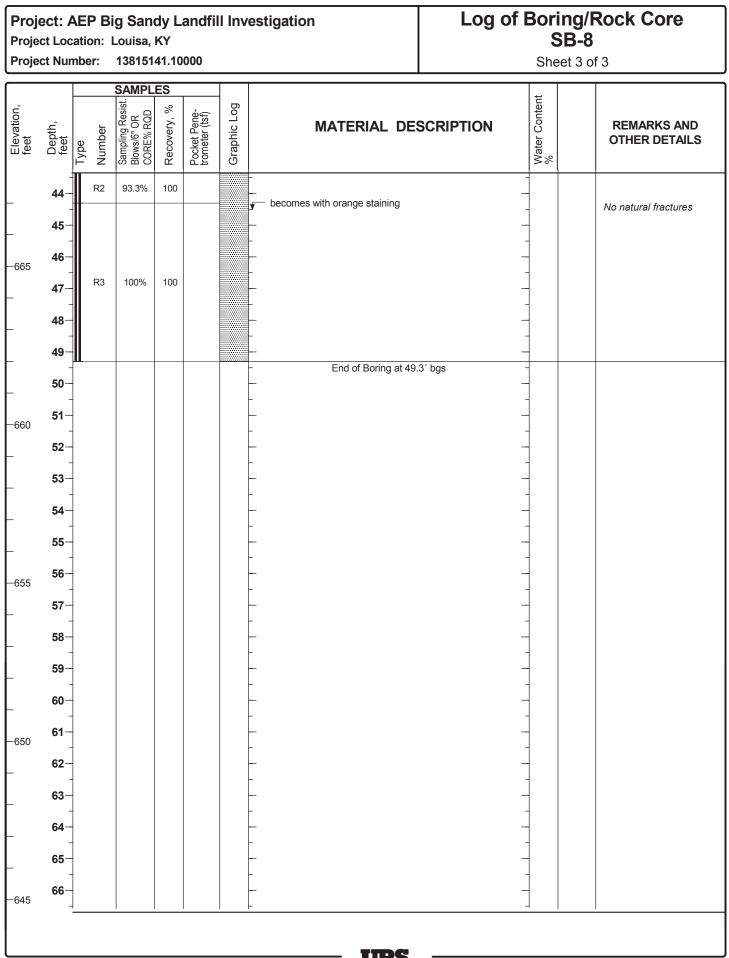
Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:53 AM

Project Location: Louisa, KY

Project Number: 13815141.10000


Log of Boring/Rock Core SB-8

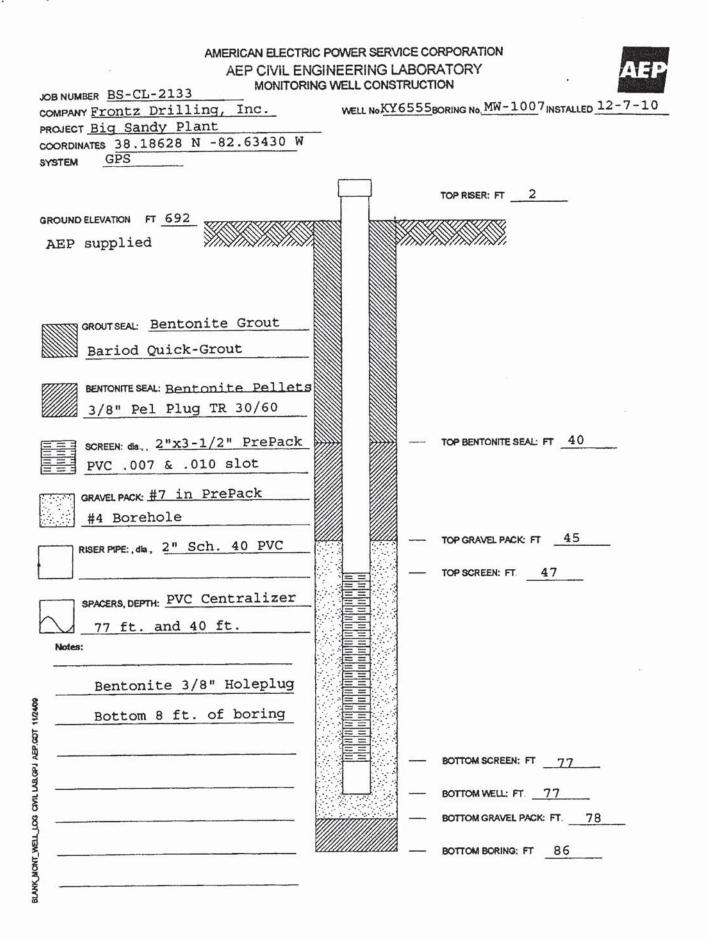
Sheet 1 of 3


Date(s) 4/12/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA	Drill Bit Size/Type	3 1/4" HSA/NX Core	Total Depth of Borehole	49.3 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	711.3 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,071.0 E 2,103,738.0	Groundwater Level(s)	Not encountered		

\square			SAMPL	ES					
Elevation, feet		Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
_ _710	0 - 1 -	SS-1	4 3 5 15	58	3.25 to 3.5		 3" Bottom ash (road fill) Very stiff, moist, light yellow/brown, lean CLAY (CL) [RESIDUUM] Shale, light yellow brown, with orange red iron oxidation staining, completely to moderately weathered 		
-	2- - 3-	SS-2	9	13			- · · · · · · · · · · · · · · · · · · ·	-	
_	4— 5—		8 13 9				- · · ·	-	
_ _705	- 6 - 7	SS-3	9 19 31 34	96			- ·	-	
_	8 9	SS-4	11 21 32	58				-	
_	10-		50 10				-	-	
-700	11- - 12-	SS-5	18 47 	76			- · · · · · · · · · · · · · · · · · · ·	-	
_	13-	SS-6	21 49 50/3"	80			 [→] 2" crushed chert nodules becomes gray with red mottles to light gray 	-	
	14- - 15-		15				→ → becomes gray with some red mottles		
-695	16- - 17-	SS-7	18 	80			· ·	-	
-	18-	SS-8	12 50/5"	100			↓ becomes with some orange mottles	-	
-	19- - 20-						URS	-	

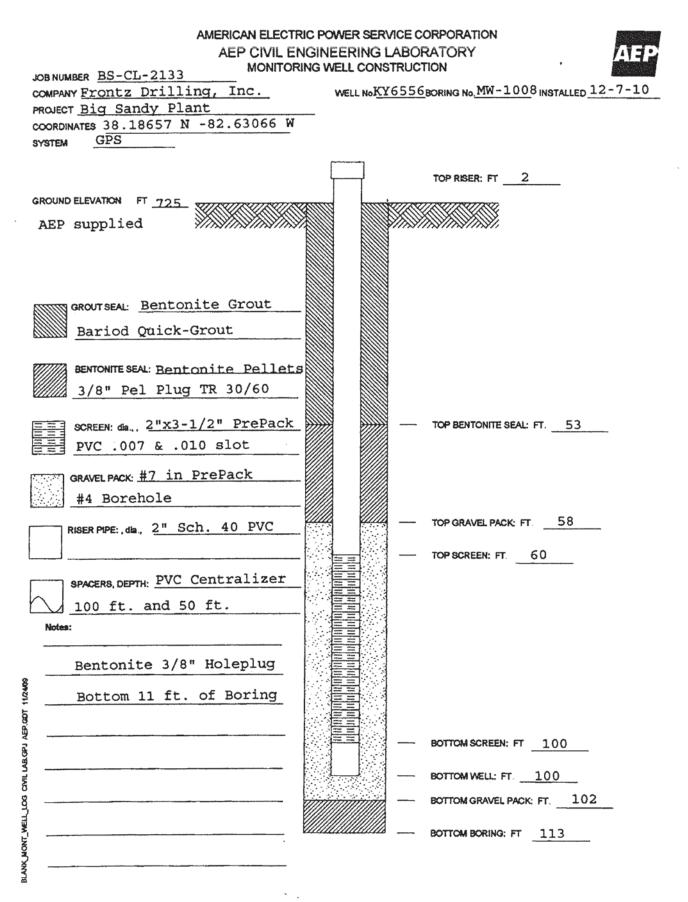
Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:54 AM

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:54 AM



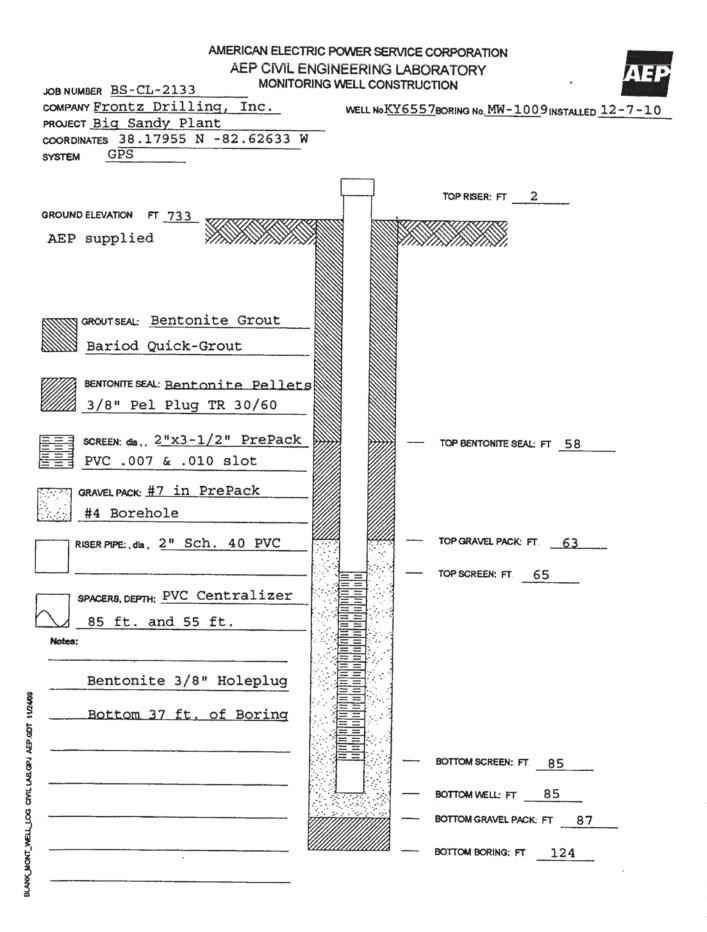
Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:54 AM

2010 INITIAL BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

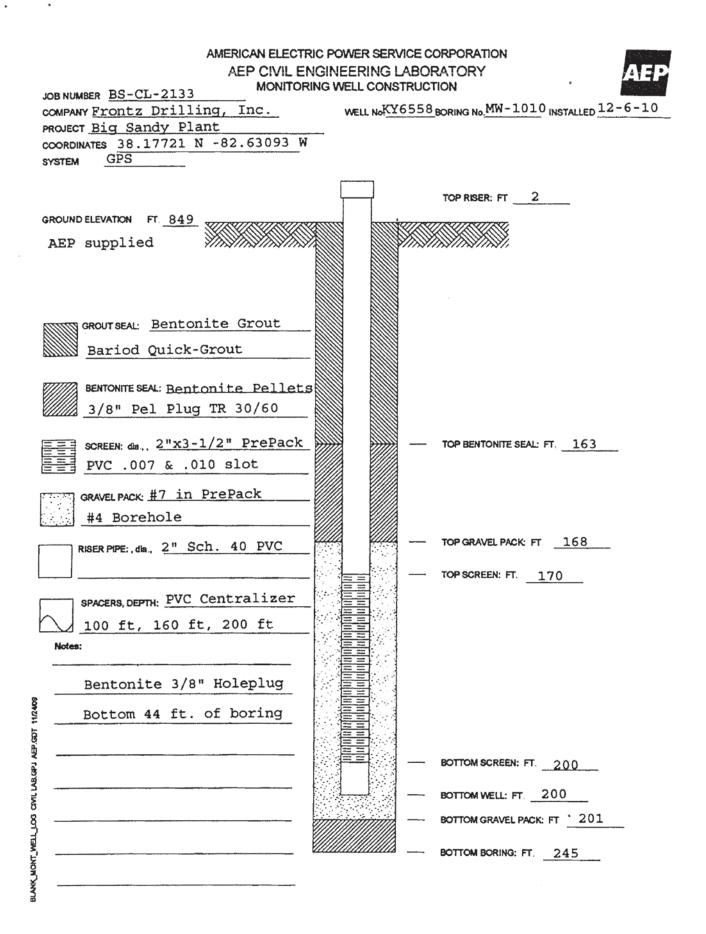

							Frontz Drilling, Inc 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	e. Soil Boring Log Boring No: B-1007 Page 1 of 2
	11/19/2010			-	Pr	roj. No.	E10028 Project:	Big Sandy
Client:	Company:	Fro	ntz Dri	lling,	Inc		Driller:	
Logged Surface	By: Larry Elevation:	Reitz 692	2'				Top of Ca	Aethod: <u>Air Rotary</u> nsing Elevation:
Total De Commei	epth: <u>90'</u> nts:				Ľ	Diamete	Sampling	Method:
Depth	REC /	Sa	mple #		т.;;	hology		Description/Soil Classification
(feet)	RQD	54	Inpie #				(Color, Tex	ture, Moisture, Structures)
				Ц	_			
10.0 -								
10.0				Π			Yellow brown Sandstone	
1				Π				
20.0			SI	H				
-				H	-			
30.0 -				$\left \right $	-			
-			S2	H	-			
40.0 -			S3		-			
_			S4	Ц				
50.0 -			S5				Yellow brown fine to coarse sandstone, minor limonite	(added water when groundwater encountered at approximatley 49' bg
50.0 -			56	Π			color to light gray	
-			57	H	1		alor to utilou broug	
60.0 -			1	H			color to yellow brown	
-			88	H	-	A STATE	aalay ta light ayay	
70.0 -			S9	\vdash	-		color to light gray	
-			S10	Н	-	1111110		
80.0 -			S11	\square	_			
			S12	Ц			Gray Shale and Coal (black sheen in return water)	
90.0 -								
90.0				Π				
1				Π				
100.0-				H	1			
-				H	-			
110.0-				H	_	-		
1				Π	1			
120.0-				H	-	\vdash		
1				Π	1			
130.0-				H	-	-		
				Ц				
140.0-				H	-			
				Ц				
150.0-			1					

FS	WOOST	ER, OH		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1007 Page 2 of 2
ate: <u>11/23/2010</u> lient: AEP		Proj. No.:	E10028	Project: Big Sandy Location: Louiza, Ky	
rilling Company: ogged By: Larry	Frontz Drillin	g, Inc.		Driller: Drilling Method: Sonic/F	IO core
urface Elevation:	Ketz		at at a state to a	Top of Casing Elevation:	
otal Depth: 200'		_ Diamete	r: <u>6"-15"</u>	Sampling Method:	
epth	c			Descripti	on/Soil Classification
feet)	Sample #	Lithology		(Color, Texture, Moisture, St	ructures)
160.0-			Medium gray mediu	m to very coarse Sandstone	
-		$H \vdash$			
70.0-		\vdash			
80.0-		$H \vdash$			
-		\vdash			
90.0-					
-		+ +			
200.0-		LL			
1					
10.0-		HL			
1					
20.0-		H −			
24 MAR					
230.0-					
-		$H \vdash$			
1 1					
-					
1		ΠΓ			
-		$H \vdash$			
		HF			
-		\vdash			
1					
-		$H \vdash$			
1					
	- +				
-					

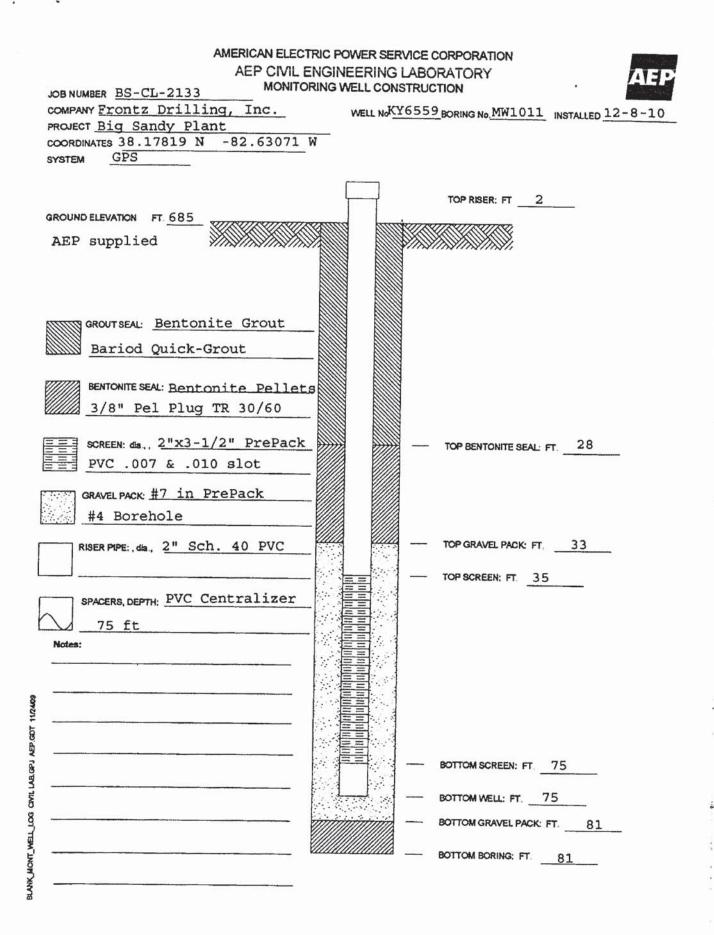
F		TER, O		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1008 Page 1 of 2						
te: <u>11/17/20</u> ient: <u>AEP</u> illing Compa- gged By: <u>L</u> rface Elevatio	ny: <u>Frontz Drilli</u> arry Reitz n:			Project: Big Sandy Location: Driller: Drilling Method: <u>Air Ro</u> Top of Casing Elevation:	tary						
otal Depth: <u>1</u> omments:		Diamete	r:	Sampling Method:	6 - 15 - 11 - 01 17 14						
epth REC eet) RQD		Lithology	(Color, Texture, Moisture, Structures)								
	S1		Yellow brown silty	Clay							
]	S2		color to yellow gray	y							
0.0 -	s3		1								
1	54		color to yellow bro	wn Sandstone							
0.0	V 85		Groundwater encou	intered at approximately 25' bgs							
1	56		1								
0.0 -	\$7		1								
1	58		Medium gray Shale								
10.0 -	59										
-	S10		1								
0.0 _			Same as above with	fine sand							
-	S11										
0.0 -	S12		Medium gray Sand	stone							
-	\$13										
0.0 -	\$14										
-	S15										
0.0 -	S16										
-	S17										
0.0 -	S18										
-	\$19		color to light gray S	andstone							
00.0-	S20		Medium gray Shale								
-	S21	╈		sheen in return water)							
10.0-	S22		con (one)								
-	S23										
20.0-											
-		+ +									
0.0-											
1											
10.0-		$H \vdash$									
-											
50.0-											


F	WOOS	TER, OHIO	Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1008 Page 2 of 2
Date: <u>11/23/20</u> Client: <u>AEP</u> Drilling Compar Logged By: <u>Li</u> Surface Elevatio Fotal Depth: <u>20</u> Comments:	ny: Frontz Drilling arry Retz	Proj. No.: <u>E1</u> g, Inc. Diameter: <u>(</u>	Location: Louiza, Ky Driller: Drilling Method: <u>Sonic</u> Top of Casing Elevation: "Sampling Method:	
Depth feet)	Sample #	Lithology	(Color, Texture, Moisture,	ntion/Soil Classification Structures)
160.0-		Mee	gray medium to very coarse Sandstone	
70.0 -				
80.0-				
190.0-				
200.0 -				
210.0-				
220.0-				
230.0-				
-				
-				
-				
-				

đ.


4	F	XQ,	TER, OF		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1009 Page 1 of 2
Client: Drilling Logged Surface	Company: By: Larry Elevation: epth: 124'	Frontz Drillin Reitz	Proj. No.: g, Inc. Diameter		Project: Big Sandy Location: Driler: Drilling Method: Air Rotary Top of Casing Elevation: Sampling Method:	
Depth	REC /	Sample #	Lithology			/Soil Classification
(feet)	RQD				(Color, Texture, Moisture, Struc	tures)
		S1		Yellow brown Sandsto	ne	
- 20.0		S2				
		\$3				
- 30.0 -		S4				
- 40.0 -		85		0 11 1		
		S6		Gray Shale Yellow brown Sandsto	ne	
- 50.0 -		\$7 \$8		Gray Shale		
 - 60.0 -		89				
		\$10				
- 70.0 -		▼ S11			approximately 68' bgs; (added water, black sheen in retu	im)
		\$12 \$13		Possible coal		
- 80.0 -		\$13		Light gray Sandstone		
90.0		S15				
		S16		Color grades to mediu	m gray	
- 100.0-		\$17	$H \equiv -$	Possible coal Medium gray Shale		
- 1		S18 S19				
- 110.0-						
		S20				
- 120.0 -		S21 S22				
			+ +			
- 130.0-			- -			
			+ +			
- 140.0 -			-			
_ 150.0_						

Sample # Lithology Description/Soil Classification et) Image: Color, Texture, Moisture, Structures) Medium gray medium to very coarse Sandstone			STER, O		2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Boring No: B-1009 Page 2 of 2
Iling Company: Frontz Drilling, Inc. Driller: iged By: Larry Retz Drilling Method: Sonic/HQ core face Elevation: Top of Casing Elevation: Sampling Method: Sampling Method: al Depth: 200' Diameter: 6"-15" Sampling Method: Sampling Method: th Sample # Lithology Description/Soil Classification th Sample # Lithology Medium gray medium to very coarse Sandstone	ent: AEP			E10028	Project: Big Sandy Location: Louiza, Ky	
face Elevation:	lling Company	: Frontz Drillin rv Retz	ng, Inc.		Driller:	core
Imments: Description/Soil Classification Other Sample # Lithology (Color, Texture, Moisture, Structures)	rface Elevation	:	Diamete	c 6"-15"	Top of Casing Elevation:	
et) Sample # Lithology (Color, Texture, Moisture, Structures)	mments:		Diamete	0-15	Samping Method.	
Color, Fextore, Moisture, Structures)	pth	Complete A	T 141 - 1		Description/	Soil Classification
	et)	Sample #	_		(Color, Texture, Moisture, Struc	ctures)
				Medium gray mediu	m to very coarse Sandstone	
	1		ΠΓ			
	0.0 -		+			
			╋ ┝			
	-		\downarrow			
	1					
	-		++			
	1					
	-		+ +			
	-		<u>+</u> -			
	1					
	-		+			
	-		\downarrow \vdash			
	1		\Box			
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	-		$+$ \vdash			
	-		+			
	-		\downarrow			
	1		\Box			
	-		+- -			
	1		╂┤ ┝-			
	-		\downarrow			
	1		<u>†</u> -			
	-		$\downarrow \downarrow$			
	1					
	-		$+$ \vdash			
	1		T1			
	-	+ -	╂┤┝			


ſ	K	And the second se		5	Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1010 Page 1 of 2
Date:			Proj. No.: E	and the second	Project: Big Sandy	
Client: Al	EP	Frontz Drillin	w Inc		Location: Driller:	
Logged B	y: Larry Re				Drilling Method: Air Rot	агу
Surface E Total Dep			Diameter:		Top of Casing Elevation: Sampling Method:	
Comment	s:					
Depth	REC /	Sample #	Lithology	A	Descripti	ion/Soil Classification
(feet)	RQD				(Color, Texture, Moisture, St	ructures)
			And the second s			
- 10.0 -		I SI	R	ed gray Sandstone		
• +	1	S2 -				
- 20.0		53 -				
		S4 -	-			
- 30.0 -						
		\$5	M	ledium gray Shale		
		56	C	oal		
- 40.0 -		57	М	fedium gray Shale		
- 50.0 -		S8				
		59				
- 60.0 -		S10				
		S11				
70.0		\$12				
- 70.0 -		S13				
- 1		S14				
- 80.0 -				oal with carbonaceous	Shale	
		S15	┥┫┓	fedium gray Shale		
- 90.0 -		S16	+ =- "	leonum gray sinate		
		S17				
- 100.0 -		S18				
		S19	Si	ame as above with som	e sand	
		\$20				
- 110.0-						
		S21	-			
		S22				
- 120.0-		S23				
		S24				
- 130.0-						
		S25				
		\$26				
- 140.0-				fedium gray Shale		
		S27		second Broy Sume		
		S28				
- 150.0-		020				

ſ	WOOST			Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1010 Page 2 of 2
ite: ient: <u>AEP</u> filling Compa ogged By: <u>1</u>	Larry Retz	Proj. No. 1g, Inc.	E10028	Project: Big Sandy Location: Louiza, Ky Dritter: Dritting Method: Air Rot	tary
orface Elevati otal Depth: <u>2</u> omments:	on:	_ Diamete	r:	Top of Casing Elevation: Sampling Method:	2007 - 140 -
epth eet)	Sample #	Lithology		Descripti (Color, Texture, Moisture, St	ion/Soil Classification tructures)
60.0-	\$29 \$30		-		
-	\$31 \$32		Gray Sandstone		
70.0-	S33		Gray Shale		
80.0-	\$34		1		
_	\$35 \$36				
90.0-	S37		Same as above with	some sand	
-	S38		Same as above with	some sand	
00.0 -					
10.0-					
-					
-		$H \vdash$			
-		╉┥╞			
]					
-		╞┥╞╴			
-		╞┥╞			
-					
]					
-		\downarrow			
-		$H \vdash$			
-		┨┝			
]					
-		\parallel			
-		$H \vdash$			

2	F		TER, O		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: 1011 Page 1 of 2					
Client: Drillin; Logged	g Company: 1 By: Larry	Frontz Drillin; Reitz	Proj. No.: g, Inc.	<u>E10028</u>	Project: Big Sandy Location: Ash pond (south) Driller: Drilling Method: Sonic/HQ	e core					
	e Elevation: Depth: <u>80'</u> ents:	_685'	Diameter	1 <u></u>	Top of Casing Elevation:						
Depth (feet)	REC / RQD	Well Construction	Lithology		Description/Soil Cl (Color, Texture, Moisture, Stru						
				and the second se	and red Clay own and light gray weathered Shale monite stains and yellow brown very fine sand, silty						
- 10.0	r				and, some yellow brown clay ty Clay; medium gray shale with limonite beds						
- 15.0 - - 20.0 -	0%			Dark gray green Shale Dark gray green wether							
 - 25.0 -	8° 50%2										
- 30.0 - - 35.0 -	8.8 51%			Grades to medium gray	r medium to coarse Sandstone						
- 40.0 - 	8.4'			Same as above with lin	nonite staining						
 - 50.0 -											
- 55.0 -	10' 71%			Medium gray line to co	arse Sandstone; fine interbedded medium gray shale i	and medium to coarse sandstone					
- 60.0 -	9.9'			Meduim gray coarse to Carbonaceous lens at 6							
- 65.0 - - 70.0 -	53%			Medium gray medium (to coarse Sandstone, grades to very coarse Sandstone						
	9.7'			Dark gray Shale lens							

F	WOOST			Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: 1011 Page 2 of 2
te: <u>11/23/2010</u> ent: <u>AEP</u> illing Company:	Frontz Drillin	Proj. No.: g, Inc.	E10028	Project: Big Sandy Location: Louiza, Ky Driller:	
gged By: Larr face Elevation: al Depth: 200' mments:	/ Retz	Diameter	: 6"-15"	Drilling Method: <u>Sonic/</u> Top of Casing Elevation: Sampling Method:	HQ core
oth	Well	Lithology		Description/Soil	
- 9.7 47%	Construction	Lizta	Medium gray me	(Color, Texture, Moisture, S edium to very coarse Sandstone	Structures)
				κ	
-					

2010 REVISED BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

JOB	NUM	BER						201				
		Υ								ORING NO MW-1007 DATE 2/11/15 SHEET 1 OF	2	
PRO	JECI	BIG SA	NDY						BC	ORING START 12/7/10 BORING FINISH 12/7/10		
C00	RDIN	ATES							PII	IEZOMETER TYPE WELL TYPE		
GRO	UND	ELEVATION	692.0	SYS	STEM _				нс	GT. RISER ABOVE GROUND DIA 5.78		
WAT	FRI	EVEL 🔽		Ţ		V			DE	EPTH TO TOP OF WELL SCREEN 47 BOTTOM 77		
TIME									W	/ELL DEVELOPMENT Yes BACKFILL Grout		
DAT									FI	IELD PARTY Frontz Drilling RIG		
DAI										_		
шК	ш	SAMPLE	STAN	IDARD RATION TANCE VS / 6"	. _⊥ ≿R	QD C	DEPTH IN FEET	<u>∪</u>	S			
SAMPLE NUMBER	SAMPLE	DEPTH IN FEET	PENET				IN	PH	SCS	SOIL / ROCK IDENTIFICATION → DRILLEF NOTES		
SAI	SAI			VS / 6"		%	FEET	GR/ L	\supset	IDENTIFICATION > NOTES	3	
		FROM TO	O BLOV	VS / 6"						BROWN SANDSTONE		
							-			BROWN SANDSTONE		
							-					
							5 -					
							• -					
							-					
							-					
							10 -					
							-					
							-					
							15 -					
							-					
							-					
							20 -					
							-					
					-							
							25 -					
							- 20					
							-					
							30 -					
							-					
							-					
							35 –					
							-					
							-					
							40 -					
							-					
							-					
							45					
							-5					
							-					
2/11/15							-					
		TYPE OF	- CASING	USED	I					Continued Next Page		
AEP.GDT		NQ-2 ROCK						FTFF		PE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE		
		6" x 3.25 HS	A						TTED SCREEN, G = GEONOR, P = PNEUMATIC			
AP.G		<u>9" x 6.25 HS</u> HW CASING		R	4"				PE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON			
BS FAP.GPJ		NW CASING	3		3"		VELL I					
X HE	SW CASING 6" X AIR HAMMER 8"					_				RECORDER		
										·		

JOB NUMBER

 COMPANY
 BORING NO MW-1007
 DATE
 2/11/15
 SHEET
 2
 OF
 2

 PROJECT
 BIG SANDY
 BORING START
 12/7/10
 BORING FINISH
 12/7/10

SAMPLE NUMBER	SAMPLE	DEF	IPLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
							55 -					
							60 -					
							65 - - 70 -			GRAY SANDSTONE		
							70					
							- - 80 -			GRAY SHALE & COAL		
							85 -					
11/15												
AEP BS FAP.GPJ AEP.GD1 2/11/15												

JOB	NUN	18ER				LO	G OF BORING			
CON	IPAN	IY					BORING NO MW-1008 DATE 2/11/15 SHEET 1 OF 2			
			DY				BORING START 12/7/10 BORING FINISH 12/7/10			
			725.0 SY							
					Ľ		DEPTH TO TOP OF WELL SCREEN 60 BOTTOM 100			
TIME			<u> </u>		<u> </u>		WELL DEVELOPMENT Yes BACKFILL Grout			
DAT							FIELD PARTY Frontz Drilling RIG			
DAT	E						_			
SAMPLE NUMBER	SAMPLE	SAMPLE DEPTH IN FEET FROM TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"		IN	GRAPHIC LOG	SOIL / ROCK J DRILLER'S DRILLER'S DRILLER'S NOTES			
					- 5 -					
					- 10 -		BROWN SANDSTONE			
					- 15 -					
					- 20 -					
					- 25 -					
					- 30 -					
					- 35 -		GRAY SHALE			
					- 40 -					
/15										
2/11										
105.		TYPE OF C	ASING USED				Continued Next Page			
BS FAP.GPJ AEP.GDT 2/11/15		NQ-2 ROCK C 6" x 3.25 HSA	ORE		PIEZOM	IETER	TER TYPE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE			
g.		9" x 6.25 HSA				OTTED SCREEN, $G = GEONOR$, $P = PNEUMATIC$				
		HW CASING A NW CASING	DVANCER	<u>4"</u> 3"	WELL T	YPE:	OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON			
		SW CASING		6"	1		RECORDER			
X YEB		AIR HAMMER		8"						

AEP

JOB NUMBER

 COMPANY
 BORING NO MW-1008
 DATE
 2/11/15
 SHEET
 2
 OF
 2

 PROJECT
 BIG SANDY
 BORING START
 12/7/10
 BORING FINISH
 12/7/10

SAMPLE NUMBER	SAMPLE	SAN DEF IN F FROM	IPLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
							55 -			GRAY SANDSTONE & SHALE		
							60 -			BROWN SANDSTONE		
							65 -					
							70					
							75					
							80 - - 85					
										GRAY STANDSTONE	-	
2/11/15										GRAY SHALE	-	
AEP BS FAP.GPJ AEP.GDT 2/11/15												

COMPANY BORING START _12/11/15 SHEE 11 OF 3 PROJECT_BIG SANDY BORING START _12/11/0 BORING START _12/11/0 BORING START _12/11/0 OCOMDINATES PREZONETER TYPE BORING START _12/11/0 BORING START _12/11/0 BORING START _12/11/0 MATER LEVEL Y Y Y HIME STANDARD START MATER LEVEL Y Y Y Y GROUND	JOB N	NUMBEF					LUC	3 01	- BURING					
COORDINATES PIEZOMETER TYPE WELL TYPE GROUND LEUATION_T33.0 SYSTEM HGF. HISER ADOVE GROUND D.0 3.78 MATERILEVEL X X VELL DEVELOPMENT YES BACKFILL Grout TIME DATE PETH PROM TO BLOWS / of VELL DEVELOPMENT YES BACKFILL Grout WILD BEYTH PRETRATION (#EER TYPE PRETRATION (#EER TYPE DENTIFICATION MELL DEVELOPMENT YES BACKFILL GROUT WILD BEYTH PRETRATION (#EER TYPE PRETRATION (#EER TYPE DENTIFICATION MELL DEVELOPMENT YES BACKFILL GROUT WILD BEYTH PRETRATION (#EER TYPE PRETRATION (#EER TYPE DENTIFICATION MELL DEVELOPMENT YES SOL / ROCK WILD BEYTH PRETRATION (#EER TYPE DENTIFICATION MELL DEVELOPMENT YES SOL / ROCK DENTIFICATION MOTES WILD BEYTH PRETRATION (#EER TYPE PRETRATION (#EER TYPE DENTIFICATION MELL DEVELOPMENT								во	RING NO MW-	1009		2/11/15	SHEET	1_OF_3_
COORDINATES PIEZOMETER TYPE WELL TYPE GROUND ELEVATION 733.0 SYSTEM HGT. RISER ABOVE GROUND DIA 5.78 MATERILEVEL V V DEPTH TO TOP OF WELL SCREEN 65 BOTTOM 36 MATERILEVEL V V VELL DEVELOPMENT YES BACKFILL Grout DATE SAMPLE STANDARD VELL DEVELOPMENT YES BACKFILL GROUND III WELL DEVELOPMENT YES BACKFILL PREUTRATION VELL DEVELOPMENT YES BACKFILL GROUND IIII MILLENS WELL DEVELOPMENT YES BACKFILL PREUTRATION VELL DEVELOPMENT YES BACKFILL GROUN IIIIIIIIIII RIS WELL DEVELOPMENT YES DENTIFICATION VELL DEVELOPMENT YES BOWIN SANDSTONE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII														
GROUND ELEVATION_733.0 SYSTEM HGT. HISER ABOVE GROUNDDIA 5.78 MATER LEVEL VIC V V IMME V V DATE V V SAMPLE STANDARD V SAMPLE STANDARD V VIEW V V FEET V VIEW V V V VIEW V VIEW V V VIEW V VIEW V VIEW V VIEW V VIEW V VIEW V VIEW V VIEW V VIEW V VIEW V VIEW V <td></td>														
WATER LEVEL V V Depth to Top of Well SCREEN_65 65 BOTM 85 DATE DEPTH TO TOP OF WELL SCREEN_65 BACKFILL Grout Grout Grout UNING 000 DEPTH TOP OF WELL SCREEN_65 BACKFILL Grout Grout Grout UNING 000 DEPTH TOP OF WELL SCREEN_65 SOLL / ROCK BACKFILL Grout Grout UNING 000 DEPTH TOP OF WELL SCREEN_65 SOLL / ROCK BACKFILL Grout Grout UNING 000 DEPTH TOP OF WELL SCREEN_65 BACKFILL GROUT DEPTH TOP OF WELL SCREEN_65 BACKFILL Grout UNING 000 BLOWS / 0° SOLL / ROCK BACKFILL GROUT DEPTH TOP OF WELL SCREEN_65 DEPTH TOP OF OF CASHO DEPTH TOP OF OF OF CASHO DEPTH TOP OF														
TIME Image: Continuent of the second sec														
DATE FIELD PARTY Fontz Drilling Rig UNITE STANDARD DEPTH RESUMATION ZEADARD DEPTH RESUMATION ZEADARD PEELT RATION ZEADARD PEELT RATION <t< td=""><td></td><td></td><td><u> </u></td><td></td><td>-</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			<u> </u>		-	<u> </u>								
UNITED SAMPLE STANDARD Contraction Total DRILLER'S UNITED DEPTH PENETRATION PEN														
BROWN SANDSTONE 10 10 10 15 20 22 23 33 34 40 35 36 37 38 40 33 34 40 35 36 37 38 39 39 30 30 31 32 33 34 35 36 37 38 39 32 32 33 34 35 36 37 38 39 39 32 32 33 34 35 36 37 38 39 39 32 31 32 33 34 35 36 37 38 3	DATE	-									, in the second se			
TYPE OF CASING USED Continued Next Page NO2ROCKCORE State Haa 9" MC2ROCKCORE PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP. SS = OPEN TUBE SLOTTED SCREEN, G = GEONOR, P = PNEUMATIC WELL TYPE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON	SAMPLE NUMBER	SAMPLE	DEPTH N FEET	PENETRATION RESISTANCE	ITAL VE	DEPTH	GRAPHIC LOG	USCS	BROWN SA	IDENTI	FICATION		MELL	
Image: Second state in the second s									DROWNOA		_			
20 20 25 30 30 35 40 GRAY SHALE 45 BROWN SANDSTONE 56 Continued Next Page 9 X 225 HSA 9" X 8 26 HSA 9" Y 8 26 HSA														
Image: Continued Next Page Image: Content Content Page Image: Content Page														
30 30 35 35 40 GRAY SHALE 45 BROWN SANDSTONE 45 BROWN SANDSTONE MQ2 ROCK CORE PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE SLOTTED SCREEN, G = GEONOR, P = PNEUMATIC 9"X 622 HSA PIEZOMETER TYPE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON WELL TYPE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON														
Image: State of the state						30 -								
Image: Strate in the second state i						- 35 -								
TYPE OF CASING USED Continued Next Page NQ-2 ROCK CORE PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE 9" x 6.25 HSA PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE 9" x 6.25 HSA PIEZOMETER TYPE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON WELL TYPE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON SWM CASING 3"						- 40 -			GRAY SHAL	E			_	
	2								BROWN SA	NDSTON	Ē			
	3DT 2/11/:	 ד	PE OF (CASING USED					Ca	ontinuea	l Next Pa	ge		
	AP.GPJ AEP.(6" x 9" x	<u>3.25 HSA</u> 6.25 HSA		<u></u> <i>A</i> "	SLO	OTTE	ED S	CREEN, G	= GEOI	NOR, P =	PNEUMA1	IC	
	3S F/	NW	CASING		3"	WELL T	YPE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON			GEOMON				
	e. – – – – – – – – – – – – – – – – – – –						RECORDER							

AEP

JOB NUMBER

 COMPANY
 BORING NO MW-1009
 DATE
 2/11/15
 SHEET
 2
 OF
 3

 PROJECT
 BIG SANDY
 BORING START
 12/7/10
 BORING FINISH
 12/7/10

SAMPLE NUMBER	SAMPLE	SAMPLE DEPTH IN FEET FROM TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
						55 -			GRAY SHALE		
						60 - 65 -					
						70 - 75 -					
						80 - 80 - 85 -			GRAY SANDSTONE	_	
						90 -			GRAY SHALE	-	
						95 - - - 100 -					
BSFAP.GPJ AEP.GD1 2/11/15						105 - - - 110 -					
S FAP.GP						-					

Continued Next Page

JOB NUMBER

 COMPANY
 BORING NO MW-1009
 DATE
 2/11/15
 SHEET
 3
 0F
 3

 PROJECT
 BIG SANDY
 BORING START
 12/7/10
 BORING FINISH
 12/7/10

		_		07445-55		DC-		1				
SAMPLE NUMBER	Щ	SAM DEF	IPLE PTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	ERY	RQD	DEPTH	GRAPHIC LOG	S	SOIL / ROCK		DRILLER'S
AMP	SAMPLE	IN F	EET	RESISTANCE		%	IN	LOG	USCS	IDENTIFICATION	WELL	NOTES
δĭ	ŝ	FROM	то	BLOWS / 6"		70	FEET	ŭ		BENTHOMON		NOTEO
							-					
							-					
							120 -					
							-					
							-				-	

JOB	NUM	IBER					LOG	LOG OF BORING					
								BC	DRING NO. MW-1010 DATE 2/11/15 SHEET <u>1</u> OF <u>4</u>				
		BIG SANE							DRING START 12/6/10 BORING FINISH 12/6/10				
									EZOMETER TYPE WELL TYPE				
			849.0 SY					HG	GT. RISER ABOVE GROUND DIA 5.78				
				STEIN				DF	EPTH TO TOP OF WELL SCREEN 170 BOTTOM 200				
WAT	ERL	_evel 🗸	<u> </u>		Ā								
TIME	-								ELL DEVELOPMENT Yes BACKFILL Grout				
DAT	E							FIE	ELD PARTY Frontz Drilling RIG				
			CTANDADD										
SAMPLE NUMBER	Ц	SAMPLE DEPTH	STANDARD		RQD	DEPTH IN FEET	E C	S	SOIL / ROCK - DRILLER'S				
AMF JMB	SAMPLE	IN FEET	PENETRATION RESISTANCE		%	IN	LOC	SC	SOIL / ROCK IDENTIFICATION → DRILLER'S NOTES				
S Z	Ś	FROM TO	BLOWS / 6"	Lañ	70	FEET	Ü						
						_			GRAY SANDSTONE				
						-							
						-							
						5	- · · · ·						
						-							
						10							
						-							
						-							
						-							
						15 -							
						-							
						-							
						20							
						-							
						-							
						25							
						- 25							
						-							
						-							
						30 -			GRAY SHALE W/COAL				
						-							
						-							
						35 -							
						-							
						-	E						
						40 -							
						-							
						-							
						45			GRAY SHALE				
						-							
2													
2/11/1						-							
GDT 2	6" x 3.25 HSA SLOT 9" x 6.25 HSA SLOT HW CASING ADVANCER 4"								Continued Next Page				
AEP.							ETER		PE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE				
GPJ									SCREEN, G = GEONOR, P = PNEUMATIC				
FAP.							YPE∙	٥١	W = OPEN TUBE SLOTTED SCREEN, GM = GEOMON				
X FE	SW CASING 6" X AIR HAMMER 8"								RECORDER				

AEP

JOB NUMBER _____

 COMPANY
 BORING NOMW-1010
 DATE 2/11/15
 SHEET
 2
 0F
 4

 PROJECT
 BIG SANDY
 BORING START
 12/6/10
 BORING FINISH
 12/6/10

SAMPLE NUMBER	SAMPLE	SAM DEF IN FE FROM	PLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
							55 -					
							60 -					
							65 -					
							70 -					
							75 -					
							80 -	2		BLACK COAL	-	
							85 -			GRAY SHALE	_	
							90 -					
							95 -					
							100 - 105 -	-				
							110 -	-		GRAY SHALE & SANDSTONE		

BS FAP.GPJ AEP.GDT 2/11/15 AEP

Continued Next Page

JOB NUMBER

 COMPANY
 BORING NOMW-1010
 DATE
 2/11/15
 SHEET
 3
 0F
 4

 PROJECT
 BIG SANDY
 BORING START
 12/6/10
 BORING FINISH
 12/6/10

SAMPLE NUMBER	SAMPLE	SAM DEF IN F	IPLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
							120 - 125 - 130 - 135 - 140 - 145 - 150 -			GRAY SHALE		
							160 - 165 -					
							170 -			GRAY SANDSTONE GRAY SHALE		
							175 -					

Continued Next Page

JOB NUMBER

 COMPANY
 BORING NOMW-1010
 DATE 2/11/15
 SHEET
 4
 OF
 4

 PROJECT
 BIG SANDY
 BORING START
 12/6/10
 BORING FINISH
 12/6/10

SAMPLE NUMBER	SAMPLE	SAN DEF IN F FROM	IPLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
							185 -					
							190 -					
							195 -					
							200 -					
							205 -			GRAY SANDSTONE		
							210 -			BLACK COAL		
							215 -			GRAY SHALE		
							220 -					
							225 -					
							230 -					
/11/15							235 -					
AEP BS FAP.GPJ AEP.GDT 2/11/15							240 -					
EP BS FAP.												

JOB NUMBER	
COMPANY	

PROJECT BIG SANDY

COORDINATES N 251,056.6 E 2,105,873.3

GROUND ELEVA	TION	716.2		SYSTEM	State Plane using NAD83/88
Water Level, ft	V		Ţ		$\bar{\mathbf{\Lambda}}$
TIME					
DATE					

BORING NO. MW-1011 DA	ate 11/19/15 s	HEET <u>1</u> OF <u>1</u>
BORING START 12/6/10	BORING FINIS	H 12/6/10
PIEZOMETER TYPE	WELL TYP	E
HGT. RISER ABOVE GROUND _	2.63 DI	A 5.78
DEPTH TO TOP OF WELL SCRE	EN <u>35</u> BOTTO	M 75
WELL DEVELOPMENT Yes	BACKFIL	L Grout
FIELD PARTY Frontz Drilli	ng Ri	G

SAMPLE	SAMPLE	SAMPLE DEPTH IN FEET FROM TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"		RQD %	DEPTH IN FEET 5 - 10 - 15 - 20 - 25 - 30 - 35 - 40 - 45 - 50 - 55 -			SOIL / ROCK IDENTIFICATION FILL RED CLAY GRAY AND BROWN SHALE GRAY SHALE GRAY SANDSTONE W/SHALE	MELL	DRILLER'S NOTES
1/19/15						60 65 70 75 80			GRAY SANDSTONE		
o.GDT 1	TYPE OF CASING USED				ı			·			
BS FAP.GPJ AEP.GDT 11/19/15	NQ-2 ROCK CORE 6" x 3.25 HSA 9" x 6.25 HSA HW CASING ADVANCER 4"					PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP, SS = OP SLOTTED SCREEN, G = GEONOR, P = PNEUMATIC					
AEP BS F/	NW CASING 3" - SW CASING 6"			WELL TYPE: OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON RECORDER							

AEP

JOB NUMBER			
COMPANY			
PROJECT BIG	SANDY		
COORDINATES	N 249,566.1	E 2,103,715	.6
GROUND ELEVA	TION 787.9	SYSTEM _	State Plane using NAD83/88
Water Level, ft	Ā	Ţ	Ā

TIME DATE

	BORING NO. <u>MW-1012</u> DATE <u>11/19/15</u> SHEET <u>1</u> OF <u>2</u>
_	BORING START 12/8/10 BORING FINISH 12/8/10
_	PIEZOMETER TYPE WELL TYPE
_	HGT. RISER ABOVE GROUND 2.65 DIA 5.78
1	DEPTH TO TOP OF WELL SCREEN BOTTOM
	WELL DEVELOPMENT Yes BACKFILL Grout
	FIELD PARTY Frontz Drilling RIG

SAMPLE NUMBER	SAMPLE	SAMPLE DEPTH IN FEET FROM TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
						5			SOIL		
						15 20					
						25 30 35			GRAY SHALE		
						40					
						50 55 60					
						65 70					
						75 80 85					
						90 95					
						100 105 110					
/19/15						115 120			GRAY SANDSTONE & SHALE		
	1	TYPE OF CASING USED					<u></u>		Continued Next Page	1	
BS FAP.GPJ AEP.GDT 11/19/15		NQ-2 ROCK CORE 6" x 3.25 HSA 9" x 6.25 HSA						ED S	E: PT = OPEN TUBE POROUS TIP, SS SCREEN, G = GEONOR, P = PNEUMATIC		
AEP BS FA	HW CASING ADVANCER 4" NW CASING 3" SW CASING 6" AIR HAMMER 8"			WELL TY	YPE:	0\	W = OPEN TUBE SLOTTED SCREEN, GN RECORDER	Л = G	EOMON		

JOB NUMBER

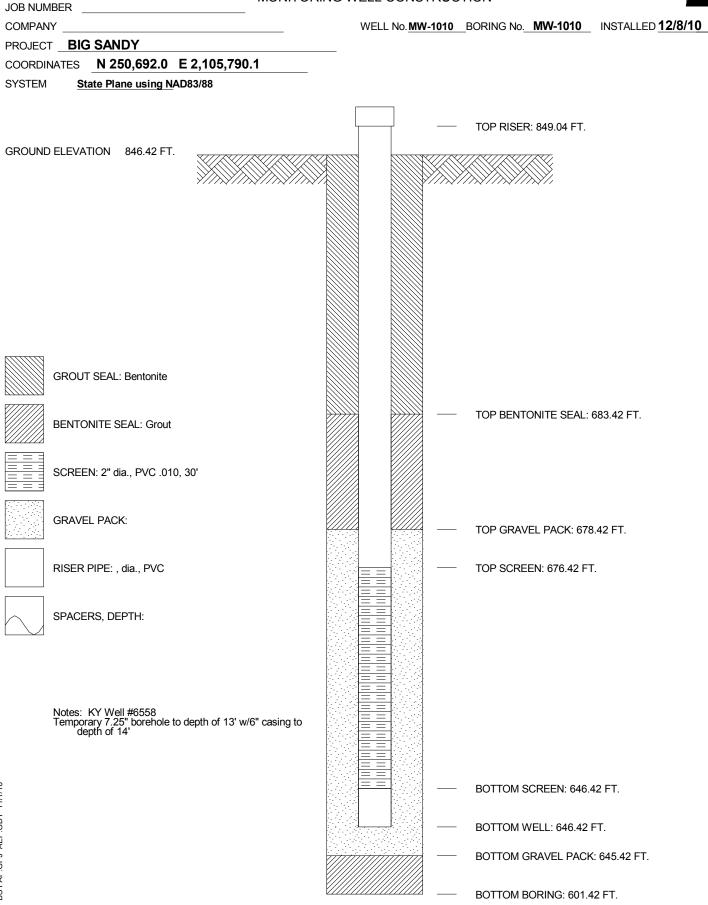
COMPANY _

PROJECT BIG SANDY

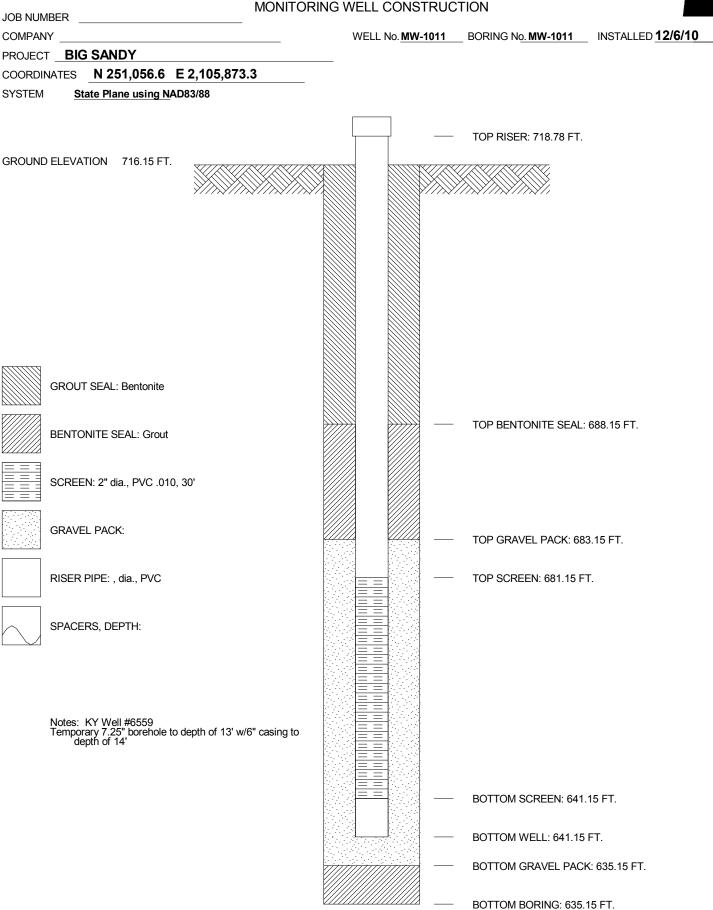
 BORING NO.
 MW-1012
 DATE
 11/19/15
 SHEET
 2
 OF
 2

 BORING START
 12/8/10
 BORING FINISH
 12/8/10

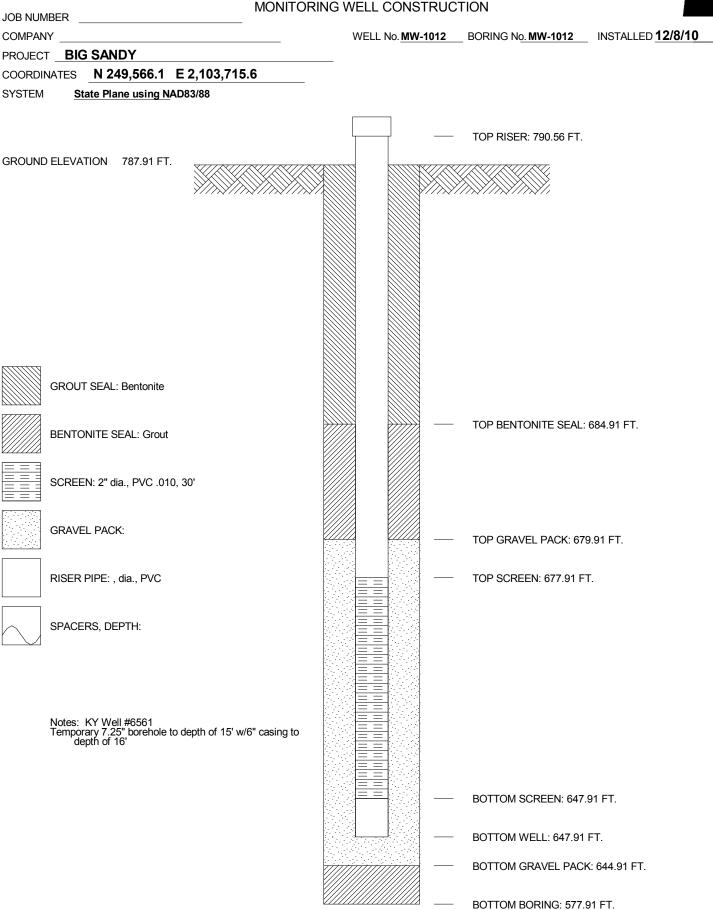
SAMPLE NUMBER	SAMPLE	SAMPLE DEPTH IN FEET	PENETRATION	OTAL ENGTH COVERY	RQD	DEPTH IN	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
N S	Ś	FROM T	O BLOWS / 6"	REC	70	FEET	ц Ц			-	NOTED
									GRAY SANDSTONE		
						130 -	1::::				
						135					
						140					
						145			GRAY SHALE & SANDSTONE		
						150					
						155 -					
						160 -					
						165 -					
						170 -					
						175					
						180 -					
						185					
						190 -					
						195					
						200					
						205					
						210 -					
1/1 3/1											
AEP.											



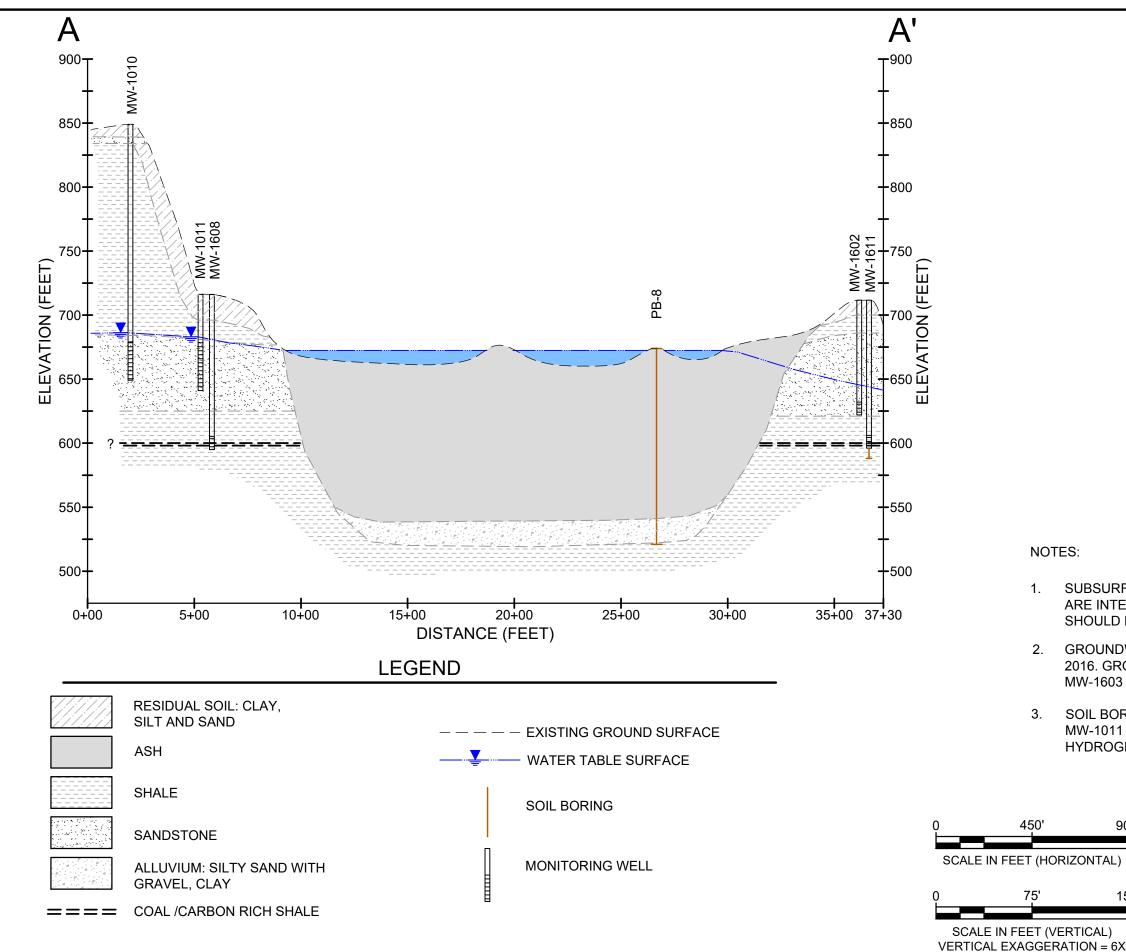
PANY _____

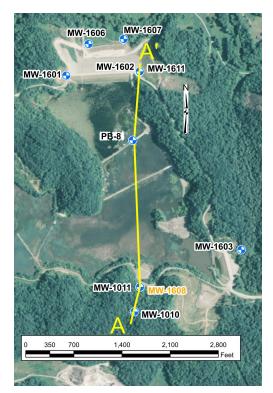


AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY MONITORING WELL CONSTRUCTION



AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY MONITORING WELL CONSTRUCTION




AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY MONITORING WELL CONSTRUCTION

APPENDIX C

SUPPLEMENTAL DOCUMENTATION FROM 2016 INVESTIGATION

KEY MAP

1. SUBSURFACE LITHOLOGIC ELEVATIONS BETWEEN BORINGS ARE INTERPRETED BASED ON AVAILABLE INFORMATION AND SHOULD BE CONSIDERED APPROXIMATE.

GROUNDWATER ELEVATIONS WERE MEASURED ON JULY 13, 2016. GROUNDWATER ELEVATIONS IN MW-1010, MW-1011 AND MW-1603 WERE MEASURED ON A DIFFERENT DATE.

SOIL BORING PB-8 AND MONITORING WELLS MW-1010 AND MW-1011 DATA WERE OBTAINED FROM FINAL REPORT HYDROGEOLOGIC SITE INVESTIGATION (URS, JUNE 2013)

00'	GEOLOGIC CI	ROSS SECTION	A-A'
	BIG SAND LOUISA	D	
50' 9	Geosyn consul		FIGURE
	PROJECT NO: TX0510	1	

APPENDIX D BORING LOGS AND MONITORING WELL CONSTRUCTION DIAGRAMS FROM THE 2016 INSTALLATIONS

Geos co			BORING AND WELL LOG LEGEND							
LITHOLOGY WATER LEVEL	WELL/BORING COMPLETION	SAMPLE TYPE	DESCRIPTION							
		GR EN SS SH CO DP	ASPHALT CONCRETE FILL TOPSOL COBBLES IGNEOUS Rock METAMORPHIC Rock SEDIMENTARY Rock Wel-graded GRAVEL (GW) Poorly graded GRAVEL (GP) Sitly GRAVEL (GC) Wel-graded GRAVEL (GC) Wel-graded GRAVEL (M+ sitl (GW-GM) Poorly graded GRAVEL with sitl (GP-GM) Wel-graded GRAVEL with sitl (GP-GM) Wel-graded GRAVEL with sitl (GP-GC) Poorly graded GRAVEL with sitl (GP-GC) Poorly graded GRAVEL with sitl (SP-SM) Wel-graded SAND (SO) Wel-graded SAND (SO) Poorly graded SAND (SO) Wel-graded SAND with sitl (SP-SM) Wel-graded SAND with sitl (SP-SO) Solt (SM) Vorgaric SOL (CL) Organic SOL (CL) Poart (CH) Organic SOL (CH) PEAT (PT) Vater Level During Drilling Water Level During Drilling (Cape CAP) Water Level During Drilling (CAP) Water Level During Drilling (CAP) Water Level During Drilling (CAP) Water Level Dur							

Geosyntec Consultants	Client: Project: Address:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		WELL LOG Vell No. MW-1601 Page: 1 of 5		
Drilling Start Date:04/25/2016Drilling End Date:04/25/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HarDrilling Equipment:CS1500Driller:Kimberly KeizerLogged By:Nardos Tilahun	Bor Sar DTV DTV Top	ing Depth (ft): 84 ing Diameter (in): 8 npling Method(s): Core Barrel W During Drilling (ft): W After Drilling (ft): 46.0 o of Casing Elev. (ft msl): 716.59 eation (X,Y): 2104798.67, 254131.13*	Well Dia Screen S Riser Ma Screen M	Depth (ft): 77 Diameter (in): 4 en Slot (in): 0.010 Material: Sch 40 PVC en Material: Sch 40 PVC Slotted Material(s): Bentonite Pellets Pack: Global Filter Pack #5		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Date & Time		SOIL/ROCK VISUAL DESCRIPTION	l	REMARKS	ELEV. (ft msl)	
	5.0 5	 (0') SED ROCK (SHALE); thinly bedded, decomposed, moderately soft, very intent fractured, light brown, moist, 7.5YR 3/4. (11') SED ROCK (SHALE); thinly bedded decomposed, moderately hard, slightly fractured, light brown, moist, 7.5YR 3/4, circulation water lost at about 11 ft bgs (11 tt asl). (13.5') SED ROCK (SHALE); moderately hard, very slightly fractured, light gray, m 7.5YR 6/0. (19.5') SED ROCK (SANDSTONE); thinl 	, nsely d, 705 y noist, 2	7 0') Bedding Plane Separation: (Bottom 11). 11.2') Bedding Plane Separation: 11.2, 11.8, 12.0, 12.4, 13.5. 15') Bedding Plane Separation: 15.0 to 19.0, 23.0, 22.5, 21.9.	713.84 - - - - - - - - - - - - - - - - - - -	
		cky North. Elevation is in ft MSL NAVD88. Id surface. Ground surface elevation is 713.84 ft N	MSL.			

Image: Solution of the set of the s		consultants	>	Client Projec Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		WELL LOG Well No. MW-1601 Page: 2 of 5		
(i) H_L I <th>Drilling End D Drilling Comp Drilling Metho Drilling Equip Driller:</th> <th>ate: 04/25/2016 any: Layne d: Rock Coring ment: CS1500 Kimberly K</th> <th>/Air Ham eizer</th> <th>mer</th> <th>Borir Sam DTW DTW Top</th> <th>ng Diameter (in): 8 pling Method(s): Core Barrel / During Drilling (ft): / After Drilling (ft): 46.0 of Casing Elev. (ft msl): 716.59</th> <th>Well E Scree Riser Scree Seal M</th> <th colspan="3">Diameter (in):4en Slot (in):0.010r Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Bentonite Pellets</th>	Drilling End D Drilling Comp Drilling Metho Drilling Equip Driller:	ate: 04/25/2016 any: Layne d: Rock Coring ment: CS1500 Kimberly K	/Air Ham eizer	mer	Borir Sam DTW DTW Top	ng Diameter (in): 8 pling Method(s): Core Barrel / During Drilling (ft): / After Drilling (ft): 46.0 of Casing Elev. (ft msl): 716.59	Well E Scree Riser Scree Seal M	Diameter (in):4en Slot (in):0.010r Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Bentonite Pellets		
25 - CO 04/25 10.0 95 bedded, intensely weathered, moderately hard, slightly fractured, light brown, moist, 7.5YR 3/4.	DEPTH (ft) LITHOLOGY	WATER LEVEL WELL COMPLETION Sample Type			N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	I	REMARKS	ELEV. (ft msl)	
)4/25	10.0	95	hard, slightly fractured, light brown, mois 7.5YR 3/4. (28') SED ROCK (SANDSTONE); moderately bedded, fresh, hard, unfractu		Separation: 25.1, 25.9, 26.5,	- - - 690 - - - 685 -	
35)4/25	5.0	25	decomposed, soft, very intensely fracture	ed,	Separation: 34.7, 35.3, 35.6	- - 680 - - - - 675	

th (ft): 77 neter (in): 4 lot (in): 0.010 terial: Sch 40 PVC laterial: Sch 40 PVC Slotted erial(s): Bentonite Pellets k: Global Filter Pack #	
REMARKS	_
	ELEV. (ft msl)
eparation: 44.0 to 49.0. - - 9') Bedding Plane	- - - 670 - - - 665 - -
eparation: 54.4, 54.7, 55.0, 5.4, 56.1, 60.2. 5.6') Random Fracture at 5.6, 59.2. -	660 - - - - 655
	 14') Bedding Plane eparation: 44.0 to 49.0. 19') Bedding Plane eparation: 49.0 to 54.0. 54.4') Bedding Plane eparation: 54.4, 54.7, 55.0, 5.4, 56.1, 60.2. 55.6') Random Fracture at 5.6, 59.2. 59.2') Random Fracture at 5.6, 59.2.

1		ints	>	F	Client Projec Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		WELL LOG Well No. MW-1601 Page: 4 of 5		
Drilling Start D Drilling End Da Drilling Compa Drilling Methoo Drilling Equipn Driller: Logged By:	ate: 04/28 any: Layn f: Rock nent: CS18 Kiml	5/2016 ne : Coring	g/Air H Keizer	r	ner	Bori Sam DTV DTV Top	ng Diameter (in): 8 npling Method(s): Core Barrel V During Drilling (ft): V After Drilling (ft): 46.0 of Casing Elev. (ft msl): 716.59	Well D Screer Riser I Screer	Depth (ft): 77 Diameter (in): 4 en Slot (in): 0.010 Material: Sch 40 PVC en Material: Sch 40 PVC Slotted Material(s): Bentonite Pellets Pack: Global Filter Pack #5		
DEPTH (ft) LITHOLOGY	WAIER LEVEL WELL COMPLETION	Sample Type	Date & Time	Blow Counts TT	f.	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	1	REMARKS	ELEV. (ft msl)	
		CO	04/25		10.0	100	(65') SED ROCK (SANDSTONE); moderately bedded, fresh, hard, unfractu light gray, wet, 7.5YR 6/0.	ured,	(65') Bedding Plane Separation: 65.0, 67.5, 70.4.	- 650	
		<u> </u>	04/25		10.0	90	(75') SED ROCK (SANDSTONE); moderately bedded, intensely weathered moderately hard, slightly fractured, light brown, wet, 7.5YR 3/4. (79') SED ROCK (SANDSTONE); moderately bedded, fresh, hard, unfractu		(74.4') Bedding Plane Separation: 74.4, 75.2, 76.5, 82.0, 82.7 to 84.0. (77') Random Fracture: Surface (Slightly Rough, Planar, Intensely Weathered, Mod Soft); Random Fracture at 77.0.	- 640 - 635	

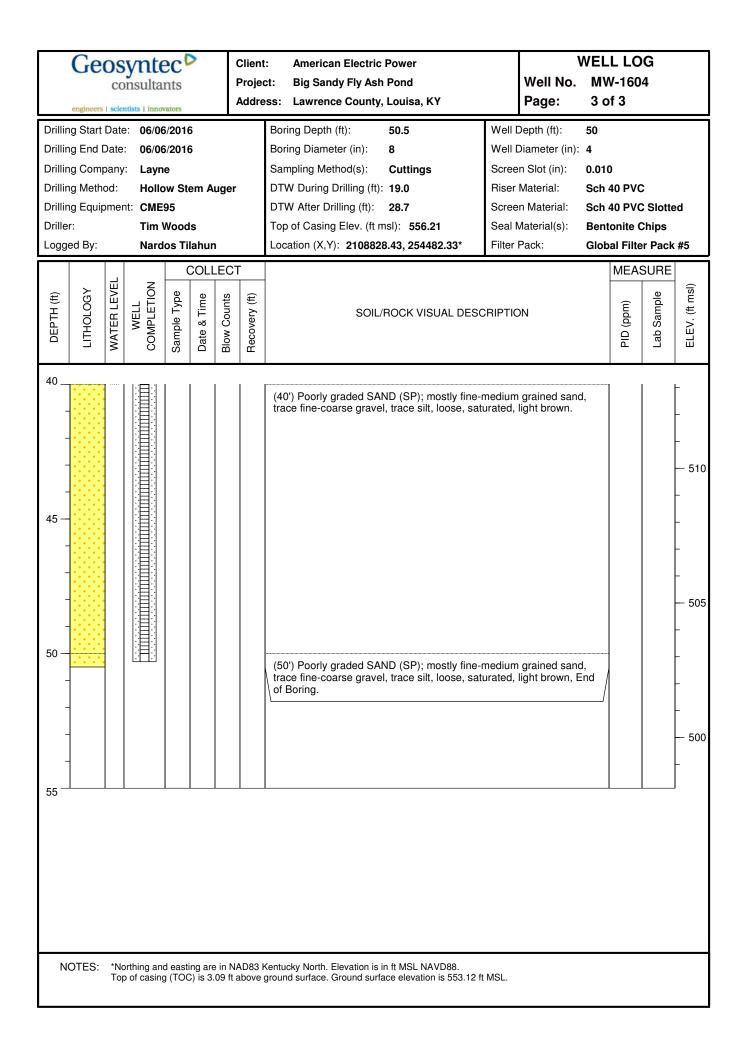
	consulta	ints	>	1	Client Proje Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		Well No. Page:	WELL LOG MW-1601 5 of 5	
Drilling Start D Drilling End Da Drilling Compa Drilling Method Drilling Equipn Driller: Logged By:	ate: 04/2 any: Layn d: Rock nent: CS1 Kiml	5/2016 ie Corin	∂ g/Air ∣ Keize	er	Boring Diameter (in):8Well IISampling Method(s):Core BarrelScreeDTW During Drilling (ft):RiserDTW After Drilling (ft):46.0				Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	77 4 0.010 Sch 40 PVC Sch 40 PVC Slot Bentonite Pellet Global Filter Pac	S
DEPTH (ft) LITHOLOGY	WAIER LEVEL WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft) D	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	J	R	EMARKS	ELEV. (ft msl)
80							light gray, wet, 7.5YR 6/0. (81.5') SED ROCK (SHALE); laminated, fresh, moderately hard, very slightly fractured, light gray, wet, 7.5YR 6/0. (82.5') SED ROCK (COAL); thinly bedded slightly weathered, moderately hard, slig fractured, black, wet, 7.5YR 2/0. (84') SED ROCK (COAL); thinly bedded, slightly weathered, moderately hard, slig fractured, black, wet, End of coring.	ed, htly			- - - 63 - - - - 62

0 0			CC	onsulta	nts	>	I	•	ent: American Electric Power oject: Big Sandy Fly Ash Pond dress: Lawrence County, Louisa, KY			\ Well No. Page:	WELL LOG MW-1602 1 of 5	
(i) Hard Hard Hard Hard Hard Hard Hard Hard	Drilli Drilli Drilli Drilli Drilli	ng End I ng Com ng Meth ng Equip er:	Date pany od:	: 04/28 : Layn Rock nt: CS15 Kimb	8/2010 e Corin 500 perly	ô g/Air∣ Keize	er	ner	Bori Sam DTV DTV Top	ng Diameter (in): 8 ppling Method(s): Core Barrel 5 V During Drilling (ft): 1 V After Drilling (ft): 65.3 of Casing Elev. (ft msl): 714.53	Well D Screer Riser M Screer Seal M	hiameter (in): n Slot (in): Material: n Material: Naterial(s):	4 0.010 Sch 40 PVC Sch 40 PVC Slot Bentonite Pellets	5
0 0	DEPTH (ft)	ГІТНОГОĞY	WATER LEVEL	WELL	Sample Type				N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		RI	EMARKS	ELEV. (ft msl)
20 0-20' geology logged from MW-1611 20 NOTES: *Northing and easting are in NAD83 Kentucky North. Elevation is in ft MSL NAVD88. Top of casing (TOC) is 2.93 ft above ground surface. Ground surface elevation is 711.60 ft MSL.	5- 10- 15- 20 ⁻		*Nc							 mostly fine-coarse grained gravel, some medium-coarse sand, trace silt, trace clay loose, moist, light gray. (1.5') Lean CLAY (CL); trace silt, mostly clay, medium plasticity, stiff, moist, brown 7.5YR 4/3. (7.5') Gravelly SILT (ML); little fine-coarse gravel, some fine-medium sand, some sil few clay, low plasticity, medium stiff, moist brown, 7.5YR/4/3. (10') SED ROCK (SHALE); laminated, decomposed, soft, very intensely fracture light gray, dry, 7.5YR 6/0. (14') SED ROCK (SHALE); laminated, decomposed, soft, very intensely fracture light gray, moist, 7.5YR 6/0. (14') SED ROCK (SHALE); laminated, decomposed, soft, very intensely fracture light gray, moist, 7.5YR 6/0. (14') SED ROCK (SHALE); laminated, decomposed, soft, very intensely fracture light gray, moist, 7.5YR 6/0. (14') SED ROCK (SHALE); laminated, decomposed, soft, very intensely fracture light gray, moist, 7.5YR 6/0. 	y, n, e tt, st, ed, ck ed, ed,			711.60 - 710 - 710 - 705 - 705 - 705 - 700 -

	Ge	CC	onsu	ltar	ıts	>		Proje	Client: American Electric Power Project: Big Sandy Fly Ash Pond Address: Lawrence County, Louisa, KY			V Well No. Page:	VELL LOG MW-1602 2 of 5	
Drillir Drillir Drillir Drillir Drille	Drilling Start Date:04/28/2016Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HammerDrilling Equipment:CS1500Driller:Kimberly KeizerLogged By:Nardos Tilahun									ng Diameter (in): 8 V pling Method(s): Core Barrel S / During Drilling (ft): F / After Drilling (ft): 65.3 S of Casing Elev. (ft msl): 714.53	Well D Screer Riser N Screer	Depth (ft):90Diameter (in):4en Slot (in):0.010Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Bentonite PelletsPack:Global Filter Pack #5		
DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	WELL	COMPLETION	Sample Type	Date & Time	Blow Counts	(t)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		RE	EMARKS	ELEV. (ft msl)
20			~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CO	04/28 14:42		3.1	75	(20') SED ROCK (SHALE); thinly bedded, fresh, moderately hard, unfractured, light gray, moist, 7.5YR 6/0, casing set at 20 ft bgs.		(20.1') Bedc Separation:		- 690 -
- 25 — - - - 30 —				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CO	04/27 14:17		10.0	100	(24.0') SED ROCK (SANDSTONE); thinly bedded, fresh, moderately soft, very slight fractured, light gray, moist, 7.5YR 6/0. (26') SED ROCK (SANDSTONE); fine sar thickly bedded, intensely weathered, hard slightly fractured, light brown, wet, 7.5YR 3/4, Breathitt Formation. Circulation water was lost at about 27 ft bg Circulation water was back at about 30 ft bgs.	nd, d, ogs.	Open', Surfa Rough, Plar Weathered, (Very Thin, Intensely W Soft, Not He circulation a (27.8') Ranc	nar, Intensely Mod Soft); Filling Iron Oxide, eathered, Mod	- - - 685 - -
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	< < < < < < < < < < < < < < < < < < <	CO	04/27 14:42		10.0	85			Surface (Sn Slightly Wea Soft); Filling Sand, Slight Mod Soft, N Bedding Pla 24.3, 24.6, 2 28.3, 31.0. (34.4') Fract and 34.8. (35') Beddin Open; Surfa Planar, Moo Weathered, (Thin, Clay, Weathered,	Slightly Open; nooth, Planar, athered, Mod (Very Thin, tly Weathered, ot Healed); ne Separation: 24.8, 25.0, 27.8, ture at 34.4, 34.6 ng Joint: Slightly ice (Smooth, lerately Soft); Filling Moderately	- 680 - - - - 675 -
40 — N	OTES:									ky North. Elevation is in ft MSL NAVD88. I surface. Ground surface elevation is 711.60 ft M	ISL.			

		CO		ants			Client Proje Addre	ct:	American Electric Power Big Sandy Fly Ash Pond Lawrence County, Louisa, KY		WELL LOG Well No. MW-1602 Page: 3 of 5		
Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Metho ng Equip	Date bany od:	r: Layr Rock nt: CS1 Kiml	8/201(ne : Corin	6 g/Air I Keize	r	ner	Bori Sam DTV DTV Top	ng Diameter (in): 8 V upling Method(s): Core Barrel S V During Drilling (ft): F V After Drilling (ft): 65.3 S of Casing Elev. (ft msl): 714.53 S	Well D Screer Riser N Screer	Depth (ft):90Diameter (in):4en Slot (in):0.010Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Bentonite PelletsPack:Global Filter Pack #5		
DEPTH (ft)	ГІТНОГОӨҮ	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	£	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)	
40				co	04/28 17:10		10.0	70	 (40.5') SED ROCK (SHALE); clay, laminated, moderately weathered, moderately soft, moderately fractured, ligh gray, wet, 7.5YR 6/0, Breathitt Formation. (40.5') SED ROCK (SHALE); laminated, moderately weathered, moderately soft, moderately fractured, light gray, wet, 7.5Y 6/0. (42') SED ROCK (SANDSTONE); very thi bedded, intensely weathered, moderately soft, intensely fractured, light brown, wet, 7.5YR 3/4. 	/R inly	35.5, 35.7, 36.5, 38.5, 38.6, 40.1, 40.8, 40.9. (42). (46.2') Bedding Plane Separation: Slightly Open; Surface (Smooth, Planar,	- - 670 - - - - 665	
- - 50 — - - -				со	04/29		10.0	100	Lost some of the circulation water at abou 53 ft bgs.	ıt	Intensely Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Intensely Weathered Mod Soft, Not Healed); Bedding Plane Separation: 46.2, 46.5, 46.6, 53.8. (50.8') Random Fracture: Moderately Open; Surface (Slightly Rough, Planar, Intensely Weathered, Mod Soft); Filling (Moderately Thin, Iron Oxide, Intensely Weathered, Mod Soft, Not Healed); Random Fracture:	- - - - 660 -	
55 — - - - 60 [—]					08:19				(54.3') SED ROCK (SANDSTONE); moderately bedded, slightly weathered, hard, very slightly fractured, light gray, we 7.5YR 6/0. (58.5') SED ROCK (SANDSTONE); thickly bedded, intensely weathered, hard, very slightly fractured, light brown, wet, 7.5YR	У	50.8 to 53.5. Lost some of the circulation water at abou 53 ft bgs. (Bottom 53.5). (54.3') Bedding Joint: Slight Open; Surface (Smooth, Planar, Moderately Weathered, Mod Soft); Fillir (Very Thin, Clay, Moderatel Weathered, Mod Soft, Not Healed); Fracture at 55.5 at 56.8, 58.2. (Bottom 58.5).	ly 655 igy	
N	OTES:								ky North. Elevation is in ft MSL NAVD88. d surface. Ground surface elevation is 711.60 ft M	ISL.			

Geosynt consulta engineers scientists inr		Clien Proje Addre	ct:	American Electric Power Big Sandy Fly Ash Pond Lawrence County, Louisa, KY		WELL LOG Well No. MW-1602 Page: 4 of 5	
Drilling Company: Lay Drilling Method: Rock Drilling Equipment: CS1 Driller: Kim	28/2016 ne k Coring/Air Ha	mmer	Bori Sam DTV DTV Top	ng Depth (ft): 94 ng Diameter (in): 8 npling Method(s): Core Barrel V During Drilling (ft): V After Drilling (ft): 65.3 of Casing Elev. (ft msl): 714.53 ation (X,Y): 2105862.78, 254183.19*	Depth (ft):90Diameter (in):4en Slot (in):0.010Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Bentonite PelletsPack:Global Filter Pack #5		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION		Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	REMARKS	ELEV. (ft msl)
				3/4. (58.5') SED ROCK (SANDSTONE); fine sand, thickly bedded, intensely weather hard, very slightly fractured, light brown 7.5YR 3/4, Breathitt Formation.	ed,	(55.5') Bedding Plane Separation: 55.5, 56.8, 58.2, - 59.8	- 650
	CO 04/29 08:51	10.0	100	(64') SED ROCK (SANDSTONE); moderately bedded, moderately weathe hard, very slightly fractured, wet, 7.5YR and 7.5YR 6/0 alternating.		(65.1') Bedding Plane Separation: Slightly Open; Surface (Slightly Rough, Planar, Moderately Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Moderately Weathered, Mod Soft, Not Healed); Fracture at 65.1, 66.4, 68.6, 70.3. (Bottom 73).	- 645
	CO 04/29	10.0	100			(65.7') Fracture Zone: Moderately Open; Surface (Slightly Rough, Planar, Intensely Weathered, Soft); Filling (Moderately Thin, Clay, Moderately Weathered, Mod Soft, Not Healed).	- 640
	09:20					(76.3') Bedding Plane Separation: Moderately Open; Surface (Slightly Rough, Planar, Intensely Weathered, Soft); Filling (Moderately Thin, Iron Oxide, Intensely Weathered, Soft, Not Healed); Bedding Plane Separation: 76.3, 80.0, 81.3, 82.0, 82.7, 83.5.	- 635
				ky North. Elevation is in ft MSL NAVD88. d surface. Ground surface elevation is 711.60 ft	MSL.		


Geosynt consult engineers scientists in	ants	Clien Proje Addre	ct:	American Electric Power Big Sandy Fly Ash Pond Lawrence County, Louisa, KY		WELL LOG Well No. MW-1602 Page: 5 of 5				
Drilling Company: Lay Drilling Method: Roo Drilling Equipment: CS Driller: Kin	28/2016 ne k Coring/Air H		Borin Sam DTV DTV Top	ng Diameter (in): 8 npling Method(s): Core Barrel V During Drilling (ft): V After Drilling (ft): 65.3 of Casing Elev. (ft msl): 714.53	Well D Scree Riser Scree	Depth (ft): 90 Diameter (in): 4 n Slot (in): 0.010 Material: Sch 40 PVC n Material: Sch 40 PVC Slotte Material(s): Bentonite Pellets Pack: Global Filter Pack				
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION		Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	I	REMARKS	ELEV. (ft msl)			
80 80 85 85 90 90 90 90 95 100 NOTES: *Northing a	CO 04/29 09:57		100	 (84') SED ROCK (SANDSTONE); moderately bedded, intensely weathered hard, very slightly fractured, light brown, 7.5YR 3/4, 89-89.5: light grey fresh Sandstone, unfractured. (89.5') SED ROCK (SHALE); moderately bedded, fresh, moderately hard, unfractu- light gray, wet, 7.5YR 6/0. (94') SED ROCK (SHALE); moderately bedded, fresh, moderately hard, unfractu- light gray, wet. End of Boring 	wet,	 (83.5') Random Fracture: Slightly Open; Surface (Slightly Rough, Planar, Intensely Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Intensely Weathered, Mod Soft, Not Healed). (85.6') Bedding Joint at 85.6. Bedding Plane Separation: 85.6, 90.4, 93.0. (84.9') Random Fracture: Slightly Open; Surface (Slightly Rough, Planar, Intensely Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Moderately Weathered, Mod Soft, Partly Healed). (93.7') Random Fracture: Moderately Open; Surface (Slightly Rough, Planar, Intensely Weathered, Soft); Filling (Moderately Thin, Clay, Moderately Weathered, Soft, Not Healed). 	- 630 625 625 620 615 			

		CC		ants	D	1	Client Proje Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		WELL LOG Well No. MW-1603 Page: 1 of 2			
Drillir Drillir Drillir Drillir Drille	ng End I ng Comp ng Metho ng Equip	Date Dany Dd:	: Layr HSA/ ht: SCR Keit	1/201 ne /Rock R-13 h Feh	6 Coring rman		Boring Diameter (in):8WellSampling Method(s):SS & Core BarrelScreeDTW During Drilling (ft):3.8RiseDTW After Drilling (ft):21.8ScreeTop of Casing Elev. (ft msl):675.75Seal			Well Di Screen Riser M Screen Seal M	I Depth (ft): 32 I Diameter (in): 4 een Slot (in): 0.010 er Material: Sch 40 PVC een Material: Sch 40 PVC Slotted I Material(s): Bentonite Pellets r Pack: Global Filter Pack #			
DEPTH (ft)	ГІТНОГОӨҮ	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		RE	EMARKS	ELEV. (ft msl)	
0			× × × × × × × × × × × × × × × × × × ×	SS SS SS SS SS CO	04/25 13:54 04/25 14:13 04/25 15:50 04/25 16:00 04/25 16:07 04/25 16:10	14 10 6 8 9 4 4 5 5 5 5 5 5 6 7 7 8 6	2.0 1.5 2.0 1.5 1.0 2.0 0.0	26 16 9 10 14 13 108	 (0.0') Well-graded SAND with silt (SW-SM mostly fine-coarse grained sand, few fine-coarse gravel, little silt, little clay, loose, dilight brown, 7.5YR/7/4, FILL. (4') Well-graded SAND (SW); mostly medium grained sand, few coarse gravel, few silt, dense, moist, light brown, 7.5YR/5/8. (7') Fat CLAY with sand (CH); trace coars gravel, some medium-coarse sand, some silt, mostly clay, high plasticity, stiff, moist dark gray, GLEY2/4/10B, abundant roots, reduced (decomposed) soil odor. (13') SED ROCK (SANDSTONE); medium sand, massive, intensely weathered, very hard, light brown, moist, 7.5YR/7/3. (15.5') No Recovery. 06/01/2016 - removed hollow-stem auger and advanced borehole using rotasonic drilling. 06/01/2016 - advanced borehole using wireline rock coring inside of hollow stem auger (surface to 15 ft bgs). 				673.24 - - - - - - - - - - - - -	
20 N	OTES:		orthing ar							ISL.			-	

		CC		nts			Client Proje Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		W Well No. Page:	/ELL LOG MW-1603 2 of 2		
Drillir Drillir Drillir Drillir Drille	ng End I ng Comp ng Meth ng Equip	Date bany od:	/: Layn HSA/I nt: SCR· Keith	l/2010 e Rock (6 Coring rman	-	vski	Bori Sam DTV DTV Top	ng Diameter (in): 8 apling Method(s): SS & Core Barrel V During Drilling (ft): 3.8 V After Drilling (ft): 21.8 of Casing Elev. (ft msl): 675.75	Well [Scree Riser Scree Seal N	Depth (ft):32Diameter (in):4en Slot (in):0.010r Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Bentonite Pelletsr Pack:Global Filter Pack #5			
DEPTH (ft)	ГІТНОГОĞY	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	I	RE	MARKS	ELEV. (ft msl)	
20		•		CO	06/01 18:16		5.0	20	(20') Well-graded SAND (SW); mostly fin grained sand, loose, saturated, light yellowish-brown.	ie			-	
- 25 — - - 30 —				C0 C0			4.5	24	 (22') SED ROCK (SANDSTONE); fine sa massive, slightly weathered, hard, unfractured, light yellowish-brown, wet. (23') SED ROCK (SHALE); silt, laminated decomposed, soft, intensely fractured, da gray, wet, iron oxide staining; organic matter. (24') SED ROCK (SHALE); silt, laminated decomposed, very soft, intensely fractured black, wet, nearly all organic matter; sligh coaly texture. (25') SED ROCK (CLAYSTONE); clay, moderately bedded, intensely weathered moderately soft, slightly fractured, pale bluish-gray, wet. (29') SED ROCK (SANDSTONE); very fi 	d, ark d, ed, ht			- - 650 - - - - 645 -	
- - 35 — - - -				CO			5.0	90	 (29') SED ROCK (SANDSTONE); very fi sand, very thinly bedded, intensely weathered, moderately hard, very intensi fractured, light reddish-brown, wet. (30') SED ROCK (SANDSTONE); very fi sand, laminated, slightly weathered, very hard, moderately fractured, dark bluish-g wet, some micaceous minerals. (32') SED ROCK (SANDSTONE); very fi sand, laminated, fresh, very hard, unfractured, dark bluish-gray, moist. (35.5') Fractured zone; slight iron-oxide staining on surface. (39.5') As Above. End of Boring. 	ely ne / gray,	Dip, Open; S	g Joint: 5°-10° .urface (Slightly ar); Filling (Clay).	- - 640 - - - - - - - - - -	
40 N	OTES:		prthing an							MSL.			<u>}</u>	

Geosyntec Consultants	Proje	Client:American Electric PowerWEProject:Big Sandy Fly Ash PondWell No. MAddress:Lawrence County, Louisa, KYPage: 1					
Drilling Start Date:06/06/2016Drilling End Date:06/06/2016Drilling Company:LayneDrilling Method:Hollow Stem AugDrilling Equipment:CME95Driller:Tim WoodsLogged By:Nardos Tilahun	er	Boring Depth (ft):50.5Well Depth (ft):50Boring Diameter (in):8Well Diameter (in):4Sampling Method(s):CuttingsScreen Slot (in):0.0DTW During Drilling (ft):19.0Riser Material:SclDTW After Drilling (ft):28.7Screen Material:SclTop of Casing Elev. (ft msl):556.21Seal Material(s):BerLocation (X,Y):2108828.43, 254482.33*Filter Pack:Global					ed (#5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time	Recovery (ft)	SOIL/ROCK VISUAL DESCR	IPTION		MEAS (mdd) OId	Lab Sample	ELEV. (ft msl)
		(0') Lean CLAY (CL); mostly clay, medium plas brown. (19') Poorly graded SAND (SP); mostly fine-me loose, moist, light brown.	edium grained sand				553.12 - - - - - - - - - - - - -

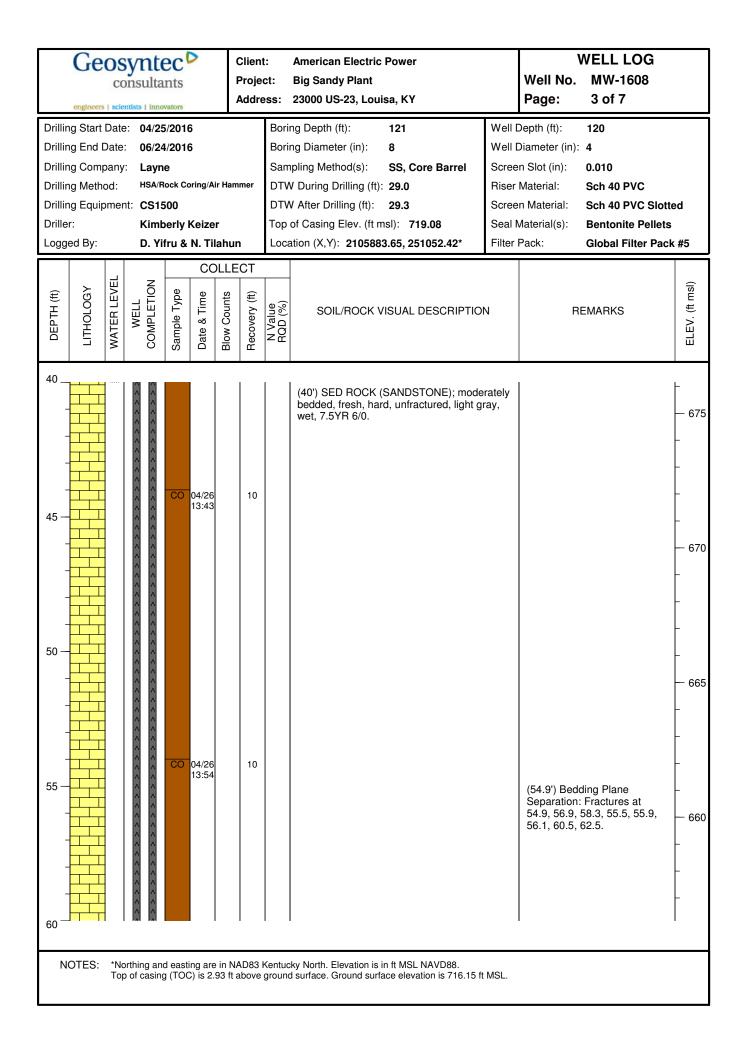
Geosyntec consultants	Clien Proje Addre	ct: Big Sandy Fly Ash Pond	Well No.	ELL LOG IW-1604 of 3				
Drilling Start Date:06/06/2016Drilling End Date:06/06/2016Drilling Company:LayneDrilling Method:Hollow Stem AugDrilling Equipment:CME95Driller:Tim WoodsLogged By:Nardos Tilahun	er	Boring Depth (ft):50.5Boring Diameter (in):8Sampling Method(s):CuttingsDTW During Drilling (ft):19.0DTW After Drilling (ft):28.7Top of Casing Elev. (ft msl):556.21Location (X,Y):2108828.43, 254482.33*	Riser Material:ScScreen Material:ScSeal Material(s):Be)10 h 40 PVC h 40 PVC entonite C	a 40 PVC a 40 PVC Slotted atonite Chips bal Filter Pack #5			
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		SOIL/ROCK VISUAL DESC	RIPTION	MEAS (mdd) OId	Lab Sample	ELEV. (ft msl)		
		(19.5') Lean CLAY (CL); mostly clay, medium light brown. (23') Poorly graded SAND (SP); mostly fine-n very loose, wet, light brown. (25') Lean CLAY (CL); mostly silt, trace clay, medium stiff, wet, dark gray. (30') Lean CLAY (CL); mostly clay, medium p wet, light brown. (38') Poorly graded SAND (SP); mostly fine-n trace silt, trace clay, loose, wet, light brown.	nedium grained sand, medium plasticity,			- 530 - 525 - 520		
		Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 553.12 ft	MSL.					

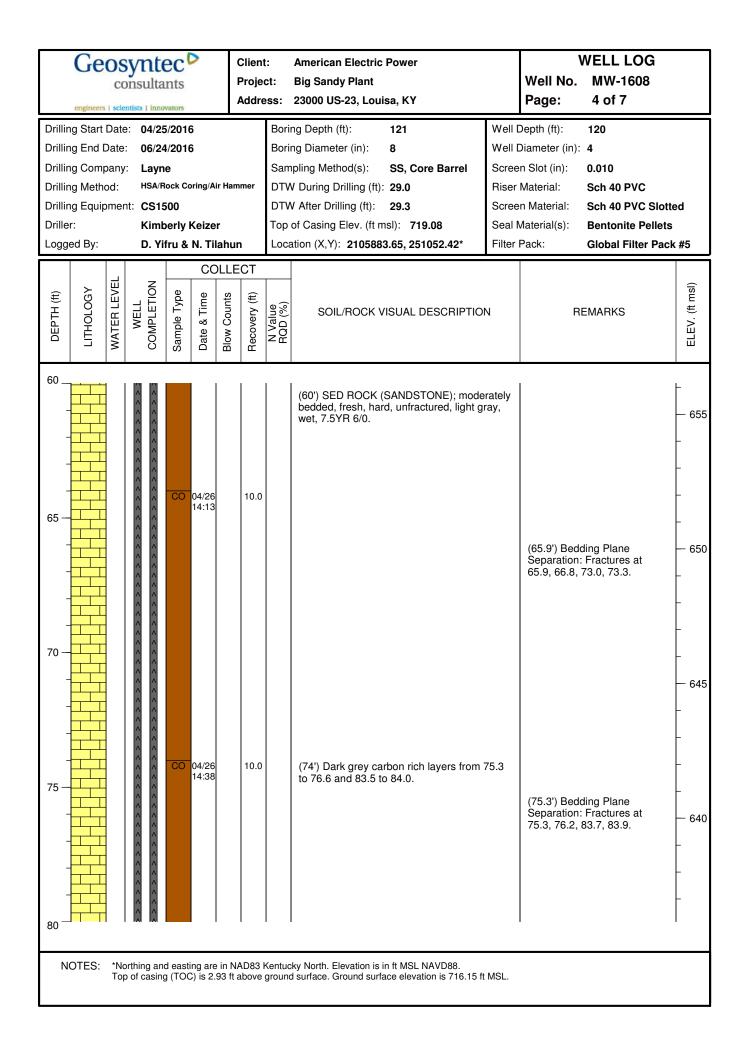
Geosyntec Consultants	Clien Proje Addre	ct: Big Sandy Plant	Well No.		ELL LOG IW-1605 of 2			
Drilling Start Date:04/27/2016Drilling End Date:04/27/2016Drilling Company:LayneDrilling Method:Hollow Stem AugDrilling Equipment:CME95Driller:Tim WoodsLogged By:Nardos Tilahun	er	Boring Depth (ft):32Boring Diameter (in):8Sampling Method(s):Split SpoonDTW During Drilling (ft):18.0DTW After Drilling (ft):15.9Top of Casing Elev. (ft msl):557.46Location (X,Y):2110694.01, 252760.21*	entonite l	40 PVC 40 PVC Slotted tonite Pellets bal Filter Pack #				
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time		SOIL/ROCK VISUAL DESCR	IPTION	MEA (mdd) OIA	Lab Sample BD	ELEV. (ft msl)		
0 - - - - - - - - - - - - -	2 1.5 3 1.0 3 2.0 3 2.0 4 2 2.0 4 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 4 2 2.0 2 2.0 2 2.0 4 2 2.0 2 2.0 4 2 2.0 2 2.0 4 2 2.0	 (0') Lean CLAY (CL); few silt, mostly clay, med stiff, moist, brown, 7.5YR/3/4, roots to 2 ft, 2 in 5 ft. (8') Lean CLAY (CL); few silt, mostly clay, med stiff, wet, light brown, 7.5YR/5/4. (10.5') SILT (ML); mostly silt, trace clay, low plas brown, 7.5YR/6/5. (12') Lean CLAY (CL); few silt, mostly clay, med medium stiff, wet, light brown, 7.5YR/5/4. (13') SILT (ML); mostly silt, trace clay, low plas brown, 7.5YR/6/6. (14.5') Lean CLAY with sand (CL); little fine sat clay, medium plasticity, medium stiff, wet, light (18') Poorly graded SAND (SP); mostly fine gra saturated, white, GLEY1/7/10Y, Wood between anaerobic water odor, ALLUVIUM. 	ium plasticity, medium asticity, soft, wet, light dium plasticity, ticity, soft, wet, light nd, some silt, some brown, 7.5YR/6/6.		5 MW-1605 (14-16)	54.40 - - - - - - - - - - - - - - - - - - -		
		Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 554.40 ft M	SL.					

	osynte consulta	nts		Proje	Client:American Electric PowerWELLProject:Big Sandy PlantWell No.MW-1Address:23000 US-23, Louisa, KYPage:2 of 2						
Drilling Start Drilling End Drilling Com Drilling Meth Drilling Equin Driller: Logged By:	Date: 04/2' pany: Layr od: Holle oment: CME Tim	7/2016 ne ow Stei	;	jer	Boring Depth (ft):32Well DBoring Diameter (in):8Well DSampling Method(s):Split SpoonScreetDTW During Drilling (ft):18.0Riser DDTW After Drilling (ft):15.9ScreetTop of Casing Elev. (ft msl):557.46Seal NLocation (X,Y):2110694.01, 252760.21*Filter F	26 4 0.010 Sch 40 PVC Sch 40 PVC Bentonite P Global Filter	Slotted ellets				
DEPTH (ft) LITHOLOGY	WATER LEVEL WELL COMPLETION	le Type	Date & Time	Blow Counts D. Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTIO	ÐN	MEAS (wdd) Old	Lab Sample 3			
		SS 0 1 SS 0 1 SS 0 1 SS 0	4:43 4/27 4:50 4/27 4:58 4/27 5:24 4/27 5:24	2 1.8 2 3 4 4 3 2.0 3 4 4 2 2 2.0 3 4 4 2 2 3 3 2.0 3 4 1 1.0 1 2 2 1.8 3 4 4 1 2 2 3 1 4 1 1.0 1 2 2 1.0 3 4 4 4 2 2.0 3 4 4 4 1 1.0 1 2 2 2 1.0 1 1.0 1 2 2 2 1.0 1 1.0 1 2 2 2 1.0 1 1.0 1 2 2 2 1.0 1 1.0 1 2 2 1.0 1 1.0 1 1.0 1 2 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 2 1.0 1 1.0	(22') Poorly graded SAND (SP); mostly medium grai fine gravel, loose, saturated, light gray, GLEY1/5/5G and coal, ALLUVIUM. (25') Fat CLAY (CH); mostly clay, high plasticity, stiff gray, GLEY2/4/5PB.	Y, some wood	, d ght				
35 NOTES:					Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 554.40 ft MSL.			- 520			

		CO		ints	>	1	Client Projec Addre	ct: Big Sandy Plant Well No. M	LL LOG W-1606 of 3			
Drillin Drillin Drillin Drillin Drillen	ig End I ig Comj ig Meth ig Equip	Date pany od:	:: Layr Holl nt: CME Tim	6/201(ne ow St	6 em Ai Is	C		DTW After Drilling (ft):30.6Screen Material:SchTop of Casing Elev. (ft msl):554.10Seal Material(s):Ben				
DEPTH (ft)	ГІТНОГОĞY	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEA: (mdd) OIA	Lab Sample	ELEV. (ft msl)	
0	777	_		SS	04/26	4	2.0			5	550.99 1	
-			~~~~~	SS	04/26 08:08 04/26 08:21	4 6 6 2	2.0	(0') Lean CLAY (CL); some silt, mostly clay, medium plasticity, stiff, moist, light yellowish-gray, roots, 7.5YR/7/2.			— 550 -	
-		-		SS	04/26 08:28		2.0	(2.5') Poorly graded SAND (SP); mostly fine grained sand, few silt, few clay, medium dense, moist, light reddish-brown, 7.5YR/7/4. (3') Fat CLAY with sand (CH); little fine sand, some silt, mostly clay, high plasticity, medium stiff, moist, light yellowish-gray,			-	
5		-	~ ~ ~ ~ ~ ~ ~	SS	04/26 08:37	3 4	2.0	(4') Lean CLAY with sand (CL); some fine sand, some silt, mostly clay, medium plasticity, medium stiff, moist, light reddish-gray, SYR/6/4.			- 545 -	
-	کر کر کر کر کر کر کر کر کر کر	-	~ ~ ~ ~ ~ ~	SS	04/26 08:43	2 3	2.0	(6.5') Fat CLAY (CH); trace fine sand, little silt, mostly clay, high plasticity, stiff, moist, light gray, GLEY2/5/5PB.			-	
10	م کر کر کر کر کر کر کر کر کر کر کر			SS	04/26 08:48	3 4	2.0				- — 540	
-				SS	04/26 08:54	4 3 4 3	2.0	(11.5') Poorly graded SAND with silt (SP-SM); mostly fine grained sand, some silt, few clay, medium dense, moist, light gray, GLEY2/5/10B.			-	
- 15 —	کر کر کر کر کر کر کر کر کر کر کر کر	-		SS	04/26 09:00		2.0	(12') Fat CLAY (CH); trace fine sand, few silt, mostly clay, high plasticity, stiff, moist, light gray, GLEY2/5/5PB.			-	
-			~ ~ ~ ~ ~	SS	04/26 09:05		2.0				— 535 -	
-		-	~ ~ ~ ~ ~	SS	04/26 09:09	4 4	2.0				-	
20	OTES:							Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 550.99 ft MSL.			L	

		CO		ants	>	F	Client Projec Addre	ct: Big Sandy Plant		V Well No. Page:		L LC /-160 f 3				
Drillin Drillin Drillin Drillin Driller	g End I ng Comp ng Metho ng Equip	Date bany od:	: Layı Holl nt: CME Tim	26/2016 ne low Ste	6 em Au Is	-	DTW During Drilling (ft): 20.0 Riser Material: Sc DTW After Drilling (ft): 30.6 Screen Material: Sc Top of Casing Elev. (ft msl): 554.10 Seal Material(s): Be									
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESC	riptio	N		MEA (mdd) OIA	Lab Sample	ELEV. (ft msl)		
20		×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SS SS SS	04/26 09:14 04/26 09:22 04/26 09:36 04/26 09:43 04/26 09:49 04/26 11:11	2 3 4 2 12 24 26 8 7 7 8 4 4 5 4 3 3 4 4 4 3 4 1 1 2 2	 2.0 2.0 2.0 2.0 2.0 2.0 1.8 	 (22.5') Lean CLAY with gravel (CL); little fine-medium sand, some silt, mostly clay, medium moist, light gray, GLEY2/5/5PB. (24.5') Lean CLAY (CL); trace fine sand, some medium plasticity, medium stiff, moist, light gr inch sand at 29.5 ft. Depth to Water at End of Well Installation = 24 (35') SILT with sand (ML); some fine sand, medium standard (ML); some fine sand, medium standard (ML); some fine sand, medium sandard (ML); some fine sandard (ML); some	plastic	ty, very stiff, ostly clay, EY2/4/10B, 1			WW-1606 (30-32)	- 530 		
	DTES:							plasticity, soft, wet, light gray, GLEY2/5/5B.	MSL.					- 515 - - -		


	CO	ynte nsulta	nts	>	F	Project: Big Sandy Plant Well No. M Address: 23000 US-23, Louisa, KY Page: 3 c					L LO V-160 of 3			
Drilling Sta Drilling En Drilling Co Drilling Me Drilling Eq Driller: Logged By	d Date: mpany thod: uipmer	ti 04/26 Layn Hollo ti CME Tim	6/2010 e ow Sta 95 Wood	6 em A	-		DTW After Drilling (ft):30.6Screen Material:SchTop of Casing Elev. (ft msl):554.10Seal Material(s):Ben					10 h 40 PVC h 40 PVC Slotted ntonite Chips obal Filter Pack #		
DEPTH (ft) LITHOLOGY	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESC	RIPTIC	DN		MEA: (mdd) QIA	Lab Sample BD	ELEV. (ft msl)	
			SS	04/26 11:29 04/26 11:59 04/26	7 9 10 7 8 8 12	2.0	 (40') Poorly graded SAND (SP); mostly fine-n little silt, loose, wet, dark gray, GLEY2/5/5B, (zone at 45 ft. (49') Poorly graded SAND with gravel (SP); n grained sand, some coarse gravel, few silt, lo 7.5YR/5/3. (50') SED ROCK (SANDSTONE); fine sand, weathered, hard, white, moist, GLEY2/7/10B. (51') As Above: End of Boring. 		ick clay rich ine-medium et, light brown			WW-1606 (46-48)	51 	
NOTES							Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 550.99 ft	MSL.						


	Ge	CO	onsu	ltar	nts	>	F	Client Projec Addre	ELL I MW-1 1 of 2	607				
Drillin Drillin Drillin Drillin Drillen	ig Start ig End I ig Comj ig Meth ig Equip r: ed By:	Date pany od:	: 04 r: La Ha nt: Cl Ti	1/26 ayne ollo ME9 m V	/2016 e w Sto 95 Vood	6 em A	-		DTW During Drilling (ft):23.0Riser Material:SDTW After Drilling (ft):19.8Screen Material:STop of Casing Elev. (ft msl):545.23Seal Material(s):B	.010 ch 40 F ch 40 F entonit	10 n 40 PVC n 40 PVC Slotted ntonite Pellets abal Filter Pack #5 MEASURE			
DEPTH (ft)	ГІТНОГОӨҮ	WATER LEVEL	MELL	COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION		(Lab Sample BU	ELEV. (ft msl)	
0	////			~	SS	04/26		1.0	(0) Loop CLAY (CL) come site mostly slav, modium plasticity, stiff			5	642.21 -	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SS SS SS	14:17 04/26 14:30 04/26 14:41 04/26 14:47 04/26 14:51	2 2 4 4 8 12 2 3 5 2 3 3 4 2 2 3 3 4 2 2 3 3	<ol> <li>2.0</li> <li>1.8</li> <li>2.0</li> <li>1.8</li> <li>2.0</li> <li>2.0</li> </ol>	<ul> <li>(0') Lean CLAY (CL); some silt, mostly clay, medium plasticity, stiff, moist, light brown, 7.5YR/4/6, roots to 4 ft.</li> <li>(10') Lean CLAY (CL); some silt, mostly clay, medium plasticity, stiff, moist, light brown, 7.5YR/4/6. moisture content increasing with</li> </ul>	 ,			- - 540 - - 535 - -	
- - 15 —			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		04/26 14:56 04/26 15:02	4 2 2 3 2	2.0	depth.				530 - -	
-			~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~		04/26 15:08 04/26 15:16	3 3 4 2 2	1.5	moist, light reddish-brown, 7.5YR/4/6. (17') Poorly graded SAND (SP); mostly fine grained sand, few silt, medium dense, wet, white, GLEY1/7/10Y. (18') Poorly graded SAND (SP); mostly fine grained sand, few silt,				- 525 -	
20	OTES:		orthing			ing are	3 3 9		(18') Poorly graded SAND (SP); mostly fine grained sand, few silt, medium dense, wet, light brown, 7.5YR/7/2. Kentucky North. Elevation is in ft MSL NAVD88. ground surface. Ground surface elevation is 542.21 ft MSL.				-	

Ceosynte consulta	nts	Clie Pro Ade		WELL LOG Well No. MW-1607 Page: 2 of 2
Drilling Company: Layr Drilling Method: Holk Drilling Equipment: CME Driller: Tim	6/2016 ne ow Stem Au		Boring Diameter (in):8WeSampling Method(s):Split SpoonSciDTW During Drilling (ft):23.0RisDTW After Drilling (ft):19.8SciTop of Casing Elev. (ft msl):545.23Sci	ell Depth (ft): 34 ell Diameter (in): 4 reen Slot (in): 0.010 ser Material: Sch 40 PVC reen Material: Sch 40 PVC Slotted al Material(s): Bentonite Pellets ter Pack: Global Filter Pack #5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Sample Type Date & Time	Blow Counts TO	SOIL/ROCK VISUAL DESCRIP	TION HEASURE (bbm) Lab Sample Lab Sample Lab Sample
	SS       04/26         15:23       04/26         15:32       04/26         SS       04/26         15:51       04/26         SS       04/26         16:07       04/26         SS       04/26         16:14       16:14	2 1 2 3 4 2 2 3 3 2 3 3 2 3 4 4 2 3 3 4 2 5 5 7 3 1 3 4 5 7 1 9 15 17	(21') Poorly graded SAND (SP); mostly medium g silt, trace clay, loose, saturated, light yellowish-br (23') SILT with sand (ML); some fine sand, mostly plasticity, medium stiff, saturated, dark gray, GLE (29') Poorly graded SAND (SP); mostly medium g silt, loose, saturated, white, GLEY1/7/5GY.	prained sand, few e fine-coarse pose, saturated, prime fine-coarse

Drilling Start Date: 04/25/201 Drilling End Date: 06/24/201 Drilling Company: Layne Drilling Method: HSA/Rock C Drilling Equipment: CS1500 Driller: Kimberly Logged By: D. Yifru 8	16 Coring/Air H / Keizer & N. Tilah COLI emi emi cost cost emi cost cost emi cost cost emi cost cost emi cost cost cost cost cost cost cost cost	LECT Hecovery (ft) 1 1.0	Bori Sam DTV DTV Top	ng Diameter (in): 8 We appling Method(s): SS, Core Barrel Sc V During Drilling (ft): 29.0 Ris V After Drilling (ft): 29.3 Sc of Casing Elev. (ft msl): 719.08 Se ation (X,Y): 2105883.65, 251052.42* Filt	ell Depth (ft): 120 ell Diameter (in): 4 reen Slot (in): 0.010 ser Material: Sch 40 PVC reen Material: Sch 40 PVC Slotted al Material(s): Bentonite Pellets ser Pack: Global Filter Pack #5
	Date & Time Date & Time Blow October	Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	REMARKS
	09:06 2		1		
	09:08 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 04/25 0	2 1.0 2 1.0 2 1.0 2 2 4 4 4 5 8 9 9 2 2.0 4 5 6 5 6 7 1.5 8 8 9 2 2.0 4 5 6 6 5 6 7 1.5 8 8 8 4 2 1.0 1.5 8 8 8 4 2 1.0 1.5 8 8 8 4 2 1.0 1.5 8 8 8 4 2 1.0 1.5 8 8 8 1.5 8 8 8 1.5 1.5 8 8 8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3 6 16 39 41 36 42 81 95 92	<ul> <li>(0') Poorly graded SAND (SP); mostly medium-coarse grained sand, few fine-coarse gravel, very loose, moist, light gray, GLEY2/5/5PB.</li> <li>(1.5') Fat CLAY (CH); trace fine sand, little silt, mostly clay, high plasticity, medium stiff moist, light reddish-brown, 7.5YR/5/6.</li> <li>(3') Poorly graded SAND (SP); mostly fine-medium grained sand, few coarse gravel, loose, moist, light brown, 7.5YR/7/6.</li> <li>(5') Lean CLAY (CL); few silt, mostly clay, medium plasticity, stiff, moist, light purplish-brown, 2.5YR/4/6.</li> <li>(6.5') Lean CLAY (CL); few silt, mostly clay, medium plasticity, very stiff, moist, white, GLEY1/8/N.</li> <li>(10') SILT with gravel (ML); little fine-coarse gravel, few medium-coarse sand, mostly silf few clay, nonplastic, soft, dry, light yellowish-brown, 7.5YR/8/4.</li> <li>(12') SED ROCK (SHALE); very thinly bedded, intensely weathered, moderately hard, intensely fractured, light gray, dry, GLEY2/7/10B.</li> <li>(17') Lean CLAY (CL); little silt, mostly clay, medium plasticity, very stiff, dry, dark reddish-brown, 7.5YR/6/2.</li> </ul>	

Geosyntec Consultants	Client: Project: Address:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY	WELL LOG Well No. MW-1608 Page: 2 of 7
Drilling Start Date:04/25/2016Drilling End Date:06/24/2016Drilling Company:LayneDrilling Method:HSA/Rock Coring/Air HDrilling Equipment:CS1500Driller:Kimberly KeizerLogged By:D. Yifru & N. Tilah	ammer DT DT To	rring Diameter (in): 8 We impling Method(s): SS, Core Barrel Sc W During Drilling (ft): 29.0 Ris W After Drilling (ft): 29.3 Sc p of Casing Elev. (ft msl): 719.08 Se	ell Depth (ft):120ell Diameter (in):4reen Slot (in):0.010ser Material:Sch 40 PVCreen Material:Sch 40 PVC Slottedal Material(s):Bentonite Pelletsser Pack:Global Filter Pack #5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Date & Time		SOIL/ROCK VISUAL DESCRIPTION	REMARKS (Isu II) NBTH
20 20 5 5 04/25 4 6 5 04/25 4 23:09 10:45 4 23:09 10:45 4 23:09 10:45 4 23:09 10:45 4 23:09 10:45 4 23:09 10:45 4 23:09 10:45 4 23:09 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 4 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10:45 10	B 1.0 100 2 1.0 100 2 1.0 100	(20') SED ROCK (SHALE); clay, very thinly bedded, slightly weathered, hard, moderately fractured, light gray, dry, GLEY2/7/10B. (23') SED ROCK (SHALE); clay, thinly bedded, slightly weathered, very hard,	695 
		(36') SED ROCK (SANDSTONE); moderately bedded, fresh, hard, unfractured light gray, wet, 7.5YR 6/0.	





Drilling Start Date: 04/25/2016 Drilling End Date: 06/24/2016 Drilling Company: Layne Drilling Method: HSA/Rock Coring// Drilling Equipment: CS1500 Driller: Kimberly Keize Logged By: D. Yifru & N. T		Borin Sam DTV DTV Top	ing Diameter (in): 8 Well I npling Method(s): SS, Core Barrel Scree V During Drilling (ft): 29.0 Riser V After Drilling (ft): 29.3 Scree of Casing Elev. (ft msl): 719.08 Seal I ation (X,Y): 2105883.65, 251052.42* Filter	Depth (ft): 120 Diameter (in): 4 en Slot (in): 0.010 Material: Sch 40 PVC en Material: Sch 40 PVC Slotted Material(s): Bentonite Pellets Pack: Global Filter Pack #5 REMARKS
DEPTH (ft) DEPTH (ft) LITHOLOGY LITHOLOGY WATER LEVEL WATER LEVEL WATER LEVEL COMPLETION Sample Type Date & Time		N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	(Ist if the second seco
	10		(90') SED ROCK (SANDSTONE); moderately bedded, fresh, hard, unfractured, light gray, wet. (90.5') SED ROCK (COAL); very thinly bedded, intensely weathered, moderately soft, intensely fractured, dark gray, wet, 7.5YR 3/0.	(84.8') Bedding Plane Separation: Fracture at 84.8 and 86.1. (90.5') Bedding Plane Separation: (Bottom 94). (90.5') Bedding Plane Separation: 90.5-105.5.

Geosyntec consultants	Client: Project Addres	t: I	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		V Well No. Page:	WELL LOG MW-1608 6 of 7	
Drilling Start Date:04/25/2016Drilling End Date:06/24/2016Drilling Company:LayneDrilling Method:HSA/Rock Coring/Air HaitDrilling Equipment:CS1500Driller:Kimberly KeizerLogged By:D. Yifru & N. Tilahu	mmer	Borin Samp DTW DTW Top o	g Depth (ft):       121         g Diameter (in):       8         bling Method(s):       SS, Core Barrel         During Drilling (ft):       29.0         After Drilling (ft):       29.3         of Casing Elev. (ft msl):       719.08         tion (X,Y):       2105883.65, 251052.42*	Well E Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Jaterial(s): Pack:	120 4 0.010 Sch 40 PVC Sch 40 PVC Slott Bentonite Pellets Global Filter Pac	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Date & Time	(t)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	1	RI	EMARKS	ELEV. (ft msl)
	9.5		(105.5') SED ROCK (SHALE); thinly bec moderately weathered, soft, moderately fractured, light gray, wet, 7.5YR 6/0 frac zone: 106.7-107.0, 108.0-108.3, 110.0- 110.5, 111.0-111.5.				- 615 
		-	<ul> <li>(114') SED ROCK (SHALE); thinly bedd moderately weathered, soft, moderately fractured, light gray, wet.</li> <li>(116') SED ROCK (SHALE); thinly bedd slightly weathered, soft, moderately fractured, dark gray, wet, carbon rich sha (118') SED ROCK (SHALE); thinly bedd moderately weathered, soft, moderately fractured, light gray, wet.</li> </ul>	ed, ale. ed,			- - 600 - -
			y North. Elevation is in ft MSL NAVD88. surface. Ground surface elevation is 716.15 ft	MSL.			

Geosy cons engineers   scientist	ultants	>		ent: ject: dress:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		\ Well No. Page:	WELL LOG MW-1608 7 of 7	
Drilling Company: Drilling Method: Drilling Equipment: Driller:	06/24/2016 Layne HSA/Rock Co	6 oring/Air Keizer		Bori San DTV DTV Top	ng Diameter (in): 8 npling Method(s): SS, Core Barrel V During Drilling (ft): 29.0 V After Drilling (ft): 29.3 of Casing Elev. (ft msl): 719.08	Well D Screer Riser I Screer	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	120 4 0.010 Sch 40 PVC Sch 40 PVC Slot Bentonite Pellet Global Filter Pac	s
DEPTH (ft) LITHOLOGY WATER LEVEL WFLI	COMPLETION Sample Type		Blow Counts Becoverv (#)		SOIL/ROCK VISUAL DESCRIPTION	I	RI	EMARKS	ELEV. (ft msl)
					(121') SED ROCK (SHALE); thinly bedde moderately weathered, soft, moderately fractured, very dark gray, wet.	ed,			- - -

						F	Client Proje Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1609 Page: 1 of 8	
Drillin Drillin Drillin	g End I g Com g Meth g Equip ::	Date pany od:	: Layn Rock nt: CS1 Kimb	)/2010 ie ( Cori	6 ing/Ai Keize	er	nmei	r		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Cc 26 72		
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	£	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
									Boring log discri	ption from MW-1203.			- 725 - 725 - 720 - 720 - 715 - 715 - 710
NC	OTES:	*No Mo	orthing an nitoring w	d easti ell was	ing are s not ii	e in NA nstalle	AD83   d in th	Kentuc nis bore	cky North. Elevation i ehole.	s in ft MSL NAVD88.			

							Client Projec Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1609 Page: 2 of 8	
Drillin Drillin Drillin Drillin Drillen	ig End I ig Comp ig Metho ig Equip	Date: pany: od:	E Layn Rock It: CS1 Kimb	0/2016 ie « Cori	6 ing/Ai Keize	r	mmer	r		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 26 72		
DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
				CO	04/19 09:27 04/19		2.0		(30') SED ROCI intensely weath fractured, light g 6/0. (34') SED ROCI fresh, hard, unfr wet, 7.5 YR 6/0, top, gradually S (37') SED ROCI fresh, very hard gray, wet, 7.5 YF	K (SANDSTONE); massive, , unfractured, light greenish- R 6/0.			- 705 - 705 700 700 695 695 
N	OTES:		rthing an nitoring w							s in ft MSL NAVD88.			

40 40 45 45 45 45 45 45 45 45 45 45			CC		ints			Client Proje Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOGBoring No.MW-1609Page:3 of 8	
10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       1	Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Metho ng Equip er:	Date bany od:	: 04/20 : Layn Rock nt: CS1 Kimb	0/2010 Ne K Cori 500 Derly	6 ing/Ai Keize	r	mmer			Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):	8 Co 26 72	ore Barrel 6.9 88.28	
45       60         45       100         (44)       SED ROCK (SANDSTONE); massive, fresh, very hard, unfractured, light greenish-gray, wet.         (45)       (44)         45       (43)         60       04/19         100       (44)         (44)       SED ROCK (SANDSTONE); massive, fresh, very hard, unfractured, light greenish-gray, wet, 7.5 YR 3/4.         (46.5)       SED ROCK (SANDSTONE); thickly bedded, intensely weathered, very hard, unfractured, light greenish-gray, wet, 7.5 YR 3/4.         (46.5)       SED ROCK (SANDSTONE); thickly bedded, fresh, very hard, unfractured, light greenish-gray, wet, 7.5 YR 6/0.         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (46.5)         50       (54)         51       (54)         52       (54)         53       (54)	DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	BORING COMPLETION	Sample Type				N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
55       16:37       (54') SED ROCK (SANDSTONE); moderately bedded, fresh, very hard, unfractured, light greenish-gray, wet, 7.5YR       -         6/0, 54 to 50 ft mostly thinly bedded, 50 to 52 ft flow texture.       -	- - - 45 - - - - - - - -					17:01				fresh, very hard gray, wet. (44.5') SED RO bedded, intense slightly fractured 7.5YR 3/4. (46.5') SED RO bedded, fresh, v	, unfractured, light greenish CK (SANDSTONE); thickly ly weathered, very hard, d, light reddish-brown, wet, CK (SANDSTONE); thickly very hard, unfractured, light		Separation at 42.0, 42.3, 42.4. (43.6') Bedding Plane Separation at 43.6, 43.8. (46.3') Random Fracture: (True) Moderately Discontinuous, Moderately Open; Surface (Rough, Planar, Moderately Weathered, Mod Hard); Filling (Moderately Thin, Hematite, Intensely Weathered, Mod Hard, Not Healed); (Bottom 46.5) (46.5') Random Fracture: Slightly Open; Surface (Smooth, Planar, Intensely Weathered, Mod Soft); Filling (Clean); Random Fracture:	- 685 - 685 680 680 
60 NOTES: *Northing and easting are in NAD83 Kentucky North. Elevation is in ft MSL NAVD88.	60 -					16:37				moderately bed unfractured, ligh 6/0, 54 to 50 ft r 52 ft flow texture	ded, fresh, very hard, It greenish-gray, wet, 7.5YR nostly thinly bedded, 50 to e.	1	Separation at 58.2, 58.4,	- - - 670 -

					>	F	Client Projec Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOGBoring No.MW-1609Page:4 of 8	
Drillir Drillir Drillir Drillir Drille	ng End I ng Comp ng Meth ng Equip	Date bany od:	: Layn Rock nt: CS15 Kimb	0/2016 ie « Cori	6 ng/Ai Keize	r	nmer			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 26 72		
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	f)	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
60					04/20 09:02		10.0	100	(68.5') SED ROCI greenish-gray, v	K (SANDSTONE); ded, fresh, very hard, it greenish-gray, wet. K (SHALE); clay, laminated, ed, hard, unfractured, light vet. CK (SANDSTONE); ded, fresh, very hard, it greenish-gray, wet, 7.5YR		(65') Bedding Plane Separation at 65.0-68.4, 69.0, 71.0, 72.3, 73.8.	- - 665 - - - 660 - -
- - 75 - - -					04/20 09:46		10.0	100	moderately bed unfractured, ligh (79') SED ROCI	<pre>   (SANDSTONE); ded, fresh, very hard, it greenish-gray, wet.    (COAL); moderately ately weathered, moderately</pre>		(75.4') Bedding Plane Separation at 75.4, 77.2, 79.5 to 80.5, 82.8, 83.6, 83.9.	- - 655 - - - 650 -
80	OTES:		orthing and						" ky North. Elevation i	s in ft MSL NAVD88.			

			onsulta			F	Client Proje Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1609 Page: 5 of 8	
Drilling Drilling Drilling	g End E g Comp g Metho g Equip	Date: Dany Dd:	: Layn Rock nt: CS15 Kimb	0/2016 e Cori 500 perly l		r	mmer	r		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 26 72		
DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	£	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
80				CO	04/20 11:01		10.0	63	2/1, honeycomb (79.5') SED RO bedded, fresh, h light gray, wet, 7 from 79.5 to 80. (84') SED ROCH bedded, modera moderately fract	CK (SHALE); moderately nard, moderately fractured, 7.5YR 6/0, highly fractured 5. K (SHALE); moderately ately weathered, hard, tured, light gray, wet, 7.5YR ne interval: 85.9-86.2, 86.8-		(84') Bedding Plane Separation: Slightly Open; Surface (Smooth, Planar, Fresh, Mod Hard); Filling (Clean); (94) (85.9') Bedding Plane Separation at 85.9-86.2, 86.8-89.3, 88.0-88.4, 91.7- 93.0.	- - 645 - - - 640 -
95				CO	04/20 11:53		10.0	50	(98.5') SED RO bedded, slightly	K (SHALE); thinly bedded, ered, moderately soft, red, light gray, wet, YR7.5 CK (SHALE); moderately weathered, very hard, very d, light gray, wet, 7.5YR 6/0.		(94') Bedding Plane Separation: Slightly Open; Surface (Smooth, Planar, Intensely Weathered, Mod Soft); Filling (Clean); Bedding Plane Separation at 94.0- 98.5, 100.8, 101.0, 101.1, 102.7.	- - 635 - - - 630 -
	)TES:		orthing and nitoring w							is in ft MSL NAVD88.			

				Clien Proje Addre	ct:	American Electri Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1609 Page: 6 of 8	
Drilling Start Da Drilling End Da Drilling Compa Drilling Method Drilling Equipm Driller: Logged By:	te: 04/20 ny: Layn : Rock ent: CS18 Kimb	0/2016 ie k Corinț	eizer	Hamme	r		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 26. 728	-	
DEPTH (ft) LITHOLOGY	BORING COMPLETION			Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
			4/20 2:47	10.0	90	slightly weathered fractured, light g (106') SED ROC intensely weather intensely fracture 6/0. (107') SED ROC bedded, slightly	CK (SHALE); thinly bedded, ed, hard, very slightly ray, wet, 7.5YR 6/0. CK (SHALE); laminated, ered, moderately soft, ed, light gray, wet, 7.5YR CK (SHALE); moderately weathered, hard, very d, light gray, wet, 7.5YR 6/0.		(104') Bedding Plane Separation: 104-114.	- - - - - - - - - - - - - - - - - - -
			4/20 4:04	10.0	90	fresh, hard, very wet, 7.5YR 6/0. (115.5') SED RC bedded, slightly slightly fractured (116.6') SED RC bedded, modera slightly fractured	CK (SHALE); thinly bedded, y slightly fractured, light gray OCK (SANDSTONE); thickly weathered, hard, very d, light gray, wet, 7.5YR. OCK (SHALE); moderately ately weathered, hard, d, dark gray, wet, 10YR 2/1, ion. Carbon rich Shale.	/, / 	(115.2') Bedding Plane Separation: 115.2, 115.4, 115.8, 116.6 to 117.3, 118.0, 120.4, 120.8, 121.2, 123.5 to 124.0.	- - - - - 610 -

			onsulta		>	1	Client Projec Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1609 Page: 7 of 8	
Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Metho ng Equip	Date: bany od:	: Layn Rock nt: CS15 Kimb	)/2016 e ( Cori	6 ng/Ai Keize	r	mmer			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 26 72		
DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	(t)	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
120					04/20 14:55 04/20 16:35		10.0	20	(124') SED ROC bedded, intense hard, intensely f 7.5YR 6/0, fractu 127.4, 128.0-13 (134') SED ROC intensely weather	CK (SHALE); moderately ly weathered, moderately ractured, light gray, wet, ure zone intervals: 125.2-		(124') Bedding Plane Separation: 124-134. (125') Fracture Zone: Slightly Open; Surface (Smooth, Planar, Intensely Weathered, Mod Soft); Filling (Clean, Slightly Weathered, Mod Soft, Partly Healed); (132) (134') Bedding Plane Separation: Slightly Open; Surface (Smooth, Planar, Intensely Weathered, Mod Soft); Filling (Clean); Bedding Plane Separation: 134-144.	- 605 
- - 140 N	OTES:		orthing and							s in ft MSL NAVD88.			- 590

co engineers   sci	onsulta		>	F	Client Proje Addre	••	American Electric Po Big Sandy Plant 23000 US-23, Louisa		BORING LOG Boring No. MW-1609 Page: 8 of 8	İ
Drilling Start Dat Drilling End Date Drilling Company Drilling Method: Drilling Equipme Driller: Logged By:	2: 04/20 7: Layn Rock nt: CS15 Kimb	)/2016 e ( Cori	5 ng/Ai Keize	r	nmer	r	Bor Sar DT DT Gro	ring Diameter (in): mpling Method(s): W During Drilling (ft): W After Drilling (ft): bund Surface Elev. (ft):	154 (Abandoned) 8 Core Barrel 26.9 728.28 2101420.87, 252205.98*	
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	£	N Value RQD (%)	SOIL/ROCK VIS	UAL DESCRIPTION	REMARKS	ELEV. (ft msl)
		CO	04/20 17:24		10.0	100	fresh, hard, unfractur 7.5YR 6/0, dark grey 150.2 to 150.3.	SHALE); thickly bedded, red, light gray, wet, r carbon rich Shale from SHALE); thickly bedded, red, light gray, wet, End	(144.6') Bedding Plane Separation: 144.6, 146.2, 147.5, 148.6, 149.4, 150.1 to 150.6, 152.0, 152.9.	- - - - - - - - - - 580 - - - 570 - - - - 570 -

21/2016 25/2016 yne ck Coring/Air H 1500 nberly Keizer rdos Tilahun edkL alume Bald alume S COLI	Recovery (ft) TJT	RQD (%)	SOIL/ROCK	Boring Diameter (in):8Sampling Method(s):0DTW During Drilling (ft):4DTW After Drilling (ft):4Ground Surface Elev. (ft):7	Core Barrel 19.0 19.0	si)
Sample Type Date & Time	Recovery (ft)	ROD (%)	SOIL/ROCK			sl)
CO 04/21	60			VISUAL DESCRIPTION	REMARKS	ELEV. (ft msl)
	0.0	15	decomposed, mo	(SHALE); thinly bedded, oderately soft, very intensely rown, moist, 7.5YR 3/4.	(0') Bedding Plane Separation: 0-10.	- 715
CO 04/21			(19.5') SED ROC	CK (SANDSTONE); thinly	(10') Bedding Plane Separation: 10-19.	- 710 - 710 - 705 - 705 - 700 - 700 
	CO 04/21	CO 04/21 15.0 9	CO 04/21 15.0 93	CO 04/21 15.0 93 (19.5') SED ROO	CO 04/21 15.0 93 (19.5') SED ROCK (SANDSTONE); thinly and easting are in NAD83 Kentucky North. Elevation is in ft MSL NAVD88.	CO       04/21       15.0       93       (19.5') SED ROCK (SANDSTONE); thinly       (19') Bedding Plane Separation: 19-34.         Ind easting are in NAD83 Kentucky North. Elevation is in ft MSL NAVD88.

			onsulta		>	F	Client Projec Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1610 Page: 2 of 7	
Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Metho ng Equip	Date: bany od:	: Layn Rock nt: CS15 Kimb	5/2016 ie & Cori	6 ng/Ai Keize	r	mmer			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 49 49 71	.0	
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	£	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
20									bedded, fresh, h gray, moist, 7.5	ard, slightly fractured, light YR 6/0.			— 695 -
- 25 — -									bedded, intense	< (SANDSTONE); thinly ly weathered, moderately ctured, light brown, moist,			- - 690 -
30									moderately bed	K (SANDSTONE); ded, slightly weathered, l, slightly fractured, light YR 6/0.			- - 685 -
35				СО	04/21		8.5	40	intensely weather	CK (SHALE); laminated, ered, moderately soft, ed, light gray, moist, 7.5YR		(34') Bedding Plane Separation: 34-44.	- - 680 -
40	OTES:	*Nr	orthing an	d easti	ing are	in N4	AD83 P	Kentur	ky North. Elevation i	s in ft MSL NAVD88.			-
	0120.		nitoring w										

			onsulta		>	F	Client Proje Addre	-	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1610 Page: 3 of 7	
Drillir Drillir Drillir Drillir Drille	ng End I ng Comp ng Metho ng Equip	Date: bany od:	: Layn Rock nt: CS15 Kimb	5/2016 e c Cori	ð ing/Ai Keize	r	mmer	r		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 49 49 71	.0	
DEPTH (ft)	ГІТНОГОĠY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
40									intensely weather	K (SHALE); laminated, ered, moderately soft, ed, light gray, moist, 7.5YR			- 675 -
- 45 - -		-		СО	04/21		3.0	10				(44') Bedding Plane Separation: 44-47.	- - 670 - -
50 — - - -				СО	04/22		10.0	95					- - 665 - -
55 — - - -									moderately bed	< (SANDSTONE); ded, intensely weathered, ctured, light brown, moist,		(54.2') Bedding Plane Separation at 54.2, 55.3, 55.7, 57.3, 57.6, 57.9. (54.5') Random Fracture at 54.5.	- - 660 - -
60	OTES:		orthing and nitoring w							s in ft MSL NAVD88.			

			onsulta		>	1	Client Projec Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1610 Page: 4 of 7	
Drillir Drillir Drillir Drillir Drillir	ng End I ng Comp ng Metho ng Equip	Date Dany od:	: Layn Rock nt: CS15 Kimb	5/2016 ie & Corii	6 ng/Ai Keize	r	mmer			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 49 49 71	.0	
DEPTH (ft)	ГІТНОГОӨҮ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	(t)	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
60													— 655 -
- - 65 - - -				со	04/22		10.0	100	(63') SED ROCI moderately bed light gray, wet, 7	K (SANDSTONE); ded, fresh, hard, unfractured 7.5YR 6/0.	, t		- - - 650 - -
- 70				СО	04/22		10.0	75					- - 645 - -
75									moderately bed	CK (SANDSTONE); ded, intensely weathered, d, unfractured, light brown,	100	(76.6') Bedding Plane Separation: 76.6, 77.6, 82.0 to 84.0.	- - 640 - -
80	OTES:		orthing and						ky North. Elevation i	is in ft MSL NAVD88.	:1		

			onsulta		>	1	Client Projec Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1610 Page: 5 of 7	
Drillin Drillin Drillin Drillin Drillen	ng End I ng Comp ng Metho ng Equip	Date Dany od:	E Layn Rock nt: CS15 Kimb	5/2016 ie & Cori	6 ng/Ai Keize	r	mmer			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 49 49 71	.0	
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	t)	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
80   85            					04/22 11:14 04/22 11:31		8.0	65	moderately bed unfractured, ligh (80.5') SED RO moderately bed wet, 7.5YR 3/4. (81.5') SED RO slightly weather fractured, black, (83.5') SED ROC intensely weath fractured, light g (86') SED ROCI bedded, slightly slightly fractured	CK (SANDSTONE); ded, fresh, moderately hard, it gray, wet, 7.5YR 6/0. CK (SANDSTONE); ded, intensely weathered, d, unfractured, light brown, CK (COAL); thinly bedded, ed, moderately hard, slightly , wet, 7.5YR 2/0. CK (SHALE); laminated, ered, soft, intensely yray, wet, 7.5YR 6/0. K (SHALE); clay, thinly weathered, hard, very d, light gray, wet.		(84') Bedding Plane Separation: 84.0 to 86.0, 87.0 to 94.0.	- 635 - - 630 - 630  - 625 
95 — - - 100 NG			orthing and		ing are				hard, very šlight 7.5YR 6/0.	weathered, moderately ly fractured, light gray, wet,		(97.6') Bedding Plane Separation: 97.6, 99.4, 101.0 to 104.0.	- - 620 - -

						F	Client Projec Addre	ct:	American Electr Big Sandy Plant 23000 US-23, Lo			BORING LOG Boring No. MW-1610 Page: 6 of 7	
Drillin Drillin Drillin Drillin Drille	ng End I ng Comp ng Meth ng Equip	Date: pany od:	E Layn Rock nt: CS15 Kimb	5/2016 ie « Cori	6 ing/Ai Keize	r	nmer			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	8 Co 49. 49. 71:	.0	
DEPTH (ft)	ГІТНОГОӨҮ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	f	N Value RQD (%)	SOIL/ROCK	VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
100 - - 105 - -				CO	04/22 12:30		10.0	50	bedded, slightly	CK (SHALE); very thinly weathered, moderately ly fractured, light gray, wet,		(104') Bedding Plane Separation: 104.0 to 112.5.	- 615 - - - 610 -
- 110 — - - 115 — - - - - - - - - - - - - - - - - - - -				СО	04/22 13:41		10.0	90	intensely weathof fractured, light g rich Shale 110.0 (112') SED ROO sand, thinly bed moderately soft, light gray, wet, 7 formation. (114') SED ROO intensely weathof fractured, light g	CK (SANDSTONE); fine ded, moderately weathered, very intensely fractured, 7.5YR 6/0, Breathitt CK (SHALE); laminated, ered, soft, intensely iray, wet, 7.5YR 6/0, from lark grey Carbon rich Shale	,	(114') Bedding Plane Separation: Slightly Open; Surface (Smooth, Planar, Intensely Weathered, Soft); Filling (Very Thin, Clay, Intensely Weathered, Soft, Partly Healed); Bedding Plane Separation: 114.0 to 124.0.	- - - - - - - - 600 - - - - -
	OTES:		orthing an nitoring w							s in ft MSL NAVD88.			

COI engineers   scient	yntec nsultants tists   innovators	0	P	lient rojec ddre	et:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY	BORING LOG Boring No. MW-1610 Page: 7 of 7
Drilling Start Date: Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment Driller: Logged By:	04/25/201 Layne Rock Cor	i6 ring/Ai Keize	er	ımer		Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y):	136 (Abandoned) 8 Core Barrel 49.0 49.0 715.76 2104799.937, 254147.538*
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION Sample Type	Date & Time	Blow Counts	t)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	(fsm th) .Vala
		14:31		2.0	50	<ul> <li>(124') SED ROCK (SHALE); laminated, decomposed, soft, intensely fractured, ligh gray, wet, 7.5YR 6/0.</li> <li>(125.5') SED ROCK (SHALE); clay, thinly bedded, slightly weathered, moderately hard, very slightly fractured, light gray, wet</li> <li>(129') SED ROCK (SHALE); clay, very thin bedded, decomposed, soft, intensely fractured, light gray, wet.</li> <li>(134') SED ROCK (SHALE); clay, moderately bedded, fresh, moderately hard, unfractured, light gray, wet, 7.5YR 6/0, Breathitt Formation.</li> <li>(136') SED ROCK (SHALE); moderately hard, unfractured light gray, wet, End of Coring.</li> </ul>	- 58

Geosyntec Consultants	Client: Project: Address	American Electric Power Big Sandy Plant : 23000 US-23, Louisa, KY	WELL LOG Well No. MW-1611 Page: 1 of 7
Drilling Start Date:04/27/2016Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HarDrilling Equipment:CS1500Driller:Kimberly KeizerLogged By:Nardos Tilahun	nmer D To	oring Diameter (in):8Weampling Method(s):SS, Core BarrelScruTW During Drilling (ft):68.2RiseTW After Drilling (ft):75.8Scruop of Casing Elev. (ft msl):714.25Sea	II Depth (ft):115.5II Diameter (in):4een Slot (in):0.010er Material:Sch 40 PVCeen Material:Sch 40 PVC Slottedal Material(s):Bentonite Pelletser Pack:Global Filter Pack #5
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Date & Time		SOIL/ROCK VISUAL DESCRIPTION	(fsm ti) Netration (fsm ti) Netration
0 0 1 10 15 15 15 15 15 15 15 15 15 15	Image: 1.3     10       Image: 1.3     10       Image: 1.3     10       Image: 1.3     11       Image: 1.3     12       Image: 1.3     14       Image: 1.3     10       Image: 1.3     10       Image: 1.3     10	<ul> <li>(0') Poorly graded GHAVEL with sand (GP); mostly fine-coarse grained gravel, some medium-coarse sand, trace silt, trace clay, loose, moist, light gray.</li> <li>(1.5') Lean CLAY (CL); trace silt, mostly clay, medium plasticity, stiff, moist, brown, 7.5YR 4/3.</li> <li>(7.5') Gravelly SILT (ML); little fine-coarse gravel, some fine-medium sand, some silt, few clay, low plasticity, medium stiff, moist, brown, 7.5YR/4/3.</li> <li>(10') SED ROCK (SHALE); laminated, decomposed, soft, very intensely fractured, light gray, dry, 7.5YR 6/0.</li> <li>(12') No Recovery: Split Spoon ends, Rock Coring begins.</li> </ul>	711.64 711.64 710 710 710 705 Sample: MW-1611 (8-10) 700 700 700 700 700 700 700 7
		tucky North. Elevation is in ft MSL NAVD88. und surface. Ground surface elevation is 711.64 ft MSL.	

Driller: Kimberly Keizer Top of Casing Elev. (ft msl): 714.25 Seal Material(s): Bentonite Pellets	Ceosyntec Consultants	Client: American Electric Power Project: Big Sandy Plant Address: 23000 US-23, Louisa, KY	WELL LOG Well No. MW-1611 Page: 2 of 7
(i)       H       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HamDrilling Equipment:CS1500Driller:Kimberly Keizer	Boring Diameter (in):8WellSampling Method(s):SS, Core BarrelScreeDTW During Drilling (ft):68.2RiseDTW After Drilling (ft):75.8ScreeTop of Casing Elev. (ft msl):714.25Sea	Diameter (in):4een Slot (in):0.010or Material:Sch 40 PVCeen Material:Sch 40 PVC SlottedMaterial(s):Bentonite Pellets
25 25 25 25 25 25 25 25 25 25			(Ism II) .Vala
		<ul> <li>bedded, moderately weathered, moderately soft, slightly fractured, light gray, moist, 7.5YR 6/0.</li> <li>100         <ul> <li>(24') SED ROCK (SHALE); clay, thinly bedded, fresh, hard, unfractured, light gray, wet.</li> <li>(25') SED ROCK (SANDSTONE); very fine sand, moderately bedded, slightly weathered, hard, very slightly fractured, light</li> </ul> </li> </ul>	Separation: 24.8, 26.3, 27.5,
35       CO       04/27       10.0       90       Fracture at 34.4, 34.6 and 34.8       (34.4') Random Fracture at 34.4, 34.5, 34.8, 41.5 to 42.0, 42.6, 43.1.         35       (35') SED ROCK (SANDSTONE); very thinly bedded, fresh, moderately hard, moderately hard, moderately fractured, light gray, wet, 7.5YR 6/0, some inter-bedded shales.       (34.4') Random Fracture at 34.4, 34.5, 34.8, 41.5 to 42.0, 42.6, 43.1.         40       40       40       40       40		<ul> <li>10.0 90 Fracture at 34.4, 34.6 and 34.8</li> <li>(35') SED ROCK (SANDSTONE); very thinly bedded, fresh, moderately hard, moderately fractured, light gray, wet, 7.5YR 6/0, some</li> </ul>	<ul> <li>34.4, 34.5, 34.8, 41.5 to 42.0, 42.6, 43.1.</li> <li>(34.8') Moderately Open; Surface (Slightly Rough, Planar, Intensely Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Intensely Weathered, Mod Soft, Not Healed); Bedding Plane Separation: 34.8 to 36.5,</li> </ul>

45 - 45 - 460 04/27 15:02 10.0 100 (42) SED ROCK (SANDSTONE); very thinly bedded, intensely weathered, moderately soft, intensely fractured, light brown, wet. (46') Slightly Open; Surface (Smooth, Planar, Intensely Weathered, Mod Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Bedding Plane Separation: 46.0 - 660 Soft, Not Healed); Beddi	Geosyntec Consultants	Client Projec Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		WELL LOG Well No. MW-1611 Page: 3 of 7	
Image: State of the second	Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HarDrilling Equipment:CS1500Driller:Kimberly Keizer	nmer	Borin Sam DTV DTV Top	ng Diameter (in): 8 apling Method(s): SS, Core Barrel V During Drilling (ft): 68.2 V After Drilling (ft): 75.8 of Casing Elev. (ft msl): 714.25	Well E Scree Riser Scree Seal N	Diameter (in): 4 n Slot (in): 0.010 Material: Sch 40 PVC n Material: Sch 40 PVC Slotted Material(s): Bentonite Pellets	
45 45 45 45 45 45 46 45 45 45 45 45 45 45 45 45 45			N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
55	45	10.0	100	bedded, intensely weathered, moderately soft, intensely fractured, light brown, wet, 7.5YR 3/4. (44') SED ROCK (SANDSTONE); very th bedded, intensely weathered, moderately	y , ninly y	(Smooth, Planar, Intensely Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Intensely Weathered, Mod Soft, Not Healed); Bedding	- 670 - 665
		10.0	100	bedded, intensely weathered, moderately soft, intensely fractured, light brown, wet, 55.3 - 57.0: Light grey Sandstone, fresh,	у ,	54.0, 54.2.	- 655

65	Geosyntec Consultants	Client: Project: Address:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY	WELL LOG Well No. MW-1611 Page: 4 of 7
(i)       NOTINATION       REMARKS       (ii)         (iii)       III)       III)       IIII)       IIII)       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HanDrilling Equipment:CS1500Driller:Kimberly Keizer	Bo Sa nmer DT DT Top	Dring Diameter (in):8Wampling Method(s):SS, Core BarrelScFW During Drilling (ft):68.2RisFW After Drilling (ft):75.8Scp of Casing Elev. (ft msl):714.25Se	ell Diameter (in): 4 reen Slot (in): 0.010 ser Material: Sch 40 PVC reen Material: Sch 40 PVC Slotted bal Material(s): Bentonite Pellets
65       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66 <td< th=""><th></th><th></th><th>SOIL/ROCK VISUAL DESCRIPTION</th><th>(t msl) REMARKS</th></td<>			SOIL/ROCK VISUAL DESCRIPTION	(t msl) REMARKS
75		10.0 100	(64') SED ROCK (SANDSTONE); fine sand moderately bedded, moderately weathered hard, very slightly fractured, wet, 7.5YR 3/4 and 7.5YR 6/0 alternating, Breathitt	(65.7') Moderately Open; Surface (Slightly Rough, Planar, Intensely Weathered, Soft); Filling (Moderately Thin, Clay, Moderately Weathered, Mod Soft, Not Healed); Bedding Plane
80 NOTES: *Northing and easting are in NAD83 Kentucky North. Elevation is in ft MSL NAVD88.				- - - 635 (77') Bedding Plane Separation: 77.0, 80.2, 83.6. - -

Ceosyntec Consultants	Client Projec Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		WELL LOG Well No. MW-1611 Page: 5 of 7		
Drilling Start Date:04/27/2016Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HDrilling Equipment:CS1500Driller:Kimberly KeizeLogged By:Nardos Tilahum		Borin Sam DTV DTV Top	ng Diameter (in): 8 V apling Method(s): SS, Core Barrel S V During Drilling (ft): 68.2 F V After Drilling (ft): 75.8 S of Casing Elev. (ft msl): 714.25 S	Well Di Screen Riser M Screen	Depth (ft):115.5Diameter (in):4en Slot (in):0.010Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Bentonite PelletsPack:Global Filter Pack #5		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time	Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		REMARKS (rset) 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3 7-3		
	10.0	100	(84') SED ROCK (SANDSTONE); fine sar moderately bedded, intensely weathered, hard, very slightly fractured, light brown, w 7.5YR 3/4, Breathitt Formation. 90-90.5: light grey fresh Sandstone, unfractured. (90.5') SED ROCK (SHALE); clay, moderately bedded, fresh, moderately har unfractured, light gray, wet, 7.5YR 6/0, Breathitt Formation.	wet,	(83.5') Random Fracture: Slightly Open; Surface (Slightly Rough, Planar, Intensely Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Intensely Weathered, Mod Soft, Not Healed). (84.9') Random Fracture: Slightly Open; Surface (Slightly Rough, Planar, Intensely Weathered, Mod Soft); Filling (Very Thin, Iron Oxide, Moderately Weathered, Mod Soft, Partly Healed). Bedding Plane Separation: 84.9, 89.9, 93.5.	530 525	
	in NAD83 I		ky North. Elevation is in ft MSL NAVD88. d surface. Ground surface elevation is 711.64 ft MS	ISL.	(Slightly Rough, Planar, Intensely Weathered, Soft); Filling (Moderately Thin, Clay, Moderately Weathered, Soft, Not Healed). (96.8') Slightly Open; Surface	\$15	

		CO	onsulta	nts	>		Client Projec Addre	ct:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		WELL LOG Well No. MW-1611 Page: 6 of 7	
Drillin Drillin Drillin Drillin Drille	Drilling Start Date:04/27/2016Drilling End Date:04/28/2016Drilling Company:LayneDrilling Method:Rock Coring/Air HammerDrilling Equipment:CS1500Driller:Kimberly KeizerLogged By:Nardos Tilahun							Bori San DTV DTV Top	ng Diameter (in): 8 npling Method(s): SS, Core Barrel V During Drilling (ft): 68.2 V After Drilling (ft): 75.8 of Casing Elev. (ft msl): 714.25	Well D Screet Riser I Screet	Depth (ft): 115.5 Diameter (in): 4 n Slot (in): 0.010 Material: Sch 40 PVC n Material: Sch 40 PVC Slottec Material(s): Bentonite Pellets Pack: Global Filter Pack #	
DEPTH (ft)	КООТОНТІ	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	(f)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		REMARKS	ELEV. (ft msl)
100					04/28 10:36 04/28 11:16		10.0		<ul> <li>(109') SED ROCK (SHALE); laminated, moderately weathered, moderately soft, moderately fractured, dark gray, wet, 7.5 3/0, carbon rich Shale.</li> <li>(110.5') SED ROCK (SANDSTONE); thic bedded, fresh, hard, unfractured, light gravet, wet, 7.5YR 6/0.</li> <li>(111.5') SED ROCK (SHALE); laminated moderately weathered, moderately soft, moderately fractured, dark gray, wet, 7.5 3/0, carbon rich Shale.</li> </ul>	ckly ay, I,	(105') Slightly Open; Surface (Smooth, Planar, Moderately Weathered, Soft); Filling (Very Thin, Clay, Moderately Weathered, Soft, Not Healed); Bedding Plane Separation: 105.0, 105.4, 106.2, 106.4, 107.3, 108.5, 108.8 to 114.0.	- 610
115 — - - 120									(112') SED ROCK (COAL); laminated, moderately weathered, moderately soft, moderately fractured, black, wet, 7.5YR ( (114') SED ROCK (SHALE); laminated, moderately weathered, moderately soft, moderately fractured, dark gray, wet, 7.5 6/0, 122 to 123: highly weathered/decomposed.	YR	Moderately Weathered, Soft); Filling (Moderately Thin, Clay, Moderately Weathered, Soft, Not Healed); Bedding Plane Separation: 114.0- 124.0.	- 595

Geosyntec consultants	3	Client Projec Addre	et:	American Electric Power Big Sandy Plant 23000 US-23, Louisa, KY		Well No. Page:	VELL LOG MW-1611 7 of 7		
Drilling Start Date:04/27/20Drilling End Date:04/28/20Drilling Company:LayneDrilling Method:Rock CorDrilling Equipment:CS1500Driller:KimberlyLogged By:Nardos	16 ing/Air Hamr y Keizer	Sampling Method(s):SS, Core BarrelScreen SDTW During Drilling (ft):68.2Riser MathDTW After Drilling (ft):75.8Screen M					iameter (in): 4 Slot (in): 0.010 Aaterial: Sch 40 PVC Material: Sch 40 PVC Slotted aterial(s): Bentonite Pellets		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type	Date & Time Blow Counts	(F)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	J	RI	EMARKS	ELEV. (ft msl)	
				(124') SED ROCK (SHALE); laminated, moderately weathered, moderately soft, moderately fractured, dark gray, wet, En coring.	d of			_ _ 59 _ _ _ _ 58 _	
30									