

FGD LANDFILL-CCR REVISED GROUNDWATER MONITORING WELL NETWORK EVALUATION

Amos Plant Winfield Road Putnam County Winfield, West Virginia

May 27, 2020

FGD LANDFILL-CCR REVISED GROUNDWATER MONITORING WELL NETWORK EVALUATION

Everett Fortner III, PG Senior Geologist

Matthew J. Lamb **Project Manager**

Todd Minehardt, PE **Principal Engineer**

FGD LANDFILL-CCR REVISED GROUNDWATER MONITORING WELL **NETWORK EVALUATION**

Amos Plant Winfield Road **Putnam County** Winfield, West Virginia

Prepared for: American Electric Power Service Corporation

Prepared by: Arcadis U.S., Inc. 100 E Campus View Boulevard Suite 230 Columbus Ohio 43235-1447 Tel 614 985 9100 Fax 614 985 9170

Our Ref.: 30015982

Date: May 27, 2020

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

arcadis.com

https://arcadiso365.sharepoint.com/sites/AEP_US_teamsite/ARCADIS_Only/Amos/FGD Landfill CCR Reports/Well Network/2020-05-27-Final-Revised Well Network Report/Amos-CCR-FGD Landfill-Revised Well Network Report-2020-05-27.docx

FGD LANDFILL-CCR REVISED GROUNDWATER MONITORING WELL NETWORK EVALUATION

CONTENTS

Acı	onyn	ns and	Abbre	viations	iv
1	Intro	oductior	ייייי ו		1
2	Bac	kgroun	d Info	rmation	2
	2.1	Facilit	y Loca	ation Description	2
	2.2	Descr	iption	of FGD Landfill CCR Unit	2
		2.2.1	Lanc	Ifill Configuration	2
		2.2.2	Area	/Volume	2
		2.2.3	Cons	struction and Operational History	2
		2.2.4	Surfa	ace Water Control	3
	2.3	Previc	ous Inv	vestigations	4
	2.4	Hydro	geolo	gic Setting	5
		2.4.1	Clim	ate and Water Budget	5
		2.4.2	Regi	onal and Local Geologic Setting	6
		2.4	.2.1	Unconsolidated	6
		2.4	.2.2	Bedrock	6
		2.4.3	Surfa	ace Water and Surface Water Groundwater Interactions	7
		2.4.4	Wate	er Users	7
3	Mon	itoring	Well I	Network Evaluation	8
	3.1	Hydro	stratio	graphic Units	8
		3.1.1	Horiz	zontal and Vertical Position Relative to CCR Unit	8
		3.1.2	Over	rall Flow Conditions	9
		3.1.3	Hydr	aulic Conductivity	9
		3.1	.3.1	Historical Hydraulic Testing	9
		3.1	.3.2	Packer Testing	9
		3.1	.3.3	Yield Testing	10
		3.1	.3.4	High Resolution Water Level Monitoring	10
	3.2	Upper	most	Aquifer	11
		3.2.1	CCR	Rule Definition	11
		3.2	.1.1	Common Definitions	11

		3.2.2	Identified Onsite Hydrostratigraphic Unit	11
		3.2.3	Hydraulic Connection – Multiple Lines of Physical Evidence Approach	12
	3.3	Review	w of Existing Monitoring Well Network	12
		3.3.1	Overview	12
		3.3.2	Gaps in Monitoring Network	13
4	Rec	ommen	ded Monitoring Network	14
	4.1	Monito	pring Well Network Distribution	14
		4.1.1	Down Gradient Locations	14
		4.1.2	Up Gradient Locations	14
	4.2	Well C	Construction	14
5	Prof	essiona	al Engineer's Certification	15
6	Refe	erences		16

TABLES

Table 1. Water Level DataTable 2. Summary of Hydraulic Testing ResultsTable 3. Well Construction Details

FIGURES

Figure 1. Site Location Map

- Figure 2. Plant and CCR Unit Location Map
- Figure 3. FGD Landfill Layout and Well Locations Map
- Figure 4. Stress Relief Fracture System Conceptual Site Model
- Figure 5. Cross Section Location Map
- Figure 6A. Cross Section A-A'
- Figure 6B. Cross Section B-B'
- Figure 6C. Cross Section C-C'
- Figure 7. Potentiometric Surface Map, November 22, 2010
- Figure 8. Monitoring Well Network Map

APPENDICES

- Appendix A Field Methodology
- Appendix B Boring/Well Construction Logs and Closure Information
- Appendix C Well Survey
- Appendix D Hydrographs and Hydraulic Testing Results

ACRONYMS AND ABBREVIATIONS

AEP	American Electric Power Service Corporation
amsl	above mean sea level
Arcadis	Arcadis U.S., Inc.
ASD	alternative source demonstration
bgs	below ground surface
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
CSM	Conceptual Site Model
FGD	flue gas desulfurization
ft	feet
LCS	Leachate Collection System
PVC	polyvinyl chloride

1 INTRODUCTION

This report was prepared by Arcadis U.S., Inc. (Arcadis) for American Electric Power Service Corporation (AEP) to assess the adequacy of the groundwater monitoring well network included in the Coal Combustion Residual (CCR) requirements, as specified in Code of Federal Regulations (CFR) 40 CFR 257.91, for the offsite flue gas desulfurization (FGD) landfill (CCR Unit) located approximately 2 miles northwest of the AEP Generating Plant (Plant) located on Winfield Road in Winfield, West Virginia (**Figure 1**). Specifically, this Groundwater Monitoring Well Network Evaluation report is intended to address the requirements of 40 CFR 257.91 excluding paragraphs (d) and (g) regarding the adequacy of the groundwater monitoring well network to characterize groundwater quality up and down gradient of the CCR unit in the uppermost aquifer. The objective of this report is to present an evaluation of the adequacy of the groundwater monitoring well network in the uppermost aquifer at the offsite FGD Landfill (Site).

Two other regulated CCR units associated with the Plant were identified for review, which include the bottom ash pond (BAP) system and the fly ash pond (FAP) (**Figure 2**). The evaluations of the onsite BAP system and FAP are not included in this report and were completed under separate cover.

An initial evaluation of the FGD Landfill monitoring well network was completed in November 2015 and included a review of AEP-provided data associated with previously completed subsurface investigation activities in the vicinity of the FGD Landfill, as well as publicly available geologic and hydrogeologic data. Based on the initial evaluation, the monitoring well network included wells and piezometers that already existed at the Site. Additional analyses and understanding of the uppermost aquifer have provided information that supports re-evaluation of the previous monitoring well network that included shallow monitoring wells. To supplement the network, two additional deeper down gradient monitoring wells (MW-1801, MW-1802) screened in the uppermost aquifer were drilled and installed in August 2018. Drilling activities were performed by a West Virginia-licensed driller (AEP) with Arcadis personnel completing borehole logging and well installation oversight. These monitoring wells have been effectively added to the federal CCR Rule Groundwater Monitoring Network as of the date of this report.

The following report presents the current Conceptual Site Model (CSM) based on a combination of historic site data, regional data for the Site and surrounding vicinity, site-specific investigations completed through 2018, and permit documentation. This report also includes a description of the uppermost aquifer and the revised monitoring well network. The revised monitoring well network was determined to adequately monitor up gradient and down gradient areas of the Site in the uppermost aquifer; therefore, the report objective has been met.

2 BACKGROUND INFORMATION

The following section provides background information for the AEP Amos Generating Plant FGD landfill that was used to support the groundwater monitoring well network evaluation.

2.1 Facility Location Description

The AEP Amos Generating Plant is located in Putnam County, bounded by State Route 817 (Old U.S. Route 35) to the west and the Kanawha River to the east. The FGD Landfill is located approximately 2 miles northwest of the Plant and approximately three-quarters of a mile west of Winfield Road (WV 817) (**Figures 1** and **2**). The CCR Unit occupies approximately 258 total acres, located in an isolated area, with surrounding land use predominantly residential or undeveloped, with some agriculture (**Figure 3**).

2.2 Description of FGD Landfill CCR Unit

The following section will discuss the landfill configuration, area, volume, construction and operational history, and surface water control associated with the FGD Landfill.

2.2.1 Landfill Configuration

The landfill consists of a northern and southern valley surrounded on all sides by ridges with the northern and southern valleys separated by a topographic high point. The surface of the waste is designed to be covered with a minimum of 6-inches of soil overlying CCR, a 50-mil High Density Polyethylene (HDPE) Integrated Drainage System (IDS) geomembrane or equivalent, and covered with at least 18-inches of protective and vegetative cover soil (in the upper 6-inches of the protective cover) and vegetated with grass cover as closure construction at each landfill area is completed. Currently, final cover has been placed on the south valley cell 3 section of the landfill. General construction of the landfill final cover is further detailed in the *Design Report: Landfill Final Cover System* (GAI Consultants, Inc. [GAI] 2016).

The topography surrounding the FGD Landfill consists of steep ridges greater than 200 ft on most sides (**Figure 3**). The highest point at the Site is greater than 1,000 ft above mean sea level (amsl), while the river valley elevations range from less than 600 ft amsl (Kanawha River valley) to less than 700 ft amsl (Lick Run). The Kanawha River is located east of the FGD Landfill and ranges in elevation from approximately 565 to 583 ft amsl (United States Geological Survey [USGS] 2019).

2.2.2 Area/Volume

The total area of the Site is approximately 258 acres which includes both disposal and non-disposal use. The current permitted area for disposal is 192 acres, with a permitted waste capacity of approximately 36.7 million cubic yards (**Figure 3**).

2.2.3 Construction and Operational History

In March 2006, AEP submitted the *Class F Industrial Landfill Facility Application* (GAI 2006) to West Virginia Department of Environmental Protection. The application was approved and landfill activities began in April 2009. Subsequent permit modifications and renewals have been submitted and approved for the Site, most

FGD LANDFILL-CCR REVISED GROUNDWATER MONITORING WELL NETWORK EVALUATION

recently in 2016 at the time of this report (GAI 2016). Landfill construction is planned for 9 individual sequences (i.e. cells), and the designed disposal rate is 2 million cubic yards per year. With a maximum design capacity of 36.7 million cubic yards, the landfill design life is approximately through the middle of year 2035 (GAI 2016). As of April 2019, the landfill is being filled within cells 1, 2 and 3 in the southern valley. Northern valley construction began in 2013 with installation of the groundwater interceptor drainage system, as well as the sedimentation and leachate ponds, and followed by the cell 4 bottom liner construction in 2018-2019.

During landfill construction, a liner is placed at the base of each cell. This liner is described in detail in the *Solid Waste/NPDES Permit Renewal Application* (GAI 2006). In general, the landfill liner consists of the following layers:

- Groundwater interceptor drainage system
- 12-inches of compacted or in-place clayey-silt subbase
- 24-inches of compacted clay liner (North Valley); 18-inches of compacted clay liner (South Valley)
- 30-mil polyvinyl chloride (PVC) geomembrane
- Leachate Collection System (LCS)
- 18-inches of protective cover (typically bottom ash, potentially West Virginia Department of Transportation mortar sand or gypsum)

The CCR byproducts from the three coal-fired generating units at the Plant (Unit 1 through Unit 3) are placed in the landfill. These waste products include fly ash, bottom ash, FGD (synthetic gypsum), and FGD purge stream treatment solids (limestone inert solids). Fly ash and bottom ash are trucked from the Amos Plant to the landfill active cell area. FGD is sluiced from the Amos Plant to the Chloride Purge Stream (CPS) WWTP directly adjacent to the Landfill via pipelines. FGD products are dried and caked at this facility before being trucked to the landfill for disposal. Fly ash and bottom ash are trucked directly from the Amos Plant to the landfill via a private haul road for direct disposal. The landfill was also permitted to receive CCR byproducts from the AEP Plants at Big Sandy, Clinch River, Conesville, Gavin, Glen Lyn, Mitchell, Mountaineer, Muskingum River, Sporn, Tanners Creek, and Kanawha River (GAI 2006; GAI 2016).

2.2.4 Surface Water Control

Surface water control at the CCR Unit is discussed in detail in *Class F Industrial Landfill Facility Application* (GAI 2006) and consists of surface runoff and infiltration of surface runoff. Surface runoff is managed through a series of collection channels, sediment traps, and pipe culverts that channel flow to 4 sediment collection ponds around the perimeter of the site. Leachate and surface flow in active landfill areas are directed to the leachate pond at the mouth of the southern or northern valley, respective to the active portion of the landfill containing the contact water. This is accomplished with vertical chimney drains that divert water to the LCS component of the landfill liner, which is a geo-composite drainage net consisting of a high-density polyethylene geo-net with needle-punched nonwoven geotextiles heat-bonded to its upper and lower surfaces draining to a network of perforated PVC pipes. The LCS channels leachate and surface flow in active landfilling areas to the leachate ponds (GAI 2006). Sedimentation ponds are located in the northwest, southwest, and southeast portions of the landfill. A sedimentation pond is located along the eastern side of the landfill near the divide between the north and south valleys.

2.3 **Previous Investigations**

Prior to submission of the *Class F Industrial Landfill Facility Application* in March 2006, GAI Consultants, Inc., in coordination with AEP, performed a site investigation to characterize the conditions at the proposed landfill facility. These investigations included drilling through soil and into rock, split barrel soil sampling and standard penetration testing, undisturbed soil sampling (Shelby tubes), continuous rock coring (where appropriate), and pump or packer testing of select rock units (GAI 2006).

Soil samples were analyzed for geotechnical parameters to assist with general site characterization and stability analyses. These parameters include grain size distribution, Atterberg limits, specific gravity, moisture content, compaction, permeability, cation exchange capacity, and X-Ray Diffraction characteristics. Additionally, soil samples were analyzed for physical properties at a proposed onsite borrow site for liner quality determination (GAI 2006).

During the site investigation, piezometers were installed in 23 of 25 soil borings advanced in the projected landfill footprint. Ten 2-inch PVC monitoring wells were also installed, generally around the perimeter of the proposed extent of fill. Groundwater samples were collected from monitoring wells in an effort to characterize background water quality.

Since 2016, background and detection groundwater monitoring has been performed in accordance with 40 CFR 257.90 through 40 CFR 257.94. This monitoring includes statistical evaluation of concentrations of Appendix III and Appendix IV parameters as defined in 40 CFR 257. Analysis of groundwater chemistry data has been successful in demonstrating alternate sources. Specifically, two alternate source demonstrations (ASDs) have been completed for observed statistically significant increases (SSIs) in Appendix III parameters (AEP 2019):

- November 2017/January 2018 monitoring events: Boron (MW-2), Chloride (MW-5), and Fluoride (MW-2 and MW-4)
- May/June 2018 monitoring events: Boron (MW-2 and MW-5), and Chloride (MW-5)

These ASDs suggested that concentration trends may be the result of Type IV (natural variability) and/or Type V (alternative source) causes. In particular, it was noted that construction activities and/or road salting may represent an anthropogenic Type V factor contributing to concentration variability in several wells at the Site. Furthermore, the ASD indicated groundwater types can be divided into two groups, with MW-2, MW-4, and MW-10 exhibiting a tight sodium-carbonate cluster, and the remaining wells (MW-1, MW-5, MW-6, MW-7R, MW-8, and MW-9) falling outside of this range (AEP 2019). Down gradient wells within the uppermost aquifer (MW-2 and MW-4) that fall within a differing groundwater type than shallow perched zone wells (MW-1 and MW-5) is evidence of separation of these two zones.

In 2018, Arcadis completed site investigation activities including high-resolution water level monitoring, hydraulic testing, and well installation. Pressure transducers were installed in seven monitoring wells (MW-1, MW-2, MW-4, MW-5, MW-8, MW-9, and MW-10) to collect continuous water level data from May through August 2018 in order to better characterize hydrogeologic conditions. Monitoring well installation was designed to augment the CCR monitoring well network at the Site with two additional down gradient wells installed in the stress relief fracture system. Boreholes were continuously logged and advanced to depths ranging from approximately 105 ft below ground surface (bgs) to 115 ft bgs at MW-1801 (south valley) and MW-1802 (north valley), respectively. After completion of the boreholes, straddle packer tests were

completed to quantify hydraulic parameters and to assist in final placement of well screen intervals. Well yield testing was completed at the new monitoring wells to further quantify aquifer parameters. A complete description of well installation field methodology is provided in **Appendix A**. Results of hydraulic testing and water level monitoring are discussed in Section 3.1.3 of this report.

2.4 Hydrogeologic Setting

The geologic setting surrounding the Site consists of ridges formed by the Pennsylvanian age Monongahela and Conemaugh Formations. The Monongahela and Conemaugh Formations consist of sandstones, shales, limestones, and coal. These rocks have been fractured in response to a decline in stress and erosion. This decline in stress expands the rock and a system of fractures form throughout the bedrock over time. This process, which is characteristic of Appalachian valleys, is called stress relief fracturing (SRF) and is more prevalent in shallow bedrock (USGS 1981, 2000). Groundwater is present at the Site within these fracture systems (secondary porosity), while groundwater within primary porosity components (i.e., pore spaces) is less significant. A generalized cross section illustrating the features of an Appalachian SRF system is provided on Figure 4. Fractures observed at the Site in the SRF system are nearly vertical with attitude angles ranging from 75° to near 90°. These fractures occur in sets that are oriented roughly parallel and perpendicular to one another, but not necessarily to the valley walls. Borings installed in both the south valley and north valley have moderate to highly fractured bedrock at depths greater than 100 ft below ground surface (bgs). Bedrock groundwater flow generally follows surface topography and is generally downslope of the ridge towards the valley floors. The SRF is known to be regionally prevalent and is considered the regional uppermost aquifer system outside of primary unconsolidated fluvial valleys (e.g. Kanawha River Valley and Teays Valley) surrounding the Site.

Unconsolidated deposits on top of the bedrock consist primarily of weathered bedrock and residuum, with some colluvial/alluvial deposits consisting of weathered rock, sand, silt, and clay. In valley bottoms, the unconsolidated sediments can be saturated with localized areas of shallow perched groundwater at the soil-rock interface. These localized areas of shallow groundwater generally flow down-valley and have limited connection with the SRF system. This is further discussed in Section 3.1.3.4.

These features are further illustrated on three lines of cross section through the FGD Landfill. Two lines trend from southwest to northeast through the south valley (A-A') and north valley (B-B'). The other line trends from northwest to southeast through both the north and south valleys. A cross section location map is provided on **Figure 5**. Cross sections A-A', B-B', and C-C' are provided on **Figures 6A**, **6B**, and **6C**, respectively. Detailed boring logs and well construction diagrams are included in **Appendix B**.

2.4.1 Climate and Water Budget

The climate of Winfield, West Virginia is characterized as humid continental with an average rainfall of approximately 40 inches annually. The average maximum temperature is 66 degrees Fahrenheit and the average minimum temperature is 44 degrees Fahrenheit based on information from Southeast Regional Climate Center (SERCC 2017).

The results of a numerical water budget analysis performed as part of the March 2006 *Class F Industrial Landfill Facility Application* is described in detail in Appendix I of that application (GAI 2006). The primary objective of the analysis was to estimate the average annual leachate production and estimate the

maximum leachate head within the landfill liner system. Using site-specific climate, slope, and soil characteristics, it was determined that maximum average daily heads, maximum daily peak heads, and average annual leachate heads were all within acceptable ranges (GAI 2006).

2.4.2 Regional and Local Geologic Setting

2.4.2.1 Unconsolidated

The Site is located in the Appalachian Plateau physiographic province, and unconsolidated soils are limited in extent and are residual and colluvial in origin. Soils in lower topographic areas (i.e. valleys) consist of sand, silt, or clay with increasing rock fragments with depth (colluvium), and grade to weathered bedrock (residuum) with depth. Further up the ridges, soils are composed mainly of residuum. Unconsolidated material is thickest in the valley floors, and average soil thickness is approximately 11 ft (GAI 2006).

2.4.2.2 Bedrock

The primary regional bedrock units encountered are Pennsylvanian age sedimentary rocks of the Monongahela Formation and Conemaugh Formation, in descending order from youngest to oldest. The depositional environment for these formations is characterized by a gradually subsiding shallow sea with alternating marine and freshwater strata. The sedimentary package associated with the Monongahela and Conemaugh Formations consists of alternating shale and sandstone units, with occasional thin limestone and coal beds. Several coal horizons are present in the region and often serve as marker beds for unit identification. The principal marker bed in the region is the Pittsburg Coal (i.e. No. 8 Coal), which marks the transition from the Monongahela and Conemaugh Formations. However, the Pittsburg Coal is not represented in Site borings (GAI 2006). The Pittsburgh Limestone has been identified in two borings at the nearby FAP, MW-3 and 2008-26, and is used to mark the local Monongahela-Conemaugh transition. Additionally, the Little Clarksburg Coal has been identified at FAP boring B-0608 and is used to mark the base of the Connellsville sandstone deposition (Latimer, W.J., et al. 1911).

The Monongahela Formation is found capping the hills surrounding the Site. It consists of claystones and sandstones, and to a lesser extent silt shales and siltstones, which have varying degrees of thickness laterally, making correlation difficult (GAI 2006). Stratigraphy and landfill construction details are illustrated on cross sections A-A' (south valley-southwest to northeast), B-B' (north valley-southwest to northeast), and C-C' (north and south valleys-northwest to southeast) (**Figures 6A**, **6B**, and **6C**, respectively).

Interpretations regarding shallow geologic structures are based on mapping of the Pittsburg Coal. The Parkersburg Syncline and the Byrnside Anticline appears to dip to the north-northwest through the site. Bedding planes at the site have a strike to the east-northeast and dip to the north-northwest at approximately 20 ft per mile (GAI 2006).

Deeper bedrock units produce oil and gas. Six (6) active oil and gas wells are located in the vicinity of the FGD Landfill along with former wells that were located within the landfill footprint (079-00611 and 079-00722) that were closed in 2007 and 2006, respectively. The location of these wells is shown on **Figure 3**. Available information on the closure is provided in **Appendix B**.

arcadis.com https://arcadiso365.sharepoint.com/sites/AEP_US_teamsite/ARCADIS_Only/Amos/FGD Landfill CCR Reports/Well Network/2020-05-27-Final-Revised Well Network Report/Amos-CCR-FGD Landfill-Revised Well Network Report-2020-05-27.docx

2.4.3 Surface Water and Surface Water Groundwater Interactions

There are intermittent streams in both the northern and southern area of the Site, Lick Run, and Little Hurricane Creek (**Figure 3**). Groundwater flows following topographic relief and is generally in the direction of each of these creeks. However, sedimentation, leachate, and stormwater ponds have been constructed around the perimeter of the landfill. The design specifications of these ponds are described in detail in the Class F Industrial Landfill Facility Application (GAI 2006). Groundwater flow, as well as surface water runoff that contacts active landfill areas, is directed to the leachate ponds via the Leachate Collection System component of the landfill liner. Non-contact runoff that contacts covered landfill areas, disturbed borrow areas, or undisturbed areas is contained in the sediment collection ponds which ultimately discharge to either Little Hurricane Creek or Lick Run via principal or emergency spillways (GAI 2006).

2.4.4 Water Users

There are no active groundwater production wells at the Site or within a half-mile radius of the site, based on available information. In 2017, a water well inventory for the Amos Plant indicated no information regarding the use of wells located in the vicinity of the Site was available (Banks Environmental Data, Inc., 2017). The report identified one well registered with the United States Geological Survey within a half-mile of the Site. This well is located approximately 1,700 ft west of the FGD Landfill north valley, on the west side of Lick Run, and appears to be used for groundwater monitoring (**Appendix C**).

There is at least one confirmed private water well located within 0.5 miles of the FGD Landfill. This private well is located east of the Site at 6881 Winfield Road but is not in use because the residence is connected to public water supply.

Public water wells within 0.5 mile of the Site are unlikely. Land use is comprised of residential or undeveloped properties, with some agriculture and industry. Most, if not all, developed parcels in the vicinity of the Site are connected to Putnam Public Service District public water supply. The Putnam Public Service District source water is from the Poplar Fork Creek water shed located over 4 miles to the northwest of the Site. The water is pumped to a reservoir and subsequently treated at the water treatment plant before being distributed to public users (Putnam Public Service District 2017). Additional potable water in the area is supplied by West Virginia American Water, which operates several water systems that pull water from the Elk River, a tributary to the Kanawha River (West Virginia American Water.

arcadis.com https://arcadiso365.sharepoint.com/sites/AEP_US_teamsite/ARCADIS_Only/Amos/FGD Landfill CCR Reports/Well Network/2020-05-27-Final-Revised Well Network Report/Amos-CCR-FGD Landfill-Revised Well Network Report-2020-05-27.docx

3 MONITORING WELL NETWORK EVALUATION

An initial evaluation of the monitoring well network present at the Site was performed in November 2015 to determine if any of the wells were viable for continued use as part of the federal CCR Rule groundwater quality monitoring well network or retained for the purpose of water level measurement as part of a larger groundwater hydraulic monitoring well network. As part of this review, hydrogeologic conditions were evaluated to determine if the defined uppermost aquifer unit had an adequate monitoring well network. The evaluation was completed in accordance with 40 CFR 257.91 to have an established monitoring well network that effectively monitors the uppermost aquifer up gradient and down gradient of the Site. Following the initial evaluation, the network was augmented to include existing piezometers for the purpose of hydraulic monitoring. Additionally, existing wells MW-1 and MW-5 were removed from the groundwater quality monitoring well network and retained only for hydraulic monitoring. As a result, two new monitoring wells were installed in the uppermost aquifer down gradient of the FGD Landfill. Background groundwater quality is monitored at the wells that are hydraulically up gradient from the FGD Landfill. Down gradient wells are placed down gradient of the CCR unit boundary to monitor water quality.

3.1 Hydrostratigraphic Units

3.1.1 Horizontal and Vertical Position Relative to CCR Unit

The uppermost aquifer is the first encountered aquifer that is horizontally continuous across the site. The uppermost aquifer at the Site is defined by the saturated portion of the SRF system, is independent of lithologic unit, and was examined to confirm hydraulic connection from ridge to valley using multiple lines of evidence that are discussed in Section 3.2.3. Stress relief fractures occur in both the Conemaugh and Monongahela Formations. Moderate to highly fractured bedrock was observed from the bedrock surface to depths greater than 100 ft bgs at wells MW-1801 and MW-1802, immediately west of the FGD Landfill in the south and north valleys, respectively. Stress relief fractures are also present along open horizontal bedding planes. In similar stress relief fracture systems, the aquifers are generally unconfined but water levels in wells can exhibit confined behavior in valley floors if low-transmissivity sediments (i.e. clay) are present (USGS 1981). The uppermost aquifer (i.e. saturated portion of the SRF system) is horizontally continuous across the entire site.

The upper limit of the uppermost aquifer is defined by the top of the potentiometric surface in the SRF system, generally located beneath the original bedrock surface prior to landfill construction. The potentiometric surface occurs at depths as shallow as 1 ft below the soil-rock interface (beneath valley walls) to greater than 90 ft below the soil-rock interface (beneath ridgetops, e.g. MW-10). This is illustrated on cross sections A to A', B to B', and C-C' (Figures 6A, 6B, and 6C), as well as depth to water measurements summarized on Table 1.

There are localized areas of shallow perched groundwater at the soil-rock interface. These are limited in valley bottoms and have limited connection with the underlying SRF system. Monitoring wells MW-1 (southern valley), and MW-5 (northern valley) are screened in these shallow perched zones. These zones are not considered the uppermost aquifer as they are limited in extent and discontinuous. Within the limits of the landfill, underdrains located at various depths beneath the landfill liner prevent an intermittent,

recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aquifer due to normal fluctuations in groundwater elevation (GAI 2006).

3.1.2 Overall Flow Conditions

Groundwater flow at the Site occurs within the SRF system (i.e. uppermost aquifer), mainly moving along hydraulically connected fractures and other secondary porosity features. Groundwater within primary porosity components (i.e., pore spaces) is less significant. Fractures in this system are hydraulically connected via open bedding planes, and groundwater flow directions generally follow topography from ridges towards the valley floor and out the northern and southern valley mouths. Local areas of shallow perched groundwater in the valley flows horizontally along the soil-rock interface. As discussed in Section 3.1.3.4, vertical flow of perched groundwater is limited. Available groundwater elevations are summarized on **Table 1** for July 2005, November 2010, and January 2019 well gauging events. Potentiometric contours from the November 2010 event, which is the most recently available data that includes groundwater elevations beneath the landfilled material (e.g. MW-3R, 0512, 0513), are depicted on **Figure 7**. Groundwater levels and flow directions from the most recent gauging events, including levels from MW-1801 and MW-1802, are consistent with historical data.

3.1.3 Hydraulic Conductivity

The following subsection describes field implementation and data analysis of hydraulic testing conducted at the FGD Landfill (e.g., borehole packer tests, well yield tests). Historical hydraulic tests are briefly described and referenced. Hydraulic conductivity estimates derived from 2018 investigations are consistent with historical estimates and discussed in more detail below.

3.1.3.1 Historical Hydraulic Testing

Packer testing was completed during piezometer and well installations in 2005 in order to estimate hydraulic properties of the fractured bedrock. Additionally, slug tests were conducted at select bedrock monitoring wells. Reported hydraulic conductivity estimates from historic packer and slug tests in the SRF are provided in **Table 2** and ranged from 10⁻³ to 10⁻⁶ centimeters per second (cm/sec). No hydraulic testing data is available for perched groundwater in the valley floor (GAI 2006).

3.1.3.2 Packer Testing

Packer testing was conducted during installation of wells MW-1801 and MW-1802. The intent of injection packer testing is to estimate relative bedrock permeability for various borehole depth intervals to assist with water-bearing unit identification and monitoring well installation. Upon completion of each borehole, rock cuttings were flushed from the borehole with water in preparation for packer testing. Inflatable upper and lower rubber packers were then inserted to a specified 10-ft depth interval and inflated to create a seal. A riser pipe was attached to the top of the upper packer to provide a rigid, sealed standpipe with a pressure gauge at a known distance above the ground surface. Through this riser pipe, water was injected into the packer interval while measuring the gauge injection pressure, as well as injection volumes via a totalizing flowmeter. During the packer tests, flow rates and borehole pressure were monitored at regular intervals. Test data was analyzed using the method described in the U.S. Department of the Interior Ground Water Manual (1977).

arcadis.com https://arcadiso365.sharepoint.com/sites/AEP_US_teamsite/ARCADIS_Only/Amos/FGD Landfill CCR Reports/Well Network/2020-05-27-Final-Revised Well Network Report/Amos-CCR-FGD Landfill-Revised Well Network Report-2020-05-27.docx Packer tests were designed to target the SRF system. Two depth intervals were tested at MW-1801 (55 to 65 and 65 to 75 ft bgs). The estimated hydraulic conductivity from 55 to 65 ft bgs was 7.9×10^{-5} cm/sec, and from 65 to 75 ft bgs was 3.2×10^{-6} cm/sec. Four depth intervals were tested at MW-1802 (48 to 58, 65 to 75, 89 to 99, and 99 to 109 ft bgs) and flow was only observed at two of those intervals. The estimated hydraulic conductivity from 48 to 58 ft bgs was 4.0×10^{-6} cm/sec, and from 89 to 99 ft bgs was 3.7×10^{-5} cm/sec. Packer test results are summarized on **Table 2** and packer testing logs are included in **Appendix D**.

3.1.3.3 Yield Testing

Well yield testing was conducted by Arcadis from August through September 2018 at wells MW-1801 and MW-1802, both of which are installed in the uppermost aquifer. Yield tests were completed by pumping each well at variable and steady state extraction rates and measuring the water level response in each well during and after pumping (recovery). Extraction rates were maintained using a submersible pump. High-resolution water level data were collected during both pumping and recovery phases via data-logging pressure transducers installed in each test well. Representative portions of recovery data were selected for analysis and analyzed using AQTESOLV® for Windows® Version 4.50 (Duffield 2007). Hydraulic parameter values were determined using the Theis analytical solution based on the observed response for a single (partially-penetrating) well. Drawdown data was corrected for unconfined conditions using an appropriate equation (Kruseman and DeRidder 1990).

The estimated hydraulic conductivity values at MW-1801 and MW-1802 were 2.5 x 10^{-6} and 1.2 x 10^{-5} cm/sec, respectively. A summary of yield testing results is provided on **Table 2** and solution reports with individual curve matches are provided in **Appendix D**.

3.1.3.4 High Resolution Water Level Monitoring

Continuous water level data in the SRF and shallow alluvial zone was collected in May through August 2018 in order to better characterize hydrogeologic conditions at the FGD Landfill. Resulting hydrographs from this data collection is presented in **Appendix D**.

Pressure transducers were installed at seven hydraulic monitoring locations that included three SRF monitoring wells located up gradient on ridges in the north valley (MW-8, MW-9 and MW-10), two down gradient SRF monitoring wells with one in the south valley (MW-2) and north valley (MW-4), and two down gradient shallow alluvium monitoring wells with one in the south valley (MW-1) and one north valley (MW-5).

The following external hydraulic influences were observed at the FGD Landfill during the monitoring period: precipitation events, barometric pressure fluctuations, and responses to groundwater sampling. Water-levels were post-processed that included barometric compensation, shift correction, water-level elevation, and barometric correction. Barometric efficiency was estimated for each monitoring well and varied from 0.05 to 0.2 and indicates a level of confinement for the SRF. In the north valley, shallow alluvium well MW-5 did not have a barometric effect reflecting unconfined shallow water table conditions. Shallow alluvium well MW-1 did have a barometric effect with a resulting barometric efficiency of 0.2, which is likely due to shallower finer grained material in the vadose zone compare to coarser deposits observed at MW-5. Additionally, the observed water level elevations confirm a vertical sequence separating the shallow alluvium and SRF indicating a level of hydraulic separation of the two zones (e.g. MW-1, MW-2 [south valley]

Figures D-2 and **D-3**] and MW-4, MW-5 [north valley **Figures D-4** and **D-5**]). Vertical separation is evident at each of these two well pairs because the water level elevations in wells screened in the shallow alluvium (i.e., MW-1 and MW-5) are approximately 15 to 30 ft higher than at adjacent wells screened in the SRF (i.e., MW-2 and MW-4).

Several of the monitoring wells responded to precipitation events resulting in water level increases including MW-2, MW-4, MW-5 as well as MW-9, to a lesser extent. Sudden declines followed by recovery in water levels due to groundwater sampling were also observed in wells MW-5, MW-8, MW-9, and MW-10. Following groundwater sampling events and an anomalous decrease at MW-1, several wells showed a more rapid recharge such as MW-5, MW-8, and MW-9 (see **Figure D-7**) while other wells took several days or weeks to return to pre-pumping levels such as MW-10 (see **Figure D-8**). The more rapid recharge response is reflective of a higher permeability of the materials at the respective locations.

3.2 Uppermost Aquifer

3.2.1 CCR Rule Definition

Per 40 CFR 257.60(a), new CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must be constructed with a base that is located no less than 1.52 meters (5 ft) above the upper limit of the uppermost aquifer, or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high conditions).

The CCR rule definitions for an aquifer and the uppermost aquifer as specified in 40 CFR 257.53 indicates an aquifer is a geologic formation capable of yielding usable quantities of groundwater to wells or springs while an uppermost aquifer is defined as the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers, that are hydraulically interconnected with this aquifer within the facility's property boundary. Upper limit is measured at a point nearest to the natural groundwater surface to which the aquifer rises during the wet season.

3.2.1.1 Common Definitions

An aquifer is commonly defined as a geologic unit that stores and transmits water (readily or at sufficient flow rates) to supply wells and springs (USGS 2015; Fetter 2001). The uppermost aquifer is considered the first encountered aquifer nearest to the CCR unit.

3.2.2 Identified Onsite Hydrostratigraphic Unit

The identified Site hydrostratigraphic unit is the saturated portion of the SRF system, which is considered the uppermost aquifer at the Site. The SRF is known to be regionally prevalent and is considered the regional uppermost aquifer system outside of primary unconsolidated fluvial valleys. The uppermost aquifer is not known to be used locally for groundwater supply or industrial water use.

3.2.3 Hydraulic Connection – Multiple Lines of Physical Evidence Approach

A multiple lines of evidence approach was used to understand the hydraulics related to horizontal and vertical groundwater flow at the Site. The main purpose for this demonstration was to help understand the dynamics and vertical connectivity of the SRF system, both from ridges to valleys, as well as perched groundwater in valleys to deeper bedrock fractures.

At the Site, the SRF system is determined to be the uppermost aquifer based on spatial occurrence and hydraulic testing. The following lines of physical evidence support the understanding that the SRF system is connected from the ridgetops down to the valleys and the shallow perched zones are hydraulically disconnected.

The physical lines of evidence that verify SRF hydraulics are:

- SRF occurring independent of bedrock units at depths greater than 100 feet (MW-1801 and MW-1802)
- Shallow shales are fractured on ridges according to boring logs
- Hydrographs indicate vertical separation from the local areas of shallow perched groundwater and deeper groundwater within the SRF system
- ASD evaluation concluded that there is a geochemical distinction between shallow perched groundwater wells MW-1 and MW-5 relative to other wells screened in the SRF system down gradient of the FGD Landfill at MW-2 and MW-4.

Based on this information and the positive correlation of these lines of evidence with the Appalachian conceptual site model for groundwater flow (USGS 1981), the SRF system is hydraulically connected from ridges to valleys. A generalized cross section illustrating the features of an Appalachian SRF system is provided on **Figure 4**.

3.3 Review of Existing Monitoring Well Network

3.3.1 Overview

The Site was visited by Arcadis and AEP personnel on August 11, 2015 to review existing well network conditions and locations. At that time, the monitoring well network was initially determined sufficient (Arcadis 2016). Since 2016, additional analyses discussed above in this report have resulted in a refined understanding of the uppermost aquifer and provided support for removal of shallow perched zone wells MW-1 and MW-5 from the federal well network. These wells were replaced with two deeper down gradient wells screened in the uppermost aquifer (i.e., SRF). A well construction table that summarizes the location, ground surface elevation, borehole depth, installation date, and associated well construction details of the monitoring well network is included as **Table 3**. As presented in **Table 3**, wells included in the monitoring network have been designated as up gradient or down gradient. Additionally, some monitoring wells and piezometers are designated for hydraulic monitoring only. The wells that are shaded on **Table 1** and **3** and **Figure 3** were abandoned. Available closure information is provided in **Appendix B** from the West Virginia Department of Environmental Protection (WVDEP). No closure information was available for monitoring wells MW-3 and MW-3RA and piezometers 0503, 0504, 0507 and 0514. These monitoring wells and

arcadis.com https://arcadiso365.sharepoint.com/sites/AEP_US_teamsite/ARCADIS_Only/Amos/FGD Landfill CCR Reports/Well Network/2020-05-27-Final-Revised Well Network Report/Amos-CCR-FGD Landfill-Revised Well Network Report-2020-05-27.docx piezometers are assumed to have been closed following WVDEP guidelines. Further details are provided in Section 4.1.

Spatially, the monitoring well network as illustrated on **Figure 8** is distributed around the entire Site and sufficiently monitors up gradient and down gradient locations as specified in 40 CFR 257.91. The well screen intervals are located in the SRF system and include both the Monongahela and Conemaugh Formations.

3.3.2 Gaps in Monitoring Network

As discussed in Section 3.3.1 of this report, gaps in the monitoring network were not identified upon initial Arcadis review in 2016. Upon additional data collection, modifications were made to the federal monitoring well network to add MW-1801 and MW-1802 as replacements for MW-1 and MW-5, respectively and as described previously in this report. Based on these modifications, there are no gaps in the monitoring network. The recommended monitoring well network is described in Section 4.

4 RECOMMENDED MONITORING NETWORK

The network meets specifications stated in 40 CFR 257.91. Recommended groundwater monitoring objectives utilizing existing wells are further discussed and will provide an adequate understanding of seasonal and temporal fluctuations in groundwater quality, hydraulics, and groundwater flow at the Site.

4.1 Monitoring Well Network Distribution

The groundwater quality monitoring network at the Site consists of 9 out of 11 wells as represented on **Table 3** and **Figure 8**. The remaining two wells at the Site (i.e., MW-1 and MW-5) will be gauged for the purpose of ongoing groundwater elevation data collection. Additionally, all available piezometers listed on **Table 3** along with the 9 groundwater water quality monitoring wells will be gauged.

4.1.1 Down Gradient Locations

Monitoring wells down gradient in the south valley (MW-2, MW-1801) and north valley (MW-4, MW-1802) constitute the down gradient groundwater quality monitoring locations (**Figure 8**).

4.1.2 Up Gradient Locations

Monitoring wells located along the western (MW-6), southern (MW-7R), eastern (MW-8), and northern (MW-9, MW-10) CCR boundary constitute the up gradient groundwater quality monitoring locations (**Figure 8**).

4.2 Well Construction

As discussed above in Section 3, gaps in the monitoring well network at the FGD Landfill were addressed by utilizing existing wells and by the installation of 2 monitoring wells in August 2018 (MW-1801, MW-1802). All new monitoring wells were constructed in general accordance with West Virginia Department of Environmental Protection Title 47 Series 60 Monitoring Well Design Standards dated June 21, 2011 by a state licensed driller.

Installation details and field methods are provided in **Appendix A**. Well construction data for the monitoring well network is summarized on **Table 3**. Boring logs and the monitoring well completion diagrams are provided in **Appendix B**.

arcadis.com https://arcadiso365.sharepoint.com/sites/AEP_US_teamsite/ARCADIS_Only/Amos/FGD Landfill CCR Reports/Well Network/2020-05-27-Final-Revised Well Network Report/Amos-CCR-FGD Landfill-Revised Well Network Report-2020-05-27.docx FGD LANDFILL-CCR REVISED GROUNDWATER MONITORING WELL NETWORK EVALUATION

5 PROFESSIONAL ENGINEER'S CERTIFICATION

I, Todd A. Minehardt, certify that this report was prepared under my direction and supervision, and that the information contained herein is true and accurate to the best of my knowledge. Based on my experience and knowledge of the site, the proposed groundwater monitoring system will be adequate to meet the requirements of 40 CFR Part 257.91 excluding paragraphs (d) and (g), which do not apply to this groundwater monitoring well network evaluation.

MINEHANDT ODD

Printed Name of Registered Professional Engineer

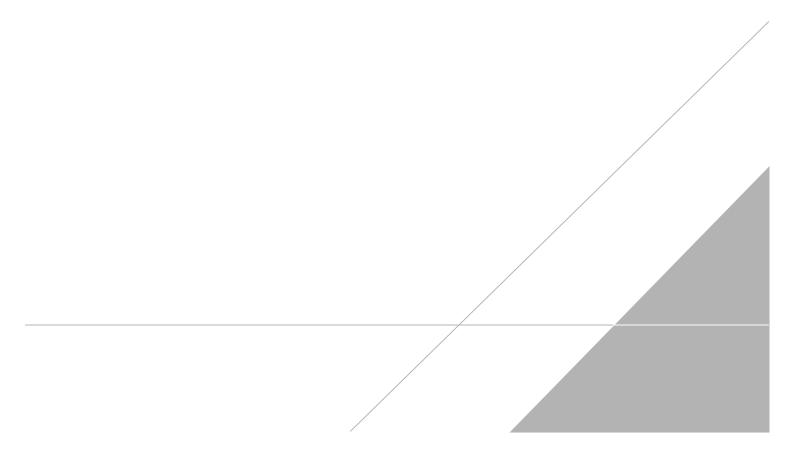
Signature

arcadis.com

23578

27/2020

Registration No.


Registration State

Date

6 REFERENCES

- AEP. 2019. Annual Groundwater Monitoring Report, Appalachian Power Company, John E. Amos Plant, Landfill CCR Management Unit, Winfield, West Virginia.
- Arcadis. 2016. FGD Landfill CCR Groundwater Monitoring Well Network Evaluation. October 5.
- Banks Environmental Data, Inc. 2017. Water Well Report, AEP Water Well Inventory, FGD Landfill, ES-124909.
- Fetter, Charles Willard, and C. W. Fetter. 2001. Applied hydrogeology. Vol. 3. No. 3. Upper Saddle River: Prentice hall.
- GAI Consultants, Inc. 2006. Class F Industrial Landfill Facility Application, John E. Amos Landfill, John E. Amos Plant, Winfield, West Virginia, GAI Project Number: C040384.40.
- GAI Consultants, Inc. 2016. Design Report: Landfill Final Cover System, John E. Amos Landfill, John E. Amos Power Plant, Winfield, West Virginia
- Latimer, W.J., et al. 1911. Jackson, Mason and Putnam Counties, Volume 1, County Reports and Maps. Wheeling News Litho. Company.
- Putnam Public Service District. 2017. 2017 Water Quality Report. http://www.putnampsd.com/ccr.pdf
- Southeast Regional Climate Center. 2017. Historical Climate Summaries, Winfield Locks, West Virginia, http://www.sercc.com, Query conducted by Mr. Josh Roberts of Arcadis on May 10, 2017.
- U.S. Department of the Interior. 1977. Groundwater Manual. Bureau of Reclamation. Supt. of Documents, U.S. Govt. Printing Office, Washington, D.C.
- USGS. 1981. Water-Supply Paper 2177, Hydrologic Effects of Stress-Relief Fracturing in an Appalachian Valley.
- USGS. 2001. Aquifer Characteristics Data for West Virginia, Water Resources Investigation Report 01-4036.
- USGS, Aquifers and Groundwater. 2015. Available online at www.usgs.gov.
- USGS. 2019. USGS Water Data for the Nation. USGS 03198000 Kanawha River at Charleston, WV. https://waterdata.usgs.gov/usa/nwis/uv?03198000. Data range: January 2016 to May 2019. Query conducted by Mr. Josh Roberts of Arcadis on May 15, 2019.

TABLES

Well ID	Elevation	Depth to Water		Depth to Water	GW Elev																
Monitor Wells		ft TOC	ft amsl																		
Downgradient																					
MW-1 ^a	711.57	6.30	705.27	9.76	701.81	13.07	698.50	13.08	698.49	NM	NM	NM	NM	NM	NM	13.02	698.55	12.34	699.23	12.24	699.33
MW-2 *	711.41	40.40	671.01	43.06	668.35	44.03	667.38	73.74	637.67	43.82	667.59	NM	NM	NM	NM	44.13	667.28	44.06	667.35	44.47	666.94
MW-3	NA	NA	806.80	NA	NA																
MW-3R *	NA	NM	NM	NA	779.77	NA	NA														
MW-3RA	NA	NM	NM	NA	NA																
MW-4 *	676.76	19.70	657.06	20.51	656.25	NM	NM	18.43	658.33	NM	NM	NM	NM	NM	NM	19.11	657.65	19.22	657.54	19.19	657.57
MW-5 *	676.84	6.60	670.24	6.34	670.50	4.85	671.99	3.58	673.26	NM	NM	NM	NM	NM	NM	5.20	671.64	5.06	671.78	5.12	671.72
MW-1801	738.32	NA	NA	NA	NA	34.48	703.84	34.42	703.90	34.70	703.62	35.23	703.09	35.33	702.99	35.60	702.72	35.47	702.85	34,99	703.33
MW-1802	712.69	NA	NA	NA	NA	52.68	660.01	52.35	660.34	53.00	659.69	55.30	657.39	53.73	658.96	53.82	658.87	54.01	658.68	53.92	658.77
Upgradient																					
MW-6 *	929.29	66.00	863.29	65.75	863.54	NM	NM	61.10	868.19	NM	NM	NM	NM	NM	NM	63.79	865.50	64.71	864.58	65.56	863.73
MW-7	NA	NA	906.55	NA	NA																
MW-7R *	854.63	NM	NM	72.35	782.28	NM	NM	69.90	784.73	NM	NM	NM	NM	NM	NM	70.02	784.61	70.07	784.56	70.64	783.99
MW-8 ^b	937.68	25.80	921.21	31.81	915.20	NM	NM	26.53	920.48	NM	NM	NM	NM	NM	NM	27.44	919.57	28.49	918.52	16.88	920.80
MW-9 *	935.39	32.90	902.49	37.89	897.50	NM	NM	27.28	908.11	NM	NM	NM	NM	NM	NM	30.63	904.76	32.35	903.04	35.45	899.94
MW-10 *	911.43	119.70	791.73	101.28	810.15	NM	NM	99.64	811.79	NM	NM	NM	NM	NM	NM	103.18	808.25	100.81	810.62	98.40	813.03
Piezometers																					
0501	761.33	18.65	742.68	NA	NA																
0502	761.46	NM	NM	NA	NA																
0503	777.00	19.30	757.70	NA	NA																
0504	777.30	6.10	771.20	NA	NA																
0505	912.89	88.40	824.49	NA	NA																
0506 ^a	711.77	41.75	670.02	43.61	668.16	NM	NM	43.81	667.96	NM	NM	NM	NM	NM	NM	44.19	667.58	44.12	667.65	44.53	667.24
0507	712.49	14.60	697.89	NA	NA																
0508	980.97	139.15	841.82	NA	NA																
0509	826.75	22.25	804.50	NA	NA																
0510	927.69	NM	NM	NM	NM	NM	NM	45.66	882.03	NM	NM	NM	NM	NM	NM	46.41	881.28	47.48	880.21	46.60	881.09
0511	826.67	20.90	805.77	NA	NA																
0512 *	786.29	5.40	780.89	5.22	781.07	NA	NA														
0513 *	786.49	5.70	780.79	5.25	781.24	NA	NA														
0514	950.65	25.85	924.80	NA	NA																
0515	935.49	62.85	872.64	NA	NA																
0517 ^b	937.68	51.20	896.15	52.67	894.68	NM	NM	42.09	905.26	NM	NM	NM	NM	NM	NM	41.92	905.43	42.34	905.01	31.26	906.42
0519 ^a	992.97	84.30	908.67	87.54	905.43	NM	NM	73.41	919.56	NM	NM	NM	NM	NM	NM	80.31	912.66	80.39	912.58	80.40	912.57
0520 °	681.38	24.47	656.91	NA	656.86	NA	NA														
0521 °	1006.48	56.33	950.15	58.05	948.43	NM	NM	54.10	952.38	NM	NM	NM	NM	NM	NM	56.31	950.17	56.33	950.15	56.38	950.10
0522 °	903.54	67.30	836.24	70.17	833.37	NM	NM	65.32	838.22	NM	NM	NM	NM	NM	NM	65.90	837.64	66.84	836.70	68.77	834.77
0523 °	972.30	296.90	675.40	304.13	668.17	NA	NA														
0524 ^a	699.14	5.33	693.81	5.61	693.53	NA	NA														
0525 °	681.48	6.55	674.93	6.47	675.01	NA	NA														

Tan of Carling 7/1/2005 7/1/2005 11/22/2010 11/22/2010 12/17/2018 12/17/2018 1/24/2019 1/24/2019 2/21/2019 2/21/2019 3/13/2019 4/23/2019 4/23/2019 6/10/2019 6/10/2019 7/22/2019 7/22/2019 11/4/2019 11/4/2019

NOTES: Shade a well not writing or closed Evention in the above mean sea level. a = Source: AEP DWG: No. 1330000-12:E b = Well water curveyed in Suptember 2019. Ground surface was lowered to access stockpiled soil, and subsequently well casing was removed. Top of casing elevation changed from 947.01 to 937.68 at MW-8, and 947.35 to 937.68 at 0517. and = above mean sea level b = before the surface of the subsequently well casing was removed. Top of casing elevation changed from 947.01 to 937.68 at MW-8, and 947.35 to 937.68 at 0517. B = before the subsequently well casing was removed. Top of casing elevation changed from 947.01 to 937.68 at MW-8, and 947.35 to 937.68 at 0517. B = before the subsequently well casing was removed. Top of casing elevation changed from 947.01 to 937.68 at MW-8, and 947.35 to 937.68 at 0517. B = before the subsequently well casing was removed. Top of casing elevation changed from 947.01 to 937.68 at MW-8, and 947.35 to 937.68 at 0517. B = before the subsequence of the

Table 2 Summary of Hydraulic Testing Results AEP Amos Generating Plant - FGD Landfill Winfield, West Virginia

Test Borehole/Well Identification	Test Date	Boring Diameter (inches)	Casing Diameter (inches)	Top of Interval/ Screen (ft-bgs)	Base of Interval/ Screen (ft-bgs)	Interval/ Screen Length (ft)	Water Level ⁴ (ft bgs)	Water Column (ft)	Test Pressure (psi)	Test Flow Rate (gpm)	Max Sustained Flow Rate (gpm)	T (ft²/day)	K (ft/day)	K (cm/sec)
Borehole Packer Testing ¹														
MW-1801	8/9/2018	3.0		65	75	10	13.00	62.0	60	0.0				
MW-1801	8/9/2018	3.0		65	75	10	13.00	62.0	100	0.2		9.1E-02	9.1E-03	3.2E-06
MW-1801	8/13/2018	3.0		55	65	10	17.10	47.9	60	2.6		2.2	0.2	7.9E-05
MW-1802	8/21/2018	3.0		48	58	10	35.10	22.9	60	0.1		0.1	1.1E-02	4.0E-06
MW-1802	8/21/2018	3.0		65	75	10	35.10	39.9	60	0.0				
MW-1802	8/21/2018	3.0		65	75	10	35.10	39.9	100	0.0				
MW-1802	8/21/2018	3.0		89	99	10	35.10	63.9	60	0.0				
MW-1802	8/21/2018	3.0		89	99	10	35.10	63.9	100	2.0		1.0	0.1	3.7E-05
MW-1802	8/21/2018	3.0		99	109	10	35.10	73.9	60	0.0				
MW-1802	8/21/2018	3.0		99	109	10	35.10	73.9	100	0.0				
Yield Testing Recovery ²														
MW-1801	9/12/2018	6.0	2	55	75	20	32.83	42.2	N/A	0.2	0.2	0.1	7.0E-03	2.5E-06
MW-1802	9/11/2018	6.0	2	50	70	20	51.84	18.2	N/A	0.3	0.3	0.7	3.5E-02	1.2E-05
Slug Testing ³														
Unknown Location (high end range)	2006	NA	NA	NA	NA	NA	NA	NA					2.8	1.0E-03
Unknown Location (low end range)	2006	NA	NA	NA	NA	NA	NA	NA					2.8E-03	1.0E-06
											Minimum	9.1E-02	2.8E-03	1.0E-06
											Maximum	2.2	2.8	1.0E-03

Geometric Mean 0.4 3.8E-02 1.4E-05

NOTES:

¹Packer testing analysis analyzed using U.S. Department of the Interior, Bureau of Reclamation, 1977. Ground Water Manual, A Water Resources Technical Publication, pp. 258-264

² Recovery results only using Theis solution; correction of drawdown data applied for unconfined conditions (s'=s-s²/2b; where s is drawdown and b is aquifer thickness)

Kruseman, G.P. and Ridder, N.A., 1990. Analysis and evaluation of pumping test data. Analysis and evaluation of pumping test data., (47)

Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524

Birsoy, Y.K. and W.K. Summers, 1980. Determination of aquifer parameters from step tests and intermittent pumping, Ground Water, vol. 18, no. 2, pp. 137-146

³ Slug testing results from GAI Consultants, Inc. 2006. Class F Industrial Landfill Facility Application, John E. Amos Landfill, John E. Amos Plant, Winfield, West Virginia, GAI Project Number: C040384.40

⁴ Water level and total depth taken from data from individual respective test data

N/A = not available

-- = not applicable

T = transmissivity

K = hydraulic conductivity

ft = feet

gpm = gallons per minute

psi = pounds per square inch

cm/sec = centimeters per second

bgs = below ground surface

Table 3 Well Construction Details AEP Amos Generating Plant - FGD Landfill Winfield, West Virginia

	1 houter and a	Location			Ground	Top of Casing	g Borehole	Data	Screen Material	Well Diameter	Top of Filter Pack		Bottom of Filter Pack		Top of Screen		Bottom of Screen	
Well ID	Hydraulic Monitoring Only	Description to	Northing ^a	Easting ^a	Surface Elevation	Elevation	Depth	Date Installed			Top of I Depth	Elevation	Bottom Depth	of Filter Pack Elevation	Top o Depth	Elevation	Bottom Depth	e of Screen Elevation
	Monitoring Only	CCR Unit			(ft amsl)	(ft amsl)	ft bls	Installeu	Material	inches	ft bls	ft amsl	ft bls	ft amsl	ft bls	ft amsl	ft bls	ft amsl
Monitor Wells																		
Downgradient																		
MW-1 b	x	Southwest	539438.68	1722490.93	709.57	711.57	19.0	7/12/2005	screened PVC	2.00	6.00	703.57	19.00	690.57	8.00	701.57	18.00	691.57
MW-2 ^b		Southwest	539438.31	1722530.69	709.41	711.41	62.5	7/12/2005	screened PVC	2.00	37.00	672.41	62.50	646.91	42.00	667.41	62.00	647.41
MW-3 ^b		Central	541709.83	1724126.13	823.00	NA	32.5	6/27/2005	screened PVC	2.00	9.00	814.00	32.50	790.50	12.00	811.00	32.00	791.00
MW-3R [°]		Central	542088.19	1724096.18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3RA °		Central	542150.25	1724100.24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 ^b MW-5 ^b		West	542302.52	1721626.94	674.76	676.76	78.5	7/7/2005	screened PVC	2.00	53.00	621.76	78.50	596.26	58.00	616.76	78.00	596.76
	x	West	542299.18	1721658.72	674.84	676.84	10.2	7/7/2005	screened PVC	2.00	4.00	670.84	10.20	664.64	5.00	669.84	10.00	664.84
MW-1801 MW-1802		Southwest	539890.17	1722991.78	735.55	738.32	105.0	8/8/2018	screened PVC	2.00	52.00	683.55	76.00	659.55	55.00	680.55	75.00	660.55
Upgradient		West	542831.10	1722351.37	709.78	712.69	114.4	8/21/2018	screened PVC	2.00	45.00	664.78	71.00	638.78	50.00	659.78	70.00	639.78
MW-6 b		West	540882.81	1722758.78	927.29	929.29	91.0	6/23/2005	screened PVC	2.00	55.00	872.29	78.50	848.79	58.00	869.29	78.00	849.29
MW-7 b		South	539657.88	1723948.19	943.15	929.29 NA	55.5	6/28/2005	screened PVC	2.00	30.00	913.15	55.50	887.65	32.00	911.15	52.00	891.15
MW-7R °		South	539989.31	1723429.40	NA	854.63	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-8 d		East	542177.39	1725392.13	935.14	937.68	50.6	7/11/2005	screened PVC	2.00	20.13	915.01	50.63	884.51	30.13	905.01	50.13	885.01
MW-9 ^b		Northeast	544204.89	1724522.80	933.39	935.39	62.5	6/30/2005	screened PVC	2.00	37.00	896.39	62.50	870.89	42.00	891.39	62.00	871.39
MW-10 b		Northwest	544079.05	1722812.23	909.43	911.43	157.0	7/6/2005	screened PVC	2.00	85.00	824.43	157.00	752.43	133.00	776.43	153.00	756.43
Piezometers		NorthWood	011070.00	1122012.20	000.10		101.0	110/2000		2.00	00.00	021.10	101.00	102.10	100.00	110.10	100.00	100.10
0501 ^b		Central	540588.50	1723508.13	759.08	761.33	80.0	4/21/2005	Slotted PVC	0.75	35.00	724.08	53.00	706.08	40.00	719.08	50.00	709.08
0502 ^b		Central	540563.24	1723508.03	759.46	761.46	22.0	4/21/2005	Slotted PVC	0.75	7.00	752.46	22.00	737.46	11.00	748.46	21.00	738.46
0503 ^b		Central	540843.81	1723858.56	773.00	777.00	50.0	4/20/2005	Slotted PVC	0.75	34.70	738.30	50.00	723.00	39.70	733.30	49.70	723.30
0504 ^b		Central	540840.05	1723859.84	775.40	777.30	24.0	4/20/2005	Slotted PVC	0.75	8.20	767.20	24.00	751.40	13.20	762.20	23.20	752.20
0505 ^b		Central	541325.35	1723551.34	910.89	912.89	200.0	4/27/2005	Slotted PVC	0.75	10.00	900.89	140.00	770.89	117.00	793.89	137.00	773.89
0506 ^b	х	Southwest	539424.97	1722578.68	709.52	711.77	80.0	4/28/2005	Slotted PVC	0.75	20.00	689.52	70.00	639.52	58.00	651.52	68.00	641.52
0507 ^b		Southwest	539428.81	1722523.77	709.99	712.49	18.0	4/22/2005	Slotted PVC	0.75	4.00	705.99	18.00	691.99	7.00	702.99	17.00	692.99
0508 ^b		Central	541996.98	1723377.34	979.22	980.97	200.9	5/3/2005	Slotted PVC	0.75	77.00	902.22	150.00	829.22	127.00	852.22	147.00	832.22
0509 ^b		Central	541748.67	1724111.62	824.40	826.75	100.0	5/3/2005	Slotted PVC	0.75	20.00	804.40	80.00	744.40	68.00	756.40	78.00	746.40
0510 ^b	Х	West	540879.83	1722795.65	925.74	927.69	250.0	5/10/2005	Slotted PVC	0.75	30.00	895.74	122.00	803.74	100.00	825.74	120.00	805.74
0511 ^b		Central	541746.94	1724116.35	824.57	826.67	26.0	5/4/2005	Slotted PVC	0.75	3.50	821.07	26.00	798.57	15.50	809.07	25.50	799.07
0512 ^b		Central	542140.89	1724101.76	784.29	786.29	110.0	5/6/2005	Slotted PVC	0.75	20.00	764.29	54.00	730.29	42.00	742.29	52.00	732.29
0513 ^b		Central	542140.89	1724101.76	784.29	786.49	19.0	5/6/2005	Slotted PVC	0.75	2.50	781.79	16.00	768.29	4.00	780.29	14.00	770.29
0514 ^b		Southeast	540555.64	1725145.94	948.40	950.65	150.0	5/12/2005	Slotted PVC	0.75	17.00	931.40	67.00	881.40	55.00	893.40	65.00	883.40
0515 ^b		South	539572.11	1723680.17	933.64	935.49	250.3	5/16/2005	Slotted PVC	0.75	20.00	913.64	82.00	851.64	70.00	863.64	80.00	853.64
0517 ^d	x	East	542182.52	1725397.24	935.14	937.68	139.6	3/19/2005	Slotted PVC	0.75	3.59	931.55	45.99	889.15	33.99	901.15	43.99	891.15
0519 ^b	х	Northeast	543732.89	1725136.52	991.07	992.97	150.5	5/19/2005	Slotted PVC	0.75	15.00	976.07	108.00	883.07	95.00	896.07	105.00	886.07
0520 ^b		West	542378.38	1721739.79	679.31	681.38	100.0	5/24/2005	Slotted PVC	0.75	34.00	645.31	96.00	583.31	84.00	595.31	94.00	585.31
0521 ^b	х	North	544199.55	1724054.58	1004.35	1006.48	70.4	5/23/2005	Slotted PVC	0.75	12.40	991.95	70.40	933.95	60.40	943.95	70.40	933.95
0522 ^b		Northwest	543873.44	1722326.41	901.64	903.54	250.5	5/26/2005	Slotted PVC	0.75	35.00	866.64	155.00	746.64	133.00	768.64	153.00	748.64
0523 ^b		West	542742.24	1722248.67	969.90	972.30	50.0	5/25/2005	Slotted PVC	0.75	24.00	945.90	50.00	919.90	38.00	931.90	48.00	921.90
0524 ^b		West	542745.10	1722251.41	696.91	699.14	18.0	5/25/2005	Slotted PVC	0.75	3.00	693.91	18.00	678.91	8.00	688.91	18.00	678.91
0525 ^b		West	542379.95	1721745.36	679.43	681.48	10.0	5/25/2005	Slotted PVC	0.75	2.00	677.43	10.00	669.43	5.00	674.43	10.00	669.43

NOTES:

Shaded = well not verified or closed

Elevation in feet above mean sea level

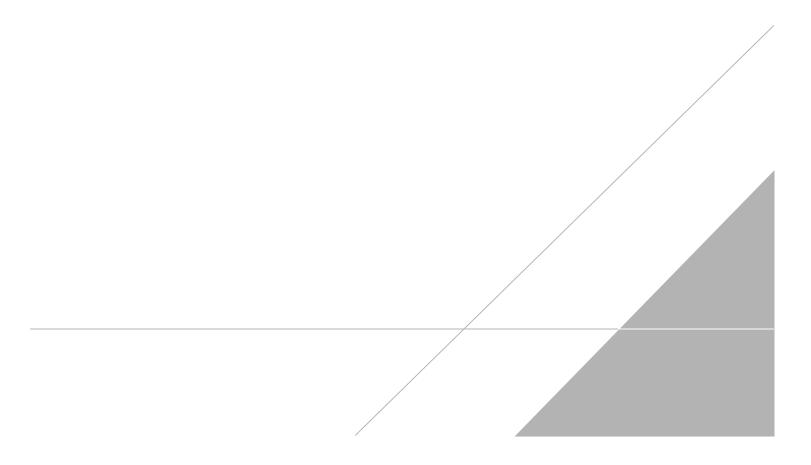
a = 1983 West Virginia State Planar Coordinates

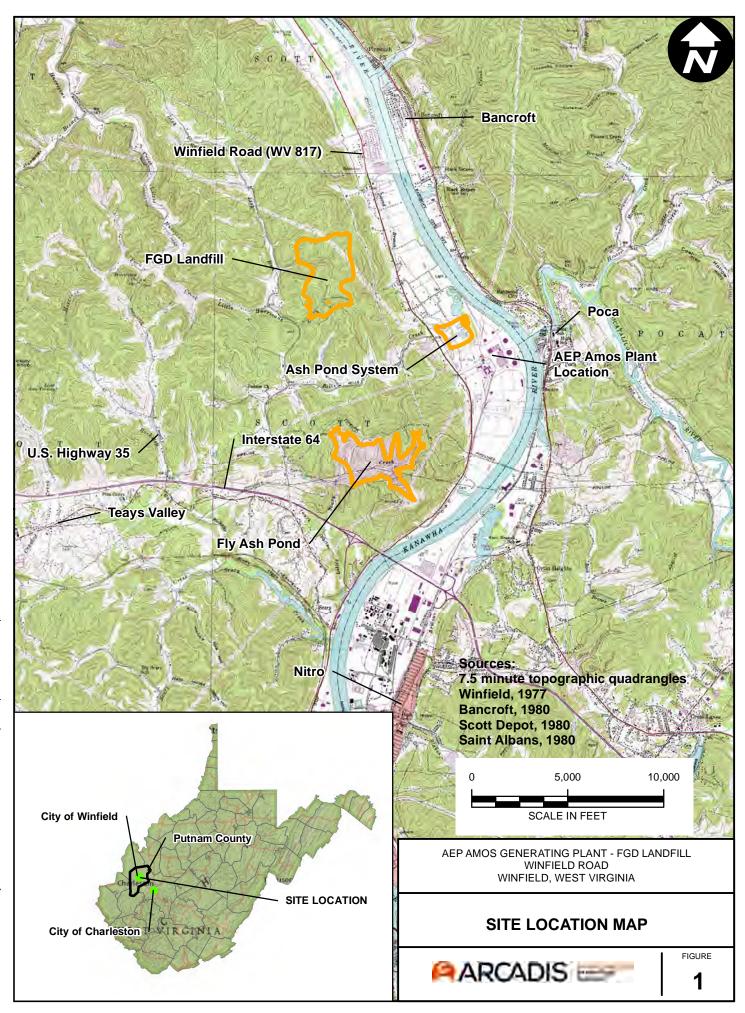
b = Source: GAI Consultants. March 2006. Class F Industrial Landfill Facility Application, John E. Amos Landfill, Volume 1, Appendix K - Monitor Well Construction Diagrams.

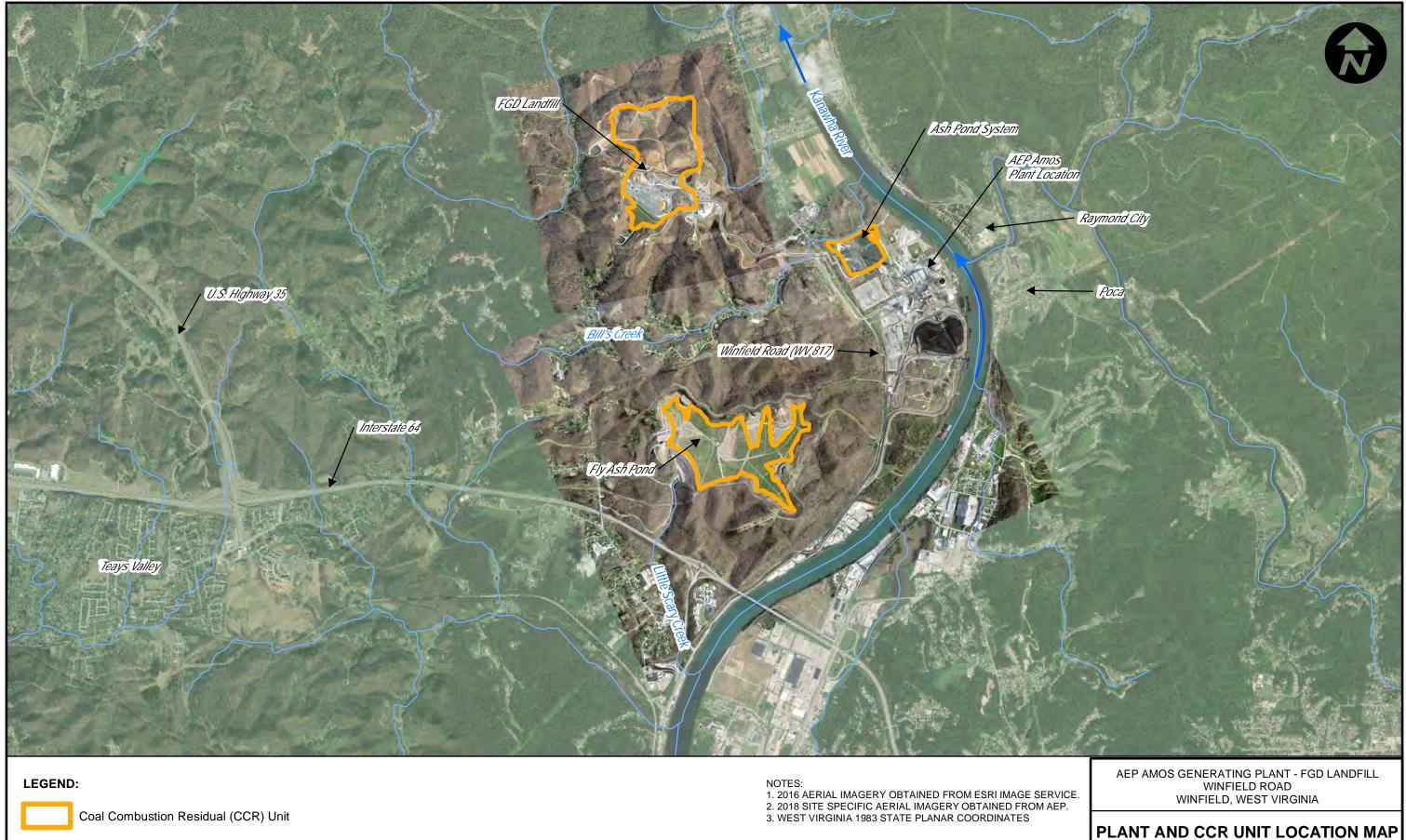
c = Survey data and boring log not available, coordinates estimated based on AEP DWG. No. 13-30500-11-E.

d = Well was re-surveyed in September 2019. Ground surface was loweredto access stockpiled soil, and subsequently well casing was removed. Top of casing elevation changed from 947.01 to 937.68 at MW-8, and 947.35 to 937.68 at 0517.

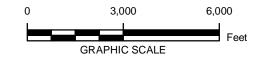
amsl = above mean sea level


bls = Below land surface

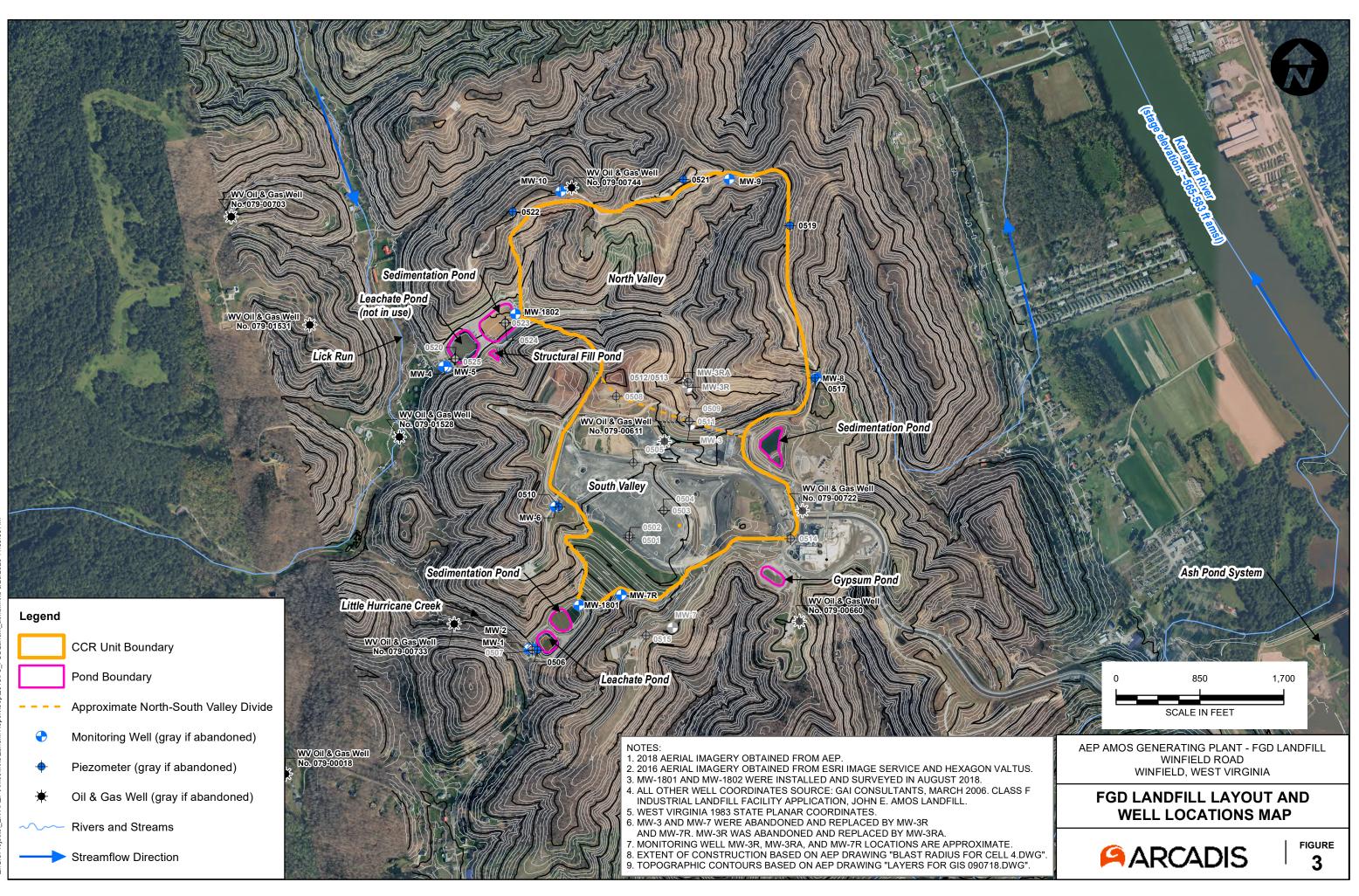

ft = feet

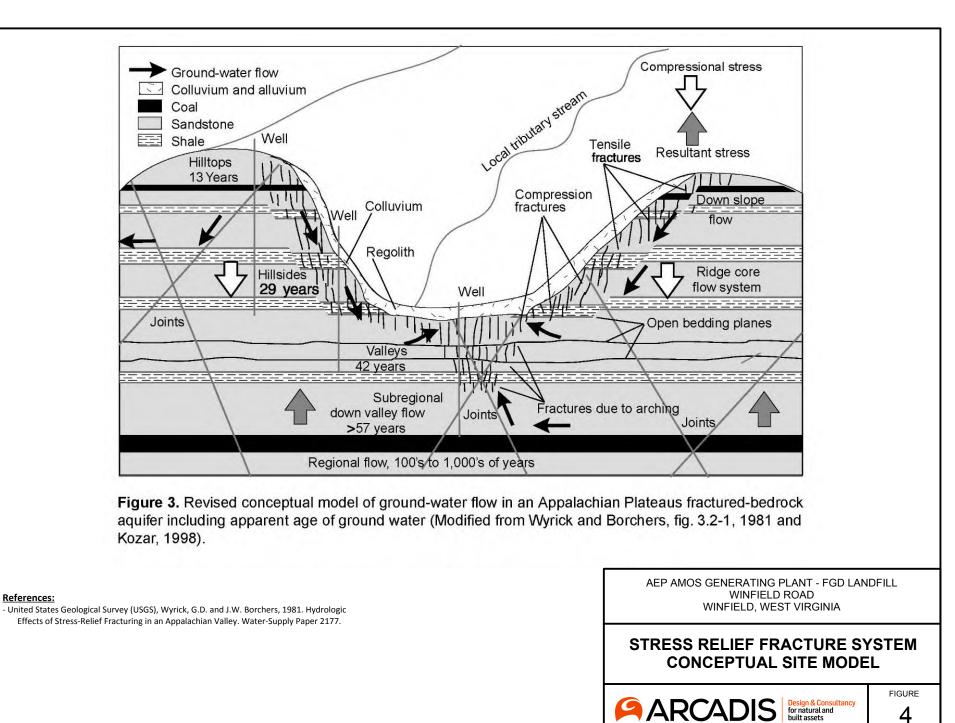

NA = not applicable

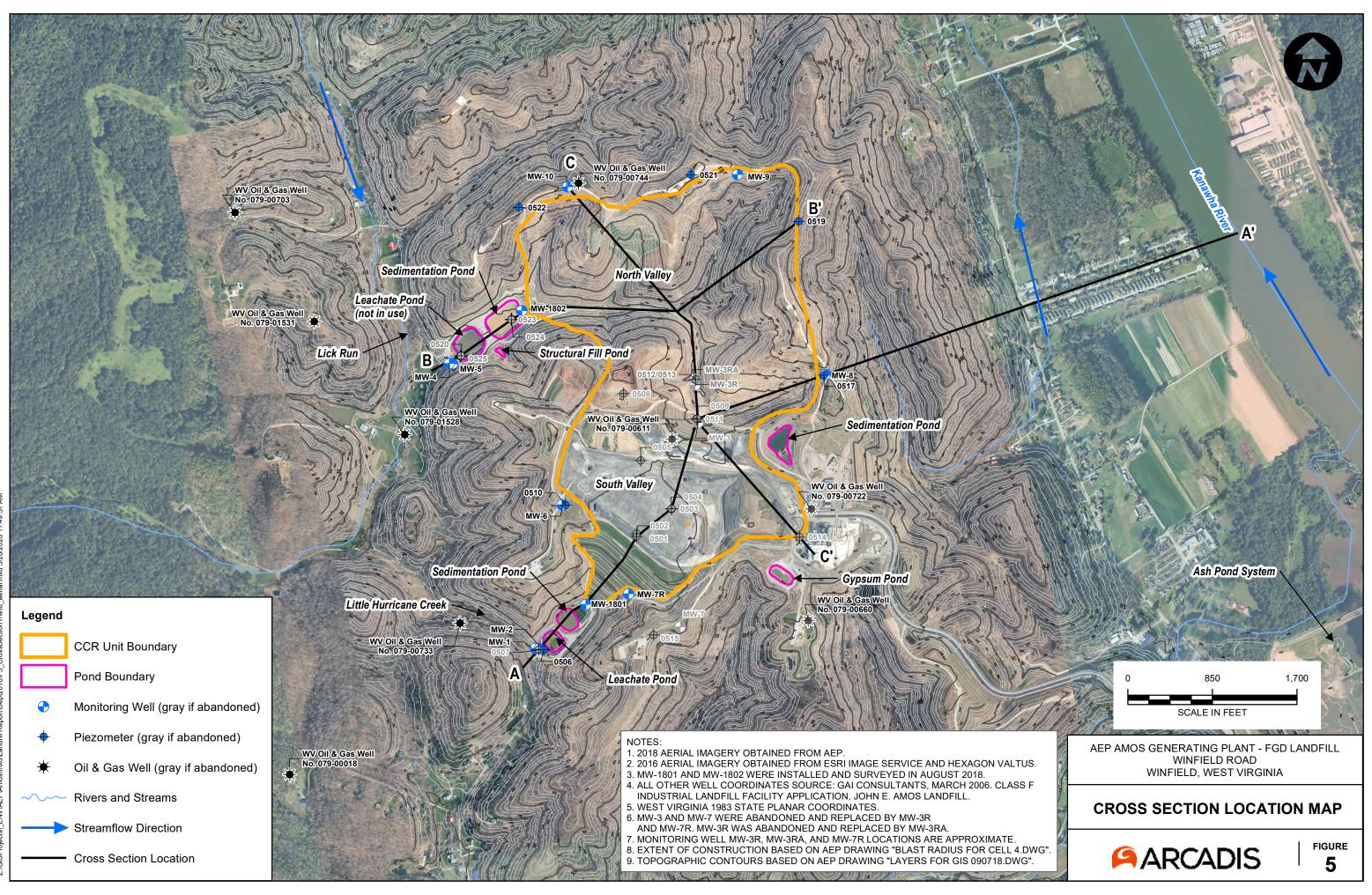
FIGURES



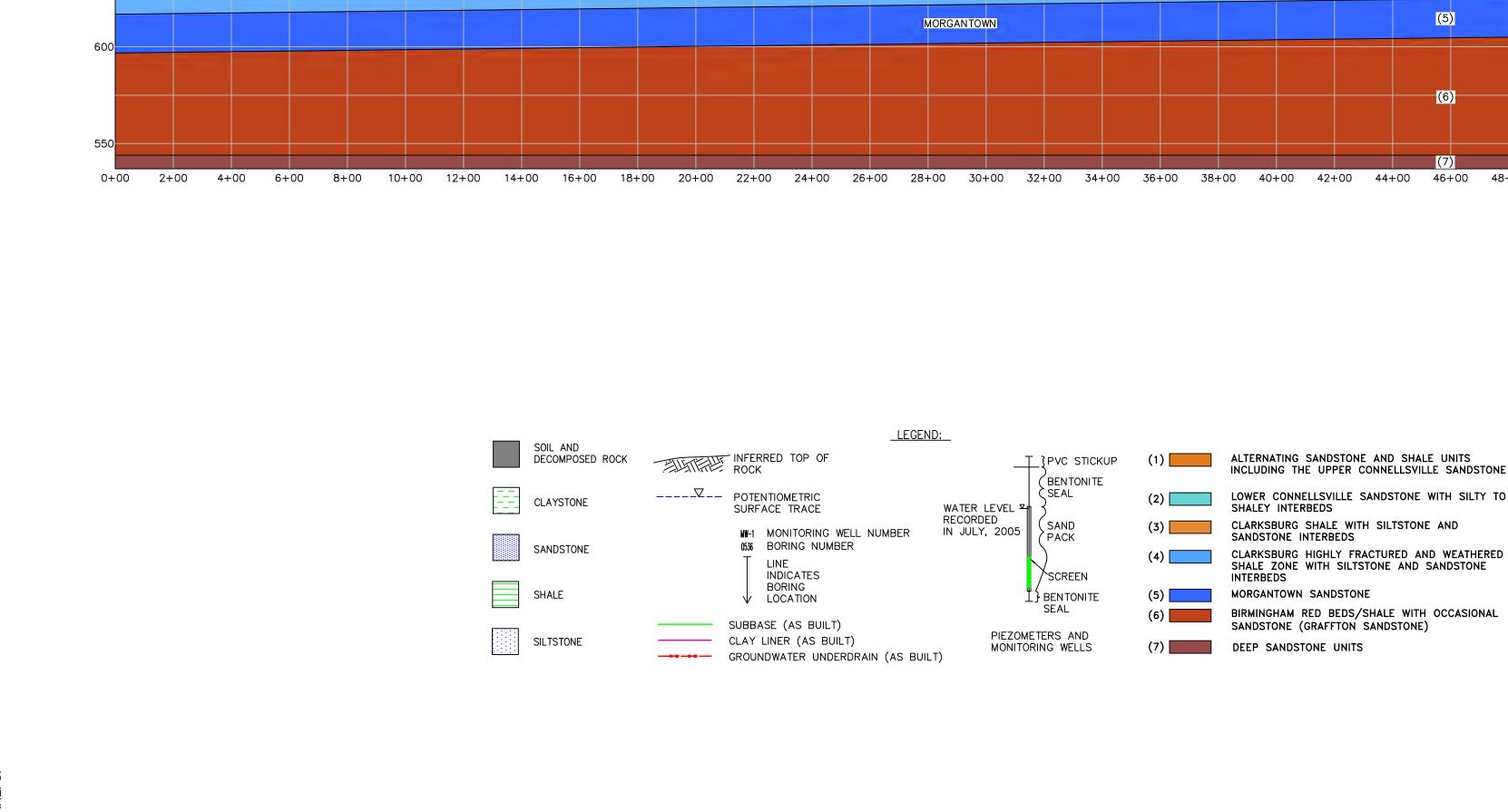
Streamflow Direction

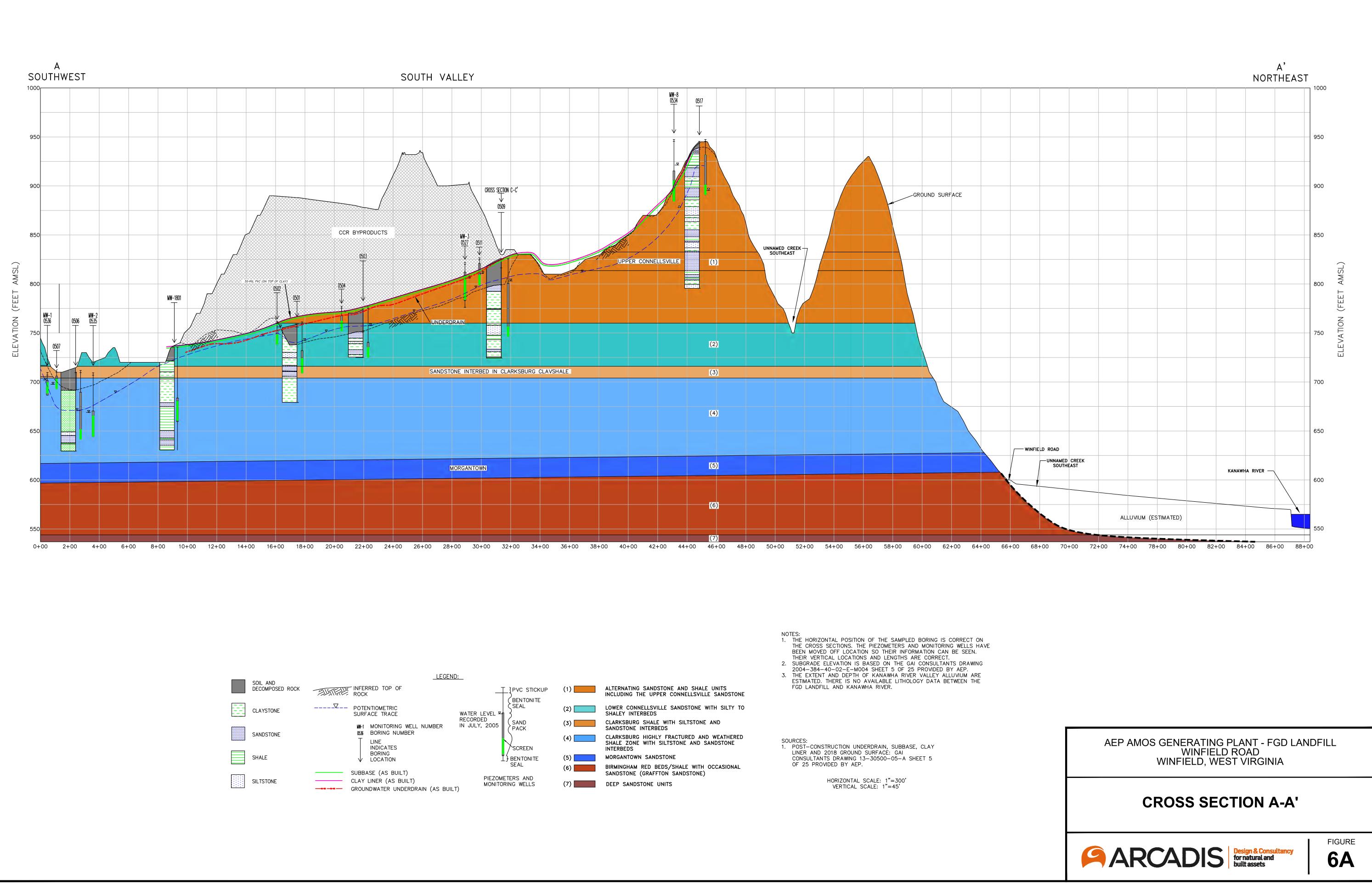


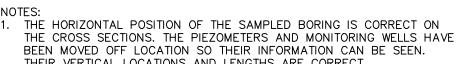

Rivers and Streams

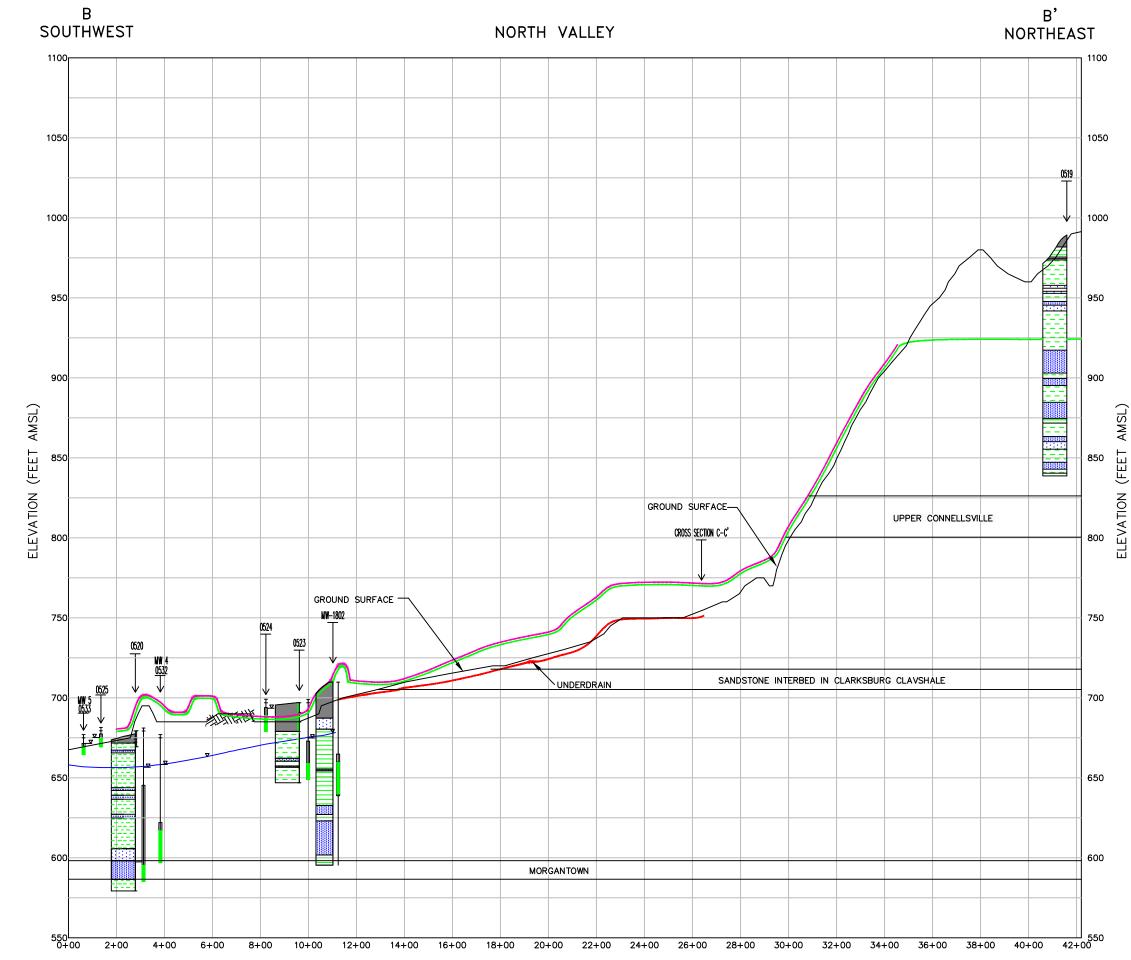

Last City: CITRIX Div/Group: IM/DV Created By: K.Ives OH015976.0009.00001 (Mountaineer Ash Pond) Z:\GISProjects_ENV\AEP\Amos\mxdLandfill Report

AM 7:01:39

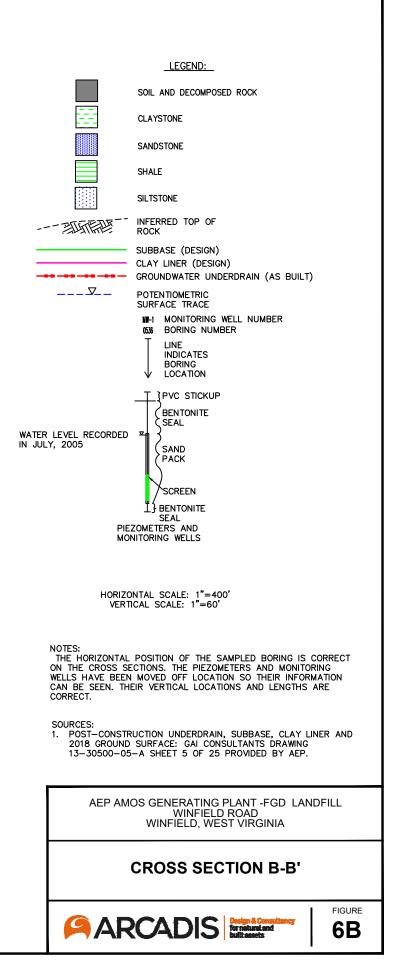


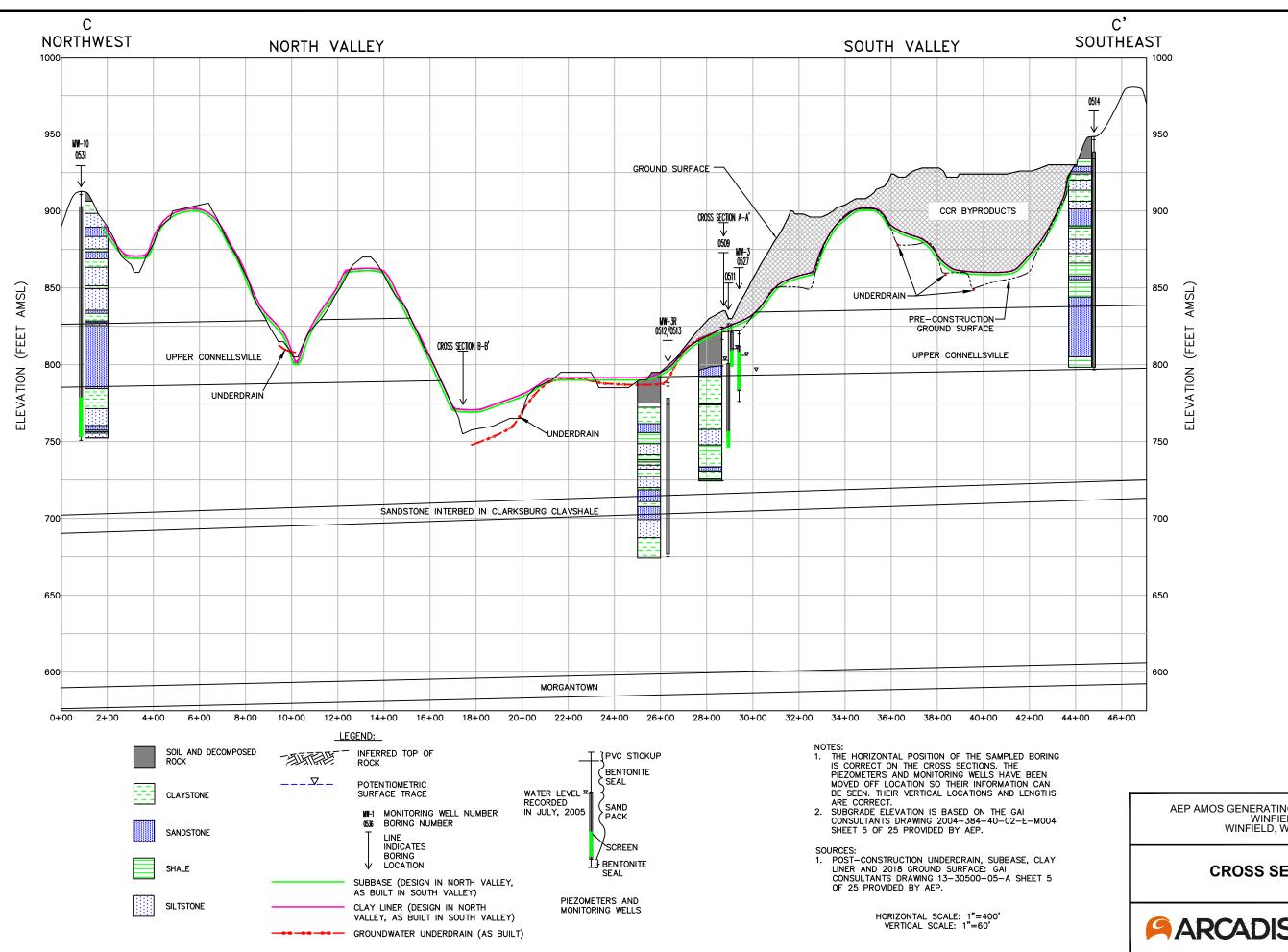




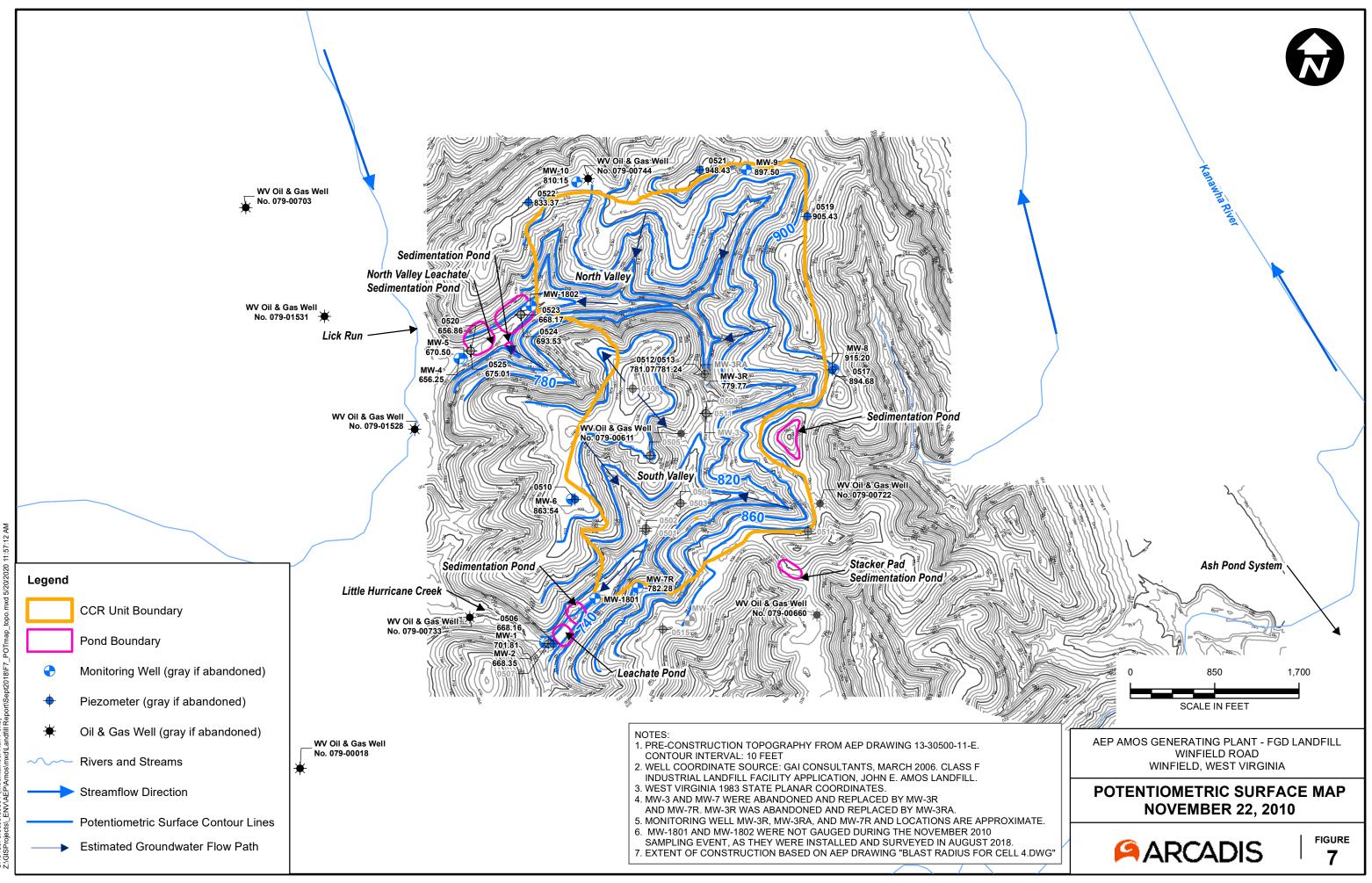


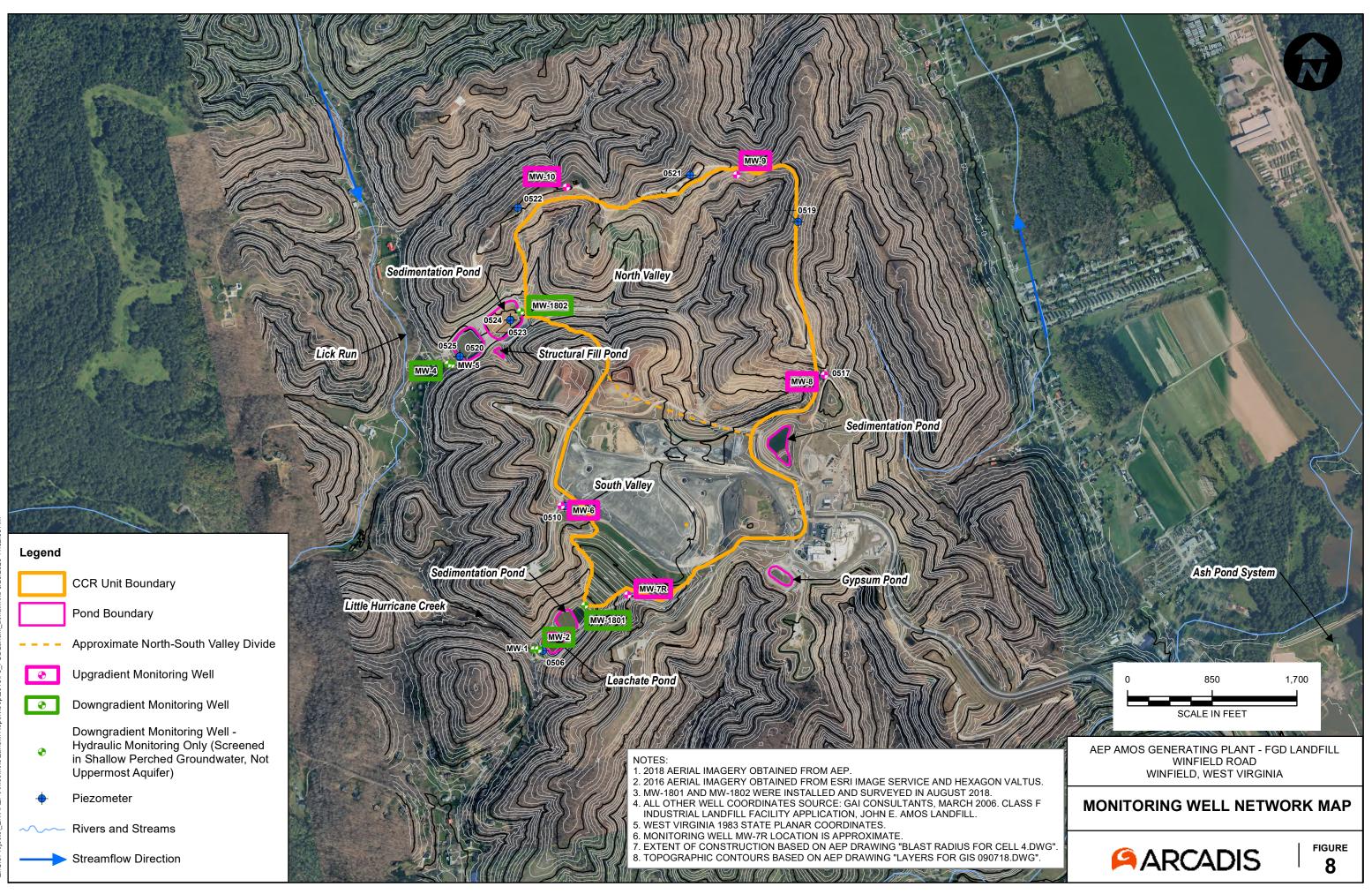
Ω Υū





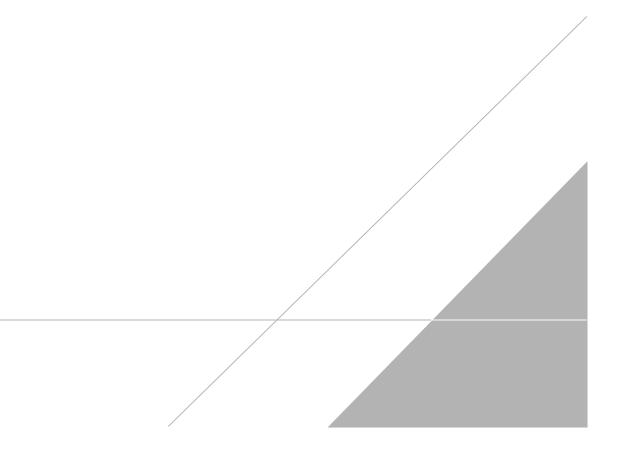
015976.0004\01-WLOV ULAN LECTRIC POWERVAEP Amos FGD LANDFILL(2019W)




FIGURE

6C

AEP AMOS GENERATING PLANT -FGD LANDFILL WINFIELD ROAD WINFIELD, WEST VIRGINIA



_ast Created By: K.Iv ineer Ash Pond) Mmxd/Landfill Re CITRIX Div/Group: IM/DV 15976.0009.00001 (Mounta SProiects\ ENV/AEP\Amo: City: Z'GI

Field Methodology

1

APPENDIX A

FIELD METHODOLOGY

Based on the recommended well network modifications, the following generalized tasks were completed:

- Installation of 2 bedrock borings at the FGD Landfill
- Installation and development of 2 new monitoring wells at the FGD Landfill

Arcadis provided oversight for drilling and installation of 2 bedrock monitoring wells by an AEP-licensed drilling crew. Implementation of the field activities began with the initial utility clearance activities beginning July 2018. Drilling, packer testing, well installation, and well development operations began on August 7, 2018 and ended on August 22, 2018. Well yield testing was completed on September 11 and 12, 2018.

Utilities Clearance

AEP completed a plant dig permit, which identified private plant utilities near the new monitoring well and borings locations. Arcadis retained the services of a utility locating subcontractor (The Underground Detective) to perform a geophysical survey (e.g. ground penetrating radar, electromagnetic survey, etc.) over an area of 25 feet by 25 to locate utilities at each new monitoring well location. The private utility locator also used an air knife/soil vacuum extraction system to pre-dig the proposed borehole locations to a diameter at least 10 percent larger than the largest diameter tooling to be used during drilling and to a depth of 8 feet below the ground surface (bgs) or to bedrock, whichever was encountered first.

Decontamination

All down-hole tools or equipment were decontaminated in accordance with ASTM D5088 prior to the start of drilling and between each borehole location. At a minimum, the tooling was washed with detergent solution followed by a potable water rinse. The use of a pressure washer was used when possible. Containerization was not required for decontamination water because all work was completed outside of the FGD Landfill area and not considered contaminated. Water for decontamination or drilling was potable and obtained from the AEP Amos Plant.

Borehole Advancement and Stratigraphy/Lithology

Bedrock boreholes began by using standard hollow-stem auger methods with a minimum 8.25" inner diameter auger in accordance with ASTM D5784 until the soil-rock interface was encountered. Continuous spit-spoon sampling and standard penetration testing was performed in accordance with ASTM D1586 until bedrock was encountered. A minimum 6-inch diameter PVC surface casing was temporarily set 2 feet into the competent bedrock prior to beginning rock coring. Bentonite chips were placed in the annulus between the borehole and the surface casing to ground surface, serving as a temporary seal around the surface casing during drilling operations. The chips were placed in a controlled manner to prevent contamination of the well. Chips were hydrated periodically during placement. The bentonite annulus seal was allowed to

set for approximately 12 hours (overnight) before continuing with rock coring. The 6-inch PVC casing was removed upon installation of the permanent well casing.

Rock core samples were completed with NQ sized wireline system in accordance with ASTM D 2113-93. Upon completion of coring, the bore holes were enlarged to 6" diameter using rotary drilling methods in accordance with ASTM D 5783-95.

Arcadis logged all geologic samples collected during the drilling process for bedrock monitoring wells. Field logging of the soil and rock samples were performed in accordance with ASTM D5434-12. Unconsolidated soils were classified under the Unified Soil Classification System (USCS), while rock core logging was classified in accordance with the *Midwest Geosciences Group; Field Guide for Rock Core Logging and Fracture Analysis*. Boring logs and well construction details for all installations completed during this scope of work are provided in **Appendix B**. No unconsolidated soil samples were collected. Rock coring was completed continuously using a NQ wireline system that retrieved a 2-inch diameter core to the termination depth. The borehole was flushed to remove any remaining drilling debris.

Packer Testing

Single-straddle packer tests were conducted on select intervals of the open core holes. Final determination of intervals for packer testing was determined based on review of lithologic boring logs, and consultation between Arcadis and AEP. At a minimum, straddle packer testing was completed at the anticipated depth interval corresponding to monitoring well screen depths. Upper and lower inflatable rubber packers attached to a rigid riser pipe were inserted to the specified test interval. Once at the test interval, the rubber packers were inflated to create a seal. The riser pipe was fitted with a pressure gauge at a known and documented distance above the ground surface, as well as a totalizing flow meter. Water was injected through the riser pipe at a constant pressure, while the Arcadis representative measured and recorded totalizing flow volume and gauge pressure at specified time intervals for a total of up to 30 minutes per each pressure. At the completion of the straddle packer test, water injection ceased and gauge pressure was monitored until it returned to pre-test conditions. Once gauge pressure stabilized, the packers were deflated and either removed from the borehole or to the next specified depth interval to repeat the straddle packer test procedure. Straddle packer test data was analyzed according to the method described in U.S. Department of the Interior, Bureau of Reclamation, 1977. Ground Water Manual, A Water Resources Technical Publication, pp. 258-264. After packer testing, the core hole was reamed to 8-inch diameter using air rotary drilling methods and water injections to remove cuttings in accordance with ASTM D 5782-95-Use of Direct Air Rotary Drilling for Geoenvironmental Exploration and the Installation of Subsurface Water Quality Monitoring Devices. The bedrock boreholes were flushed of cuttings at the completion of reaming using potable water. The final borehole depth was confirmed via tagline measurement following borehole flushing.

Monitoring Well Installation and Construction

Monitoring well installation and construction was completed in accordance with the AEP- approved work plan prepared by Arcadis. Prior to beginning work, daily health and safety meetings were held each morning, including a thorough discussion of the day's scope of work, identified hazards, hazard mitigation,

arcadis.com

and completion of the AEP Job Safety Analysis documentation in the presence of AEP staff. Health and safety documentation was retained by both Arcadis and AEP.

Based on the field conditions, Arcadis directed AEP regarding the total drilling and well completion depths, well construction configuration, and well materials to be used. Screened intervals for bedrock monitoring wells targeted the uppermost saturated bedrock unit. Final well depths and screened intervals are included in **Appendix B**.

All monitoring wells were constructed in general accordance with West Virginia Department of Environmental Protection Title 47 Series 60 Monitoring Well Design Standards dated June 21, 2011.

Bedrock monitoring wells were constructed of 2-inch Schedule 40 PVC risers and screens. The well was double-cased, with a 6-inch PVC surface casing installed into the upper two feet of bedrock. The surface casing was grouted in place using a bentonite grout. Well screens were constructed of 20 slot (0.020 ft screen openings) PVC. A primary filter pack of Global[®] #5 sand was placed across the screened interval to approximately 2 feet above the screen, followed by approximately 1 foot of secondary (finer gradation) filter pack composed of Global[®] #6 sand. Boring logs and well construction diagrams are provided in **Appendix B**, **Table 3** and well survey information can be seen in **Appendix C**.

Monitoring Well Development

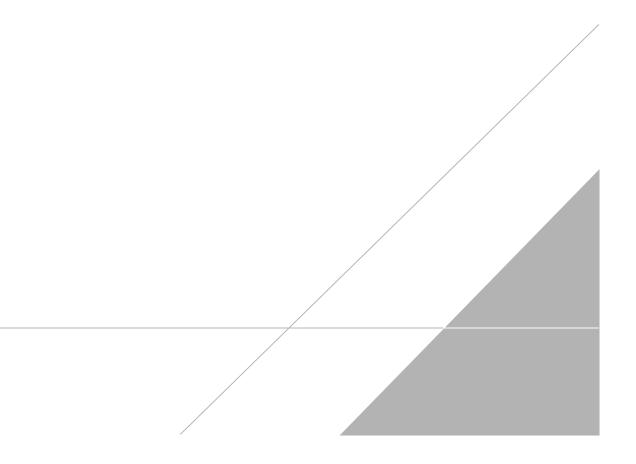
Well development was completed at both newly-installed wells. Well development at new wells was performed a minimum of 48 hours after the completion of well construction. The static water level was measured in the well prior to initiation of development. All wells were developed through a pump and surge method in accordance with West Virginia Department of Environmental Protection Title 47 Series 60 Monitoring Well Design Standards dated June 21, 2011. The well was initially purged with a pump to remove loose material and fines from the well. Well development data are included as **Appendix D**.

Monitoring Well Yield Testing

Well yield testing was conducted by Arcadis in September 2018 at wells MW-1801 and MW-1802, both of which are installed in the uppermost aquifer. Yield tests were completed by pumping each well at variable and steady state extraction rates and measuring the water level response in each well during and after pumping (recovery). Extraction rates were maintained using a submersible pump. High-resolution water level data were collected during both pumping and recovery phases via data-logging pressure transducers installed in each test well. A summary of yield testing results is provided on **Table 2** and solution reports with individual curve matches are provided in **Appendix D**.

High Resolution Water Level Monitoring

Continuous water level data in the SRF and shallow alluvial zone were collected in May through August 2018 in order to better characterize hydrogeologic conditions and permeability within the SRF system and shallow alluvium at the FGD Landfill. Detailed information is presented in **Appendix D**.


Pressure transducers were installed at seven hydraulic monitoring locations that included three SRF monitoring wells located upgradient on ridges in the north valley (MW-8, MW-9 and MW-10), two down

arcadis.com

gradient SRF monitoring wells with one in the south valley (MW-2) and north valley (MW-4), and two down gradient shallow alluvium monitoring wells with one in the south valley (MW-1) and one north valley (MW-5). Water levels were recorded continuously during the testing period.

APPENDIX B

Boring/Well Construction Logs and Closure Information

GAI Consultants, Inc. 2006

Boring Logs

B-0501 to B-0525 & MW-1 to MW-10 N 540558.4978

		GW		HRS				-	CT NO. C 240387.43.
ATE /	8-19 A	PA 2005		CLAS	SIFIED BY	<u>D</u>	AN SANGER	- PAGE	of
							DESCRIPTION		
ОЕРТН (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
1.5		S-1 NEC D.L S-2			V. LODSE	BROWN	SAPRY SILT	ml	SLIGHTLY MOIST
30	33	REC 0.8			LODSE	BEDWA	SANDY SILT APD SMALL ROCK FRAGS.	m	SLIGHTLY MOIST
	1,	5-3	<u> </u>	t i	V. STIFF	BROWN	SILM CLAY	cl	¥ 2,0 TSF
4.5	3	REC 0.9				CAALE			
6.0	36	AZC. 08			V. STIFF	GAAY + BROWP MOTTIED	SANDY CLAY MUILT	el	¥ 2.75 TSF
	56	5-5		Ι		GRAY +			WATER 26'
7.5	14	AEL 1.3 3-6			V. STIFF	BROWN	SANDY CLAY MOIST	d	4 3.0 TSF
9.0	<u>Ч</u> .	REC 1.5		1		GRAH +			
107	36	8-7 AEC			V.STIFF	MONTLED	SAPDY CLAY MOIST	Л	# 3.0 T3F
10.5	5	5-8				GRANT			
12.0	10	1.3		1	V.STIFF	BADWA		(1	# 3.75 TSF
13.5	37	5-9 AFC 1.5			HARD	GRAY + BROWN MOTILED	SANDY CLAY DECOMP. CLASSTOR	CI	4 4.5 TJF
		AEC. 1.5 5-10	<u> </u>			GRAY +			
12'5	610	REC. 1.5		1	HARD	MOTRES	SANDY CLAY : DECOMP. CLAYSTONS	el	* 4.5 TSF
16.5	35	S-11 NEL. 1.5			HARD		SAN BY CLAY DECOM! CLAYSTONS	c1	* 4.0 TSF
	<u>з</u> Ч	5-12 REC 1.5			11000	GMAY			N 11 2 C - 2 C
C.81	22	5-13			HARD	<u> </u>	SANDY CLAY: DECOMP CLAYSTONE	cl	+0 4.25 TSF
19,5	2	REC. 1.5	<u> </u>		ENAIDO	GRAM	SAHOY CLAY: DECEMP CLAY STONE	د١	* 4.5 131
21.0	ما (^{ما}	5-14 REC. 1.5			HARD	BRAY, BLUE BROWN MOTTLED	SANDY CLAY: DECOMP CLAYSTONE	cl	+ 4.5 TSF
	14 24 50/0.3	5-15 REL 1.3			SOFT	GRAY	DECOMPOSED SANDY CLAYSTOFE		· · · ·
2.3	Y			12.3 11=11=11:		CRAYO	HIGHLY WEATHERED CLAYSTONE	VBR-	30" SLICKENS, DED FRAC.
				1	TO SPFT	MARONN			TURES AT 23.5, 23.75, 21
									LOW ANGLE FRACTURES AT
									22.7 23.0, 23,6,23.9, 24
	9.29.2	100%	71	27.4				¥	24.2,24.5,24.6, 25.2,26
			<u> </u>	- 1.1	SOFT	GRAY	SANDY CLAYSTOPE	BA-BL	26.3 27.7 28.0 28.4,
			L	29,0	SOFT TO	V	LNTERBEDGED SANDY SILT STARE AND SAND STARE	V	29.6 30.3

BORING ADVANCED WING 51/4" FOLD STEM ANGERS, 4"& CASING, MQ-2 WIRELING CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>0501</u> (3.3)

gai consultants

							. Pl	LAN	T	ST. ALBANS, WV			GNO. <u>B-0501</u>
ELEVATIO	JN		GW	VL O	HRS HRS						_PR	OJE	CTNO. <u>COY0384,40-0</u>
DATE	18-1	<u>۲</u> .	1PA 2000	<u>s</u>			BY		Г	DAN SANGER	_ P/	AGE	_2_ of _3
										DESCRIPTION			
ОЕРТН (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN		L M	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS		COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
ſ	2		3	4	5	6			7	8	4	9	10
31.5	╞╌┝	-			-	miss	FT-	GR	AY	LATERBEDDED SANDY SILTSTON	<u> </u>	32	
	 	<u>}</u>			1					AND SHOTZOHE (CON'T)	ļ		LOW ANGLE FRACTURES
	╂──┤				-	-		L			<u> </u>	$\left - \right $	33.6, 34, 4 36.0, 36.2
	$\left - \right $				34.4						<u> </u>		36.7, 37.35 37.8, 380, 38.2
	┥─┤				-	SOFT		GRAM		CLAYSTONE	-	R-	· 41.1,
	10,0	10,0	100%	7.	-	\vdash		MOTI	i i		60		30° FRACTURES Y SLICKEN-
	10,0	10.0	100%	70									SIDES 35,4,39,25,39.75,
	+	-			-		_		<u> </u>				40.0, 41.3-41.5
		-		┼──			-						BRAKEN ZONES 35.6-35.
	╉──┼					\vdash						\vdash	40.0-41.0, 41.5-42.3
41,5		=							/				
				+	423	V C C			v	V	<u>'</u>	<u>v</u>	
······································						M. SOF M. HA	T	GL	<u>-129</u>	SANDSTONE	1B		LOW ANGLE FRACTURE
	+					M. U.A.					-		42.3, 43.25, 48, 5, 48, 1
	+			 									148.5, 50.2, 51.5, 51.7
	5.2	10.0	93%	88							–	-	522,527 534
	1	·	10 10	00.	48.0		-		/		ú		
					48.5	SOFT		AK GR	A-1	SANDY CLAYSTONE	B	· .	
					1	M. JOFF	70	60.		INTERBEDDED SANDSTONE AND	B		
	† †				1	M- HANG					<u> '</u> 5	-	
51.5		\rightarrow			1	-	-			SANDY SILTSTONE	-		
				-					,	······	-		
			·		53,4	SOFT		GRA		SANDY TO SILTY CLAYSTORE	11.0		
					1	1		An AD	400	UNITY IN DIVING CLAYSTORE	Ba	2-	LOW ANGLE FLACTURES 53.7,54.05 54.3 54.8
					1			Matn	<u> (2</u>			ì	<u>55.4</u> 55.55, 55.7 55.85
	9.3	0.0	93%	31			-				1-		56.25 56.5, 56.7, 56.5, 53.73
			<u> </u>								-		51.2,58.0, 53.5 58.959.4
					1		\neg				-	-	60.6 60.85 61.35
					e i				<i>(</i>		1		BADKEN ZONE 59.3.60.1

REMARKS **

~30" SUCHENSIDED FLACS. 54.4, 57,55, 57.9, 58.25,

58.75, 61.1

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0501

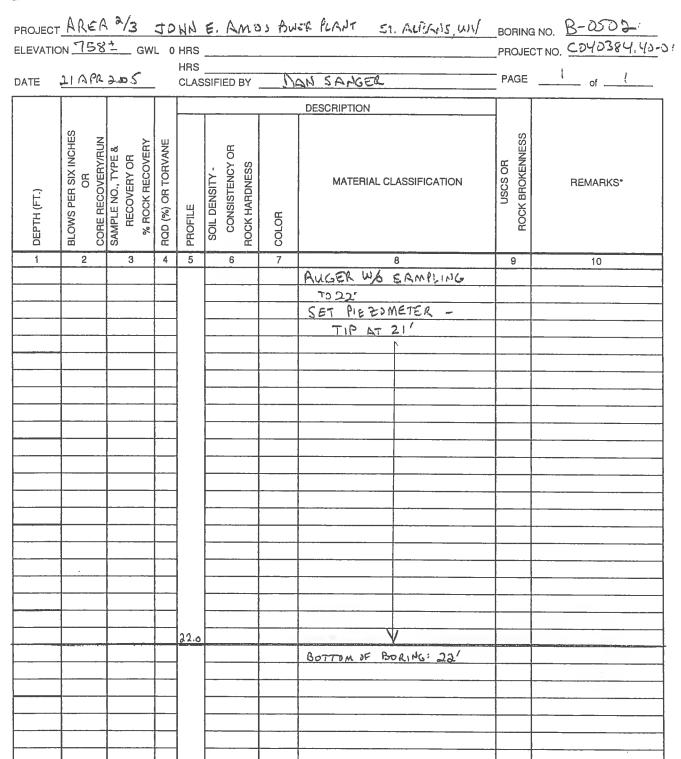
it

PROJEC		EA	2/3	AMi	os P	รณอ	r pl	AN	Г	ST ALBANS, WV	BO	RIN	GNO. B0501
			G'							-	PR	OJE	CT NO. CO40384.42-01
		. .		-	HRS								
DATE	18-	15 K	PR 2-205	_	CLAS	SIFIE	D BY		121	N SANGER	PA	GE	<u>3</u> of <u>3</u>
										DESCRIPTION	Τ		
ОЕРТН (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS		COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2	3	4	5		6		7	8	5)	10
61.5													
	\pm				61.6								-
		<u> </u>				501	F-1	DA	100 J	CLAYSTONE HIGHLY WEATHERED -	VBA	-	61.5-65.9 APPARENT
		ļ			1			Ar	262,1 20	CORE IS HIGHLY ATTED	ß	2	ZONE OF COLLE LOSS
		<u> </u>			4	<u> </u>	ļ	Man 1	PLE ML146				BROKEN ZONE: 69.5:66.7
		<u> </u>	- A		-		<u> </u>						LOW ANGLE FRACTICES
	5.6	6.0	56%	282	-	<u> </u>			<u> </u>				66.9, 67.15, 67.3, 67.75,
					-	⊢—							67.85 68.9 69.1 69.65,
					-			<u> </u>					70.6
	-			+	-								
71.5						├							
	\rightarrow	K											30° SLICKENSIDED
		\vdash			{								FLACTURE 69,9,71.1.
													71.4, 74.2,75.0
	Tio	8.5	892	27	{						+		BRULEN ZONE 71.5-72.3
	110	6,0	014		1						$\left - \right $		APPARENT COME LOSS 72.3-
												_	73,2
	1										$\left \cdot \right $		LOW ANGLE FRACTURES
80.0					80.0	1	,				+	-	74.55, 74.7, 75.35, 75.55,
	1			1			7			BOTTOM OF BULING : BO.O'			
										The train of hereits a second	1-		75.8, 76.1, 76.75, 77.5
					1						+		77,65,78,5,78,2,78.5 78,65,78,78,85,
		-	·	1							\vdash	-	79.0,79,2,79.5,79.8,
											1		75.9
											†—		
											1		
											1		
										-	1		
											1		

REMARKS **

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING


•

12. A. 12

BORING NO. 80501

9 II.

N 540563.2422 E 1723508.0316 Grade El. 759.46

REMARKS - DRILLO BY TEARA TESTING INC. USING A SIMCO 4000 TE TRACIL MOUNTED PARL

BILING ADVANCED USING 514 5 SOLID STEM AUGERS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B. 0502

• gai consultants transforming ideae into reality N 540843.8055

E 1723858.5630 Grade El. 775.00

PROJECT_	ALE	7 2/3	J	0 H A	E. Am	os Aw	ER PLANT, ST.ALBANS, WV	BORIN	GNO. 0503
ELEVATION									CTNO. CO40384.42-0
DATE \{	Drig n	Ph 2005		HRS				PAGE	
	<u>0 17 12</u>		-		SIFIED BY	A	SANGER	-	of
				<u> </u>			DESCRIPTION	-	
	BLOWS PER SIX INCHES OR CORE RECOVERVIRUIN		RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSÍSTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2 W.31H	3	4	5	6	7	8	9	10
1.5	W.0, H	S-2			V.LOOSE	BROWN	CLAYEY SILT	m	MOIST
3.0	·	REC 1.1			V. LODSE	BROWN	CLAYEY SILT, TRACE SAND	ml	MOIST
1	1	5-3			V-SOFT	BLOWN	SILTY CLAY	el	WET + 0.5
4.5	2	S.4	<i>`</i>			GRAN +	•		
6.0	46	REL I.Y	<u> </u>		HARD	BROWN		<u> </u>	SUGATLY MULT, * 4.5
7.5	<u>ی د</u>	S-5 AEC. D.4			M. DENTE	BROWN	SANDY SILT	m1	SUGHTLY MOIST
9.2		6-6 REC. 1.2			HADD	GRANT BROWP	SAMDY CLAY: DECOMP. CLAUSTONE		
	33	S-7.			STIFF	motiler	SAMOY CLAY IL	c	5-16474 MOIST, 4 4.5 15F
13.5	4	ASC.0.4 5-8				GLAX+			MOIST + 3.75 TSF
12.0 .	55	AEC. 112			LAAD .	AROWN MOTTLES	SANDY CLAY	<1	SLIGHTLY MOIST + 4.5 BF
	33	5-9			HARD	GAM + BROWN	SANDY CLAY "	0'1	SLIGHTLY MOIST #4.5 TSF
	3	5-10				NO TILED			
15.0	5	REL. 1.0			WARD	GRAY	SANDY CLAY "	4	SUGHTLY MOIST 11. STSF
16.5	> 3	5-11 REC 1.3			HARD	6444	SANDY CLAY " 1	01	SLIGHTLY MOIST 4.5 TSF
18.0	2.	5-12 AGE 114			V-STIFF	GAAY	CANNU DI AU DI CAT	-	1
1	3	5-13			V. STIGE	DARK CLAY	SANDY CLAY, SOME SILT " SANDY CLAY, TRACE ORGANICS		MOIST, # 3.75 TSF SLIGHTUM, MOIST, # 3.75 TSF
19.5	6	REC. 1.3 5-14						<u> </u>	SCIENTU, WORL & SITS ISF
21.0		Rec. 1.2			V.STIFF	DAILU	SANDY CLAY, TRACE ORGANICS	4	SLICHTLY MOIST > 3. STIF
22.5	-2	5-15 Rec 1.3			LOUSE	BLUET	CLAYEY SAND TRACE ROCK FLAGMENTS	sc	MOIST
23.4	0/2.4	75-16 REC.0.9		23,4	SOFT	BLUE- GRAY	DECOMPOSED CLAY FTONE FRAGMENTS		
	V			14141-	SOFT	GRAY	DECOMPOSED CLAYSTOPE	VBR	TOP OF ROCK 23.4
					M. SS FT M. HODD	GRAY	SILTY SANDSTONE	VBA-	CLAY SEAM 24.7, 29 2
					m. HIGUD			Ba	VERTICAL FRACTURES 23.4-24.4
7	7.5 7.5	1002	35						25-25-25.3,27.45-27.55
									LOW ANGLE FRACTURES: 23.6 23.8, 24.05 24.15, 24.3,
					V	\vee	V		24.4. 24.55 24.9 25.05 25.15

REMARKS - DRILLED BY TERAA TESTING USING A SIMCO HODD TITLACK MOUNTED DRILL AIG. BOANS ADVANCED

USING 514 \$ SOLID STEM RUGERS NO CASING, NO-2 WIRELINE CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0503

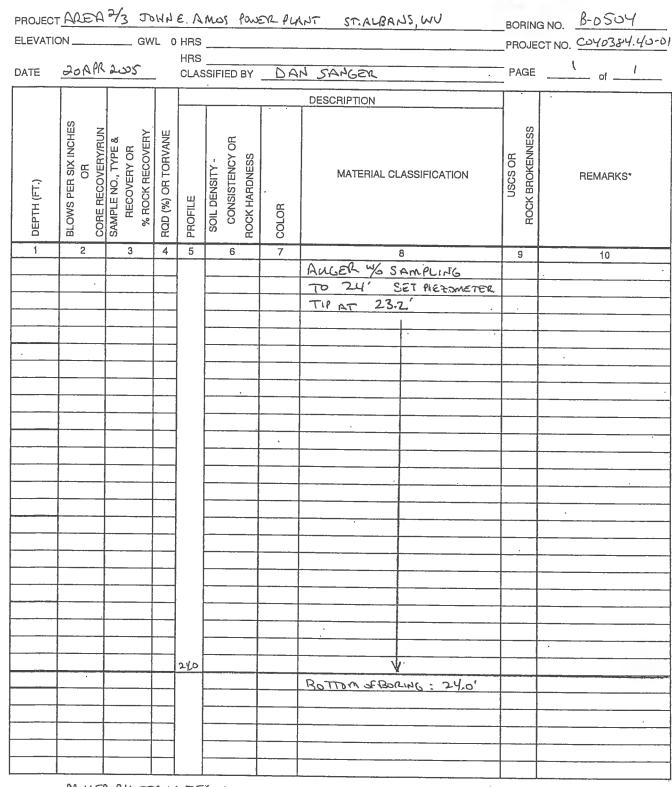
gai consultants

(B-5)

			GV		HRS		,	DA	N SANGER		ECT NO. <u>CO40384.40</u>
	-	Τ		1					DESCRIPTION		
DEPTH (FT.)	-	CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		COLOR	MATERIAL CLASSIFICATION	USCS OR BOCK BROKENNESS	REMARKS*
1	2	_	3	4	5	6		7	8	9	10
30.9		4		<u> </u>	30.7		+				25.25,25,3,25,35,25,5
	\downarrow \downarrow	_		<u> </u>	32,0	SOFT	GR	A 4		VBQ-B4	25.55, 25.75 24.0, 26.15
	┦──┤	_		<u> </u>		SOFT	6	2AM	SANDY CLAYSTOR	BR	26.25, 26.5, 26.7, 26.95, 27.2
	-	-		ļ	33.9			4			27.35, 27.45, 27.85, 27.95,
		-				M.SOFT	GR	A4	SANDY SILTSTONE	BR	28.5, 28,75, 29.15, 29.35
	10.0 10.	0	100%	רר	36.3	- K_		K_			29.7, 30.3, 30.4, 30.9 31.1
	 	+		ļ		SOFT	G	RAY	CLAYSTONE		31.4 31.7 32.15, 32.4
		+					-				327, 32.8, 33.4, 33.9 34.4
		\downarrow		<u> </u>				H 4 Acod			35.1 35.5 35.9 36.7 36.9
		-		<u> </u>			1	TIED			37.1, 37.6, 38,0, 38.75
10.9		4		<u> </u>							39.2, 29.3, 39.5, 40.9
		+									41.6,42.3, 412.75,43.0,
		+			42.5		<u></u>				44.2, 44.8, 45.05, 45.6
		+				MISOFT	GRI	AY.	IN TEOBEDDED SANDY SILT STOPE AND	BA	46.15, 46.95, 47.6, 49.2.
		_	0.00	-	- 'i				SNUDSTONE		49.4, 50.0
	8.9 9.1	+	98%	82			1			Si at	30' FLACTULES 28.85,
		+			47.4				V	V	39.35 42.7
	┝─┤─	+				SOFT	SRA	4 +	SAMOY CLAYSTONE	BR-BL	BROKEN ZONE 40,9-41.1
	-	+		1			mar	neo			
0.0		+			50.0	<u> </u>	<u> </u>		¥		
		+			1111				BOTTOM OF BOLING 50.0	_	
	 	+					_				
		+		$\left - \right $							
		+					+				
		+		-	6		-				
		+									
		╀		$\left - \right $							
	L										

REMARKS **

* POCKET PENETROMETER READINGS


** METHOD OF ADVANCING AND CLEANING BORING

ι.

BORING NO. <u>B-0503</u> . (B-5)

N 540840.0544

E 1723859.8367 Grade El. 775.40

REMARKS - DRILLED BY TEO IN TESTING WINGA SIMCO 4000 TZ TRACK MOUNTED DALL

BORING ADVANCED USING 5 1/4" \$ SOLD STEM AUGERS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. BOSOY

gal consultants

• •

		2/3 ⋽≥ GW				2 PLAN	T ST. ALBANS, W			<u>B 0505</u> <u>Co46384.4</u> >
				HRS						
ATE (20251	PL 2005	-	CLAS	SIFIED BY	<u> </u>	an sanger	- PAC	it	of
	1			ļ			DESCRIPTION			
DEPTH (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2	3	4	5	· 6	7	8	9		10
1.5	13	S-1 REG DIT			LOOSÉ	TAN	SANDY SILT, SUICHTLY MOIST			
	5	REC 0.7 5-2						$\left \right $	_	
3.7 3.8	30 12 50/5.3	AEC. 1.5		3.8	DENSE V.DENSE			$\left \cdot \right $		MPOSED SONDSTONES
	Y				SOFT	HALF	SANDSTONE ; HIGHLY WEATHERED	BR-V	and an other designs of the local diversion o	POFROCK: 3.8'
					VISOFT	TAN	SANDSTORE: COMPLETELY WEATTHELED	VB		101 10012- 5.0
					M. SIFT	TAN	SAN DSTONE: MODERATELY WEATHERED	BR-	1	ICAL FERETNES C.2-6.
	2.2 2.2	1002	62		H. HARD		MICACEDUS, EINE TO MEDIUM GRAINED			FRACTIMES : 6.7, 7.25
									8.4	9.8, 11.2, 11.45, 11.6
	┨}									· · · · · · · · · · · · · · · · · · ·
11.0	$\vdash \oplus$			11.6			V	┟╌↓		•
					VISIFT	TAP I	SANDSTONE: COMPLETELY WEATHERES	VBA		
				14.0			MICACEDUS FINE TO MEDIUM GRANNED			
		·		14.*	SOFT	TAN	SANDSTONE: HIGHLY WEATHERED,	80		\$ FLACTURES: 14.0, 14.
	10.010.0	100%	36				MICACEDUS, FINE TO MEDIUM GRAINED			4.35,14.45 14.55, 15.75
	· ·						1			
				18.5				VBA		
				10.5	VISOFT	TAN	JANDSTONE: COMPLETELY WEATHERED			
					TD SOFT	ŀ	MICACEDUS FINE TO MEDIUM GRAINED			
21.0				21,0	¥	×	4			
	$\downarrow \Upsilon$				SOFT	TAN	SANDSTONE : HIGHLY WEATHERED	BR	LOW	* FRACTURES : 21.1
							MICACEOUS, FINE TO MEDIUM GRAINED		223 2	2.45, 22.55, 22.7, 23.0,
									1 1	23.5, 23.75, 24.05
_	8.7 10.0	872	Er					┝╌┞	24.55	
	0.110.0	016	22					$\left \right $	25	A DCD 2 C . 4
								$\left - \right $		21.9 21.9
						├ ─ <u></u> <u></u> <u></u>		++	1.001	E 61.7

BORING ADVANCED USING STY SOLID STEM AUCERS, COMINIUMS SPT, NO-2 W.RELINE CORING TOOLS

* POCKET PENETROMETER READINGS

100

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B0505</u> (27)

			9/3 JDF			-		4µ7 _	ST. ALBANS, WV				INO. <u>B-0505 ("»</u> СТ NO. <u>СоЧозвч.40-с</u>
DATE	20.	<u> </u> •	PR 2005	-	HRS CLAS	SIFIED	BY	مط	h Sanger		PAC	GE	<u>2</u> of <u>7</u>
									DESCRIPTION				<u> </u>
DEPTH (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATI	ON	USCS OR	ROCK BROKENNESS	REMARKS*
1		2	3	4	5	6		. 7	8		9		10
31.2					31.0			<u>l</u>	· · ·				
	<u> </u>	¥_		<u> </u>	32.0	U.SOF		TAN	SANDSTONE: COMPLETELY WEATHERE		VBA	2	
		 				m. HA	AD_	BROWN	SANDSTONE: MODERATELY WE	EATHERED	82-0		
		ļ			ł				MICACEDUS, MEDIUM GLAINES)			
			ļ		ł				· · · · · · · · · · · · · · · · · · ·				70° HIGHLY STAINED
	100	19.0	100%	41	36.5								FRACTURE 34,6 - 34
	<u> </u>	<u> </u>		<u> </u>	1	5555	то	BLUE-	SHALE		BR		VERTICAL FRACMAS 35.7
		<u> </u>				M. SOF		CAAY					Low & FRACTURES:35
		<u> </u>		ļ	39.2								35.3, 35.45
		<u> </u>	ļ	<u> </u>	40.0	M. SOF	<u>r</u>	TAN	SILTSTONE		UBA		STAINED VERT. FRAL. 39.2
41.0	+	\$	ļ	<u> </u>	HI3	M- HA	ND	DK GLAY	SILTY SANDSTONE		BR		HIGH & STAINED FRAKS:
	<u> </u>	¥		ļ		M. HA	AD	OLIVE	SANDSTONE : W. FILE GRAINED				40.0-40.3, 40.55-40.7
			ļ		43.7	\vdash							LOW X STONED FRAC 41,
	<u> </u>	ļ	ļ		17.1	$\vdash \Psi$			¥				NEAR VERTICAL STOLAS
	4			<u> </u>		M SOF	-7	BLUE- GRAY	SILTY SHALE		VB	R	FRACTURE 41.8-42.2
	p.0	102	1002	44		SPET	·						HICH & STAILED FLACT
	ļ				47.0	1	·	,k	V		J	<u>′</u>	45.6-46.
	ļ	ļ			}	M. 57	FT	GA-AM	SANDS TONE . FINE GRAINED	, Some	BR		HIGH & STAINED FRACT
	ļ		ļ	ļ					CROSSBEDDING				49.5-49.9, 52.1-52.
		<u> </u>	ļ									!	54.15-54.3,55.7-5
51.0		\$											VERTICAL STAINED FA
		¥		<u> </u>					<u>.</u>			h	MAE 51.5-52.2,
	<u> </u>		ļ			 					\square	_	
			ļ	 	l								
		1			55.4			/				$ \downarrow$	
	10.0	0.01	1002	36	-	5381		GRAY	SANDY SHALE		VBR	-	
	_	<u> </u>	ļ		1			in 1	CONTRACT				VERTICAL STAINED FAA
													55.1-56.7
													HIGH & + VERTICAL STAL
	1	1						V.			BR	-	RALMAES 57.2-59.1

REMARKS ** __

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

gai consultants uransforming ideas into resility

PROJEC	<u>14</u> _1	287	a 2/3	J	PH Y	E. AM	s Puu	TER PLANT ST ALBANI	WBORIN	IGNO. B.0505
ELEVATIO	ON		GI	VL C	HRS	84.0				ECT NO. C340384.40-
DATE	20-2	5 21	2005	_	HRS CLAS	SIFIED BY	0,	W SANGER	PAGE	3 of 7
	Τ							DESCRIPTION		
DEPTH (FT.)	BLOWS PER SIX INCHES	CORE RECO		Ĕ	۵.	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2		3	4	5	6.	7	8	9	10
610	+4	\succ			61.2	<u> </u>		V		33"STRINED FRAG. 60.3"
	-			<u> </u>		SOFT TO	GRAY	CLAY SHALE	BR-	HIGH & STAINED FRAC-
	+				1	M-SOFT	! 		BL	THES AT 62
					160		MAROON MOTTLAL			
	10.0	10.0	1002	52	65.5	MUHARD	CLAY	SUNCTONE	ISL	
				-	66.9	1965	GRAY -	CLAY SHALE	BR	HIGH & STAINED FRAL 66-5-66.
						MIHARD		SANDSTONE		46H& FLACTURE 67.7-67.5
	$\left\{ \begin{array}{c} \cdot \\ \cdot \end{array} \right\}$				68.8	V		SHALY 67.7-68.8		VENTICAL FILKTURE 68.2-68.6
						VISOFT	Brow-	CLAY STORE - COMPLETELY WEATHERE	DVBR-	:
71.0	+4	\succ			ł		GRAY		BR	
	$\left \right $									
					73.0			CLAYSTONE		
			-	+		M-SSFT	C LAY	CLOUSTORE I	BR	SLICKESSIDES 73.55
	10.2	10.3	1002	4		- 13F 1	1			74.7.74.8.75.6.75.9
				1						76.5,77.077.35
			-		78.0	4	v			VENTICAL STAINED
						MHARD	BROWN	SANDSTONE: FINE TO MEDIUM	BR	FRACTURE 77.7-80.5
						1	GRAY	GLAINED		
81.0										
	LΥ								BL	
	ļ ļ				Ì				1.	
				<u> </u>			V			
	┟╌┠	_					BRUWN			
	10.01	0,0	100%	76						
	├								BR	VERTICAL STAINED
		-							<u> </u>	FRACTURE 87.5-88.8
						V	↓		V	

.

REMARKS **_

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>BOSOS</u> (27)

gai consultants vansforming lideas into reality

PROJEC	т <u>А</u> оп_	201	λ 2/3 GV	<u>JOV</u> VL 0	41) (HRS	84.0	PSURER	PLANT ST. ALBANS, WV	BORIN	IGNO. <u>B-0505</u> ECTNO. <u>CO4038440</u>
DATE	20-	25	APR 2003	5	HRS CLAS	SSIFIED BY	٥	AN SANGER	PAGE	<u>4</u> of <u>7</u>
				1	Ţ			DESCRIPTION		
DEPTH (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	согон	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1		2	3	4	5	6	7	8	9	10
91.0	(\rightarrow				M', HARD	BRUNN	SANDSTONE (CON'T)	-82-	
	`	ľ		<u> </u>			+-		BL	LOW & FRALTMES
										93.8,94-2,95.1
				ļ						95.2,95.6,
				ļ						, ,
	10.0	10 0	1229.	86			GRAY			
]					
101.0					1					
					101.5					
					1	SOFT	CAAM	SILTY SHALE	UBIL	
				<u> </u>			1	STELL STALE	031	
				1—				DE LE CONTRA LE DILLOS		Pieces n.1-0.2'
	10.0	10.0	1002	18				BECOMES SANDY AT 104.75		LOW & FRACTURES 101.4,
	10.0	1010	<u> </u>	10			<u> </u>			102.0, 102.5, 102.9, 103.4,
							╉╾┠┈			104.3 104.5 134.75
					108.7					VERTICAL FRACTURE 106.7-
						¥				107.7
					}	M. HAAD	GRAY	SANDSTONE: FINE GRAINED		U.BADKEN ZONG 107,0-107.7
111.0	+	\geq				<u> </u>	- -			STAINED NEWA VERTICAL
					112.2					FRACTURE 128.1-108.7
				<u> </u>		SOFT TO	DK GRAY	CLAYSTONE	VBR	
				L		M. SOFT	MAROON			45° SLICKENSIDE 112,9-113.0
										V. BRAKENZONE 114.2-114.8
	9.2	10.0	922			MISOFT	GRAY			
										LOW & FRACTURE 17.8, 19.6.
										120.4
						SOFT	GLAY MALOON			
						V				

REMARKS **_

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0505

BORING NO. <u>B-0505</u> (*27)

								NE	<u>n</u> p	IANT ST.	ALBA				GNO. <u>B-0505</u>
ELEVATIO	NC		G ¹	NL (4.0						PR	OJE	CT NO. C240384.40-1
DATE	<u> 20 -</u>	<u>9-2</u>	APR 2	5	HRS CLAS	SIFIE	DBY	_()AI	J SANGER			PA	GE	_5_ of _7_
										DESCRIPTION					
DEPTH (FT.)	BLOWS PER SIX INCHES	-	SAMPLE NO., TYPE & RECOVERY OR % BOCK BECOVEBY	цщ.	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS	÷	COLOH	MATERIAL C	LASSIFIC	ATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2		3	4	5		6	2	7		8		9		10
121.0	\vdash	\vdash		-	1	50	FT		H + ROON						1. JALF FRACTURES
					-			MA	Aught I	TO HIGH UN WEI	CTHE BLED		в	A	121.4, 121.7, 122.3, 122.6
					1	<u> </u>								1	122.9, 123.1 123.4, 123.8
				+			FT TO			·	144 000				124.1
	6.0	D'J	60%	10	1		Sof-				1	NINCICS	116	32	124.8-132.0 14:60-04
			<u>y</u>	1°	1						1				BROKEN ZONE
131.0	9.2	10.3	92%	67	135.		/ 50FT		3.7 5.2 7 5.2 7 5.2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SADY CLAYST			B		45° SLICKENSOES 133.3,134.2,134.9 136.9,139.2-1394
								CLAR	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				BL		SLICKENSIDES AT
				+				278,1	NG 6713				1		142.35, 143.9, 144.7
141.0				7											145.1, 145.35, 146.25 148.3, 148.9, 150.4, 150.65
				_	ļ								Y	/	
													VBA		
	10.0	125	1001	<u>155</u>						Y			BR	\sim	
		-				0				·BECOME	SILTY	AT 144.6			
						SOF	T	YN AU I	اردما	·				,	
								-	_				BA	_	
	1 1	I		I			/		/l		/		1.01	-	

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

						84.0		report STAR				GNO. B-0505 CTNO. C345384.40-01
					HRS							
DATE	20.	-9-21	RPR 2005	5	CLAS	SIFIED BY	DA	N SANGER		PA	GE	of
		_				•		DESCRIPTION	· · ·			· · · · · · · · · · · · · · · · · · ·
			:									
DЕРТН (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2		3	4	5	6	7		8	5	9	10
151.0					151.5							
		7.			5.165	TT. HARD	GREEN-	SANDSTONE	/	13	R	
					153.2		GRAY			-	ĺ.	
				·		MISSEF	GRAY	SANDY SHALE		B	2	LOW& FEACTURE 153. 4,
									•	·		153.65
•	10.0	10.0	100%	86	156.1	V	V		/			45° FLACTURE 154.35- 154.
					157.5	M.HARD	GRAY	SHALLY SANDSTO	NE	BR-	BL	LOW & FRACTURE 157.35
						M-HARD	GRAY	SANDSTONE				
				1							<u> </u>	
	$\left - \right $							· .			<u> </u>	
61.0	+4	\succ									<u> </u>	
				-							-	
	$\left \right $										1	
	$\left - \right $			+						-		
	10.0	10.0	100%	84				•				
	70.0	10.0	100.0	81								
											1	CLAYSERM 167.55-167.70
					168.5	M.SOFT TO	GAAY	CLAYSTONE	K	JBA	¥	LOW & FRACTURES
				1	1	SOFT	DEGQAY	00000	ſ	BA		168.75, 168.85, 169.15
171.0					1						1	169.20, 170.7, 171.2, 171.0
·		7		1	1			· ·				174.8, 174.95
					1.22.11			N N	1			
					173.4	M.S.FT	GRAY+	SANDY CLAYSTO	NE	B	L.	45°4 FRACTURE 169,75.
	·					M. HALD	MARDON					170,1,172,35,172,7
	9.3	19.0	932	6.1		ľ						LOW & SLICKENSIDES 170.4,
												173.1;
												173.4
					5.971	J			Y		1	
						M. SOFT	MALOON	CLAYSTONE		130-1	UBA	45° SLICKENS, DES 179.2.179.4 17

.

* POCKET PENETROMETER READINGS

BORING NO. B-0505

:.

** METHOD OF ADVANCING AND CLEANING BORING ...

PROJEC	T_AD	-EA	2/3 5	SITN	2. A	mus Pou	SEL PL	ANT ST. A	LBANS W	BORI	NG NO. <u>B-0505</u>
ELEVAT	ON		GV	VL C) HRS	84.0					ECT NO. COY 0384.40-01
DATE	20.	- 25	APA 2005	_	HRS CLAS	SSIFIED BY	0.	AN SANGER		PAGE	of
							1	DESCRIPTION			· ·
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ĬĔ	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CI	LASSIFICATION	USCS OR ROCK BROKFNNESS	REMARKS*
1		2	3	4	5	6	7		8	9	10
<u>اگا'</u> ،		<u>}_</u>			- -	MISOFT	m 98004	CLAYSTONE		· · · ·	Low & SLICKE NSIDE 181.9, 182.7, 1832, 183.6, 184.0 184.15, 184.4
		ļ	0		185.2					VBR	V.BROKEN 184.4-185.0
•	0,0	10.0	100%	67	-	M. HARD	GRAY	SANDSTONE		BL	
					190,2						CLAN SERM 188.7
191.0						MISSFT	macort	CLAYSTONE	¥	BZ	
		<u> </u>				M.HAAA	GRAM	SANDSTONE		BL	
	9.0	9.0	100%	88				·			
	1			140							
					198.1	V			/		
						M. SOFT	GRAYF	SIANDY CLAYSTON	NE	VBA-	SUCKENSIDES 198.45, 198.9,
200.0						V	hooam		Ŀ	BR	199.25, 199.35, 199.6, 199 8
								BOTTOM JE BORIN	6: 200.0'		
		-+									
			·····					·····			
			,								
											··

•

REMARKS ** ____

2-

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0505

. .

N 539424.9688

E 1722518.6810 Grade El. 709.52

		GW					ST. ALBANS SI	-	GNO. <u>B-0506</u> CTNO. <u>CO40384.4</u> 2.0
			-	HRS					
DATE	21	APR 2005	<u>.</u>	CLAS	SIFIED BY	DA	d sapler	PAGE	of
							DESCRIPTION		
		}						1	
ДЕРТН (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
1.5	124	S-1			LOUSE	BROWN	SANDY SILT SOME ORGANICS	ml	FILL
	4	Rec 0.6 5-2				80.0-	:		
3,2	56	A=c 0.9			M.DENSE	Brow	SANNY SILT MOIST	m1	
4.5	³ 5	5-3 REC 1.5			M.DENSE	REDNA	CANADA DE LA DE AL MA WEAL		
6.0	33	5-4 AEC 1.5			111. DE HYK	BRJWH	CLAMEN SILT /SILTY CLAY M/ R.F.	MITCI	
7.5	45	5-5 Rec 0.2			M. DE NSE	BLOW	CLAYEY SILT AND ROLK FRAGMENT	, l	VADISE
9.0	ره ۱۱	5-6 Rec 0.4			N DENSE	LED	CLATEN SILT RMA LALK FREGHENSIS	101	WARIST
	7 12	s - 7	<u> </u>		- P - P		(DECOMPOLED CLAYSIPHE)	1	45
10.5	16	AEC 1.5 5-8			1				
12.0	1818	RES. 1.0			CENS	CE BESU	CLATEY SILT AND ROCK FRAGMENTS	m.l	SUGUTU Monse
10.4	8 11	5-9					(AELOMADIED CLAYSTONE)		
13.5	18	1.5			DENJE	BROWN	DECOMPOSED CLAYSTONE		564
15.0	22 24 30	REC 1.2			V.DEPLE	42000	DECOMPOSED CLAYSTONIE	<u> </u>	A fox
16.5					U. DENSE		BECOMPOICO CLAYITONE		DIN
	12	REC 115 5-12			11.4.4				
18.0	50/2.5	NOC. 1.5		18.0	4.AM		DE CAMPOSED CLAYSTONE		Dry
	42 4.0	100%	90		SOFT TO M.SOFT	MALODI	CLAYSTONE	BL	LOW X FRANTURES
	1.0	100.0	-10		1 201 - 10			$\left - \right $	19.65, 20.05, 21.6
22.0								+	
	$\vdash \heartsuit$			-					
								<u>+</u>	
							: 5ANDY 24.7-25.4		BLUKEN ZUNE: 22.0-22.5
									45" & ERACTURE W/ SLICKEN
	9.6 10.0	96%	86						Siler 22,75-22.95
							: SANDY 27.4-29.4		LOW & FRACTORES
									241
					V	¥	V V	V	45°% SLICKENINE 28.3 28

REMARKS .. DRILLED BY TERRA TESTING, ENC. WING & SIMCO 4000 T2 TRALL MOUNTED DRILL.

BARING ADVANCED USING 51/4" SOLD STEM AUGERS, 4"E.D. STEEL CASING, CONTINUOUS SPT. NQ-2 WIRELINE CORING TOOLS

* POCKET PENETROMETER READINGS

BORING NO. 3-0506

** METHOD OF ADVANCING AND CLEANING BORING

	т <u> </u>	RE	A ^{2/3}	100	HD HD	B:AMO	<u>s</u> (ower	PUPNT ST.				GNO. <u>B-0506</u>
	014		G	VV L		s	<u> </u>				PI	ROJE	CT NO. <u>COYO384.4</u> 3
DATE	22	-2	APh 200	-5	CLA	SSIFIED	BY	1	DAN SANGER	•	_ P	AGE	_2 of _3
									DESCRIPTION		Τ		
DЕРТН (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS	COLOR		LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2	3	4		6		7		8	+-	9	10
					1	SOFT	פויד		CLAYSTONE	(+	ŀ	LOWY FRACTURES W/
32.0		λ.		-	1	M. 50		1		FALE WEATHERED	+		SLICKENSIDES: 32.65
		Y		1	1						+,		33.0 33.25 33.75.
										· · ·	B	· · ·	34 05 35 (5 36 (5 36 (5
					7					• • •	+	Ē	34.05, 35.55, 36.65 38.4
											Ϊ,	F	45° FRACTURES 4/
	9.9	10.0	992	58					: IRREGULA	A CALLARGOW	_	R	SLICKENSIDES: 36.9
					1		-			37,5-38.7			37.25-37.45.38.85-
					7						R	¥ 1_	38.95
				Т	1								
					7						\vdash		
42.0		6			1						┢		
		Y			1				1		\vdash		LOW & FRACTURES W
					1						┢		SUCKENSIDES 42.4.
										······································	†-		42.65 42.95,44,25
					1				· · · ·	·····	\vdash		45.25, 45.7, 45.9
	10.0	0.6	100%	76	1						-		47.75
					1					<u></u>			
				\top	1					···	\vdash		
					1								1504 FRACTURE: W
					51.0			V		/	\vdash		SLICKENSIDES = 48.6,
52.0		5			51.7	M.SF	T	GRAY	SAPOY CLAYSTON	E			48.8 49.0
]			MARUSH	CLAYSTONE		1.	7	10.0 C T
]	V		V			<u></u>		LOWX F. P. A. TURES W/
					54.9	HARL	· '	GRAM:	SANDSTONE S	4.6-54.9			Sucició S. 155: 52.3, 524
									SANGY CLAYSTONE		BI		53.5,54.2
	10.0	10.0	100%	73	56.5	V		¥	Y Y				
]	M.Soc.	-	maam	CLAYSTONE				45" FRAIMAES "/ FLICK.
]								ENSIDES 53,55-53.75
				1]			¥					5445.544

REMARKS **_

- í.

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

						AMOS R 21.3	5w24	2 Pi	-ANT ST. ALL				GNO. <u>B-05-06</u> СТNO. <u>Сочозеч.42-01</u>
DATE	22-	27 A	PR 2005		HRS CLAS	SSIFIED BY	- 1	JAN	SANGER				of
						·			DESCRIPTION				· · · · · · · · · · · · · · · · · · ·
DEPTH (FT.)	BLOWS PER SIX INCHES		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	Ĕ	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		COLOR	MATERIAL C	CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2		3	4	5	6		7		8		9	10
62.0				+		MIHARD	GI	204	SHALY SILTST	SME I		1	
00.0	+												
					64.1	V			1	V	·		
						MLHAAD	LT	GRAY	SANDSTONE			+	
· .						HARD	1						VERTICAL FRACTURE
	10.0	10.0	100%	16			+	<u> </u>					64.7-65.7
													65° ELACTURE 65.9.66.2
	+						+						
	┥╴╎								·				
72.0					71.5	V		¥		V		⊬	
	╈	\succ			72.7	MISORC SOFT TO	60	<u>*~</u>	SILTY SHALE	(2	LOW & FRACTURE 72,6
	1-1				1	N. COFT	GR	140014 - -	CLAYSTONE	*	BA	⊮ ԻՏ∟	
													30° FRACTURE W/SLICKEN -
	8.0	0.9	100%	78			1		1 N				SIDE : 74.3
													1
	_												
				ļ			-						
80.0					80.0	V	<u> </u>	¥		/		V	
									BOTTOM OF B	SRIJG: 80.0'			
<u> </u>													····
<u> </u>	+						+						
							-						
							-			· · · · · · · · · · · · · · · · · · ·			
		-					1-						
		-					1						· · · · ·
													L

REMARKS **_

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B. 0.506</u>

N 539428.8146 E 1722523.7682 Grade El. 709.99

PROJECT	ARE	42/3	Ċ	SHAP	LE. An	25 FD	WER PLANT ST. ALRANIN	BORING	GNO. P.0507
ELEVATIO	DN	GW	L C	HRS	DRY		WER PLANT ST. ALRANIN	PROJE	CT NO. C 1402 44.111
	1/ NO	0 2 - 1		HRS					of
DATE	اله (ميلغم 	14 2025		CLAS	SSIFIED BY	20	N JANGER .	PAGE	of
						1	DESCRIPTION		•
ДЕРТН (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERVIALIN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
							AUGER W/S SLAPPLING		
	•			-			TO 18 FT.		
							PIEZAMEILE INSTRUCED,	- - ·	
							TPAT ITFT		
·				-					
				1					
				1					
]					
							·		
18.0				18.0			V		
							BOTTOMOFBORING:18'		
				ł			·		
							· · · · · · · · · · · · · · · · · · ·		
									· · · ·
								-	
	L								

REMARKS .. DRILLED BY TETARA TESTING USING A SIMIL TODO-TZ TAACK MONNTED DRILL

BOR HO REVANTED USING STRESSLED SALE AUGURE,

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 8:0507

N 54199 E 17233	96.9754 377.3436	Grac	ie El.		979.22				G	gai cons	Sultants ng Idees Inta reality
PROJECT	T <u>ARET</u> DN <u>98</u> 2	1-2/3 J L± GV	VL C	HRS	Mos Pow 87.3	ER PLA	NT ST. AL	BANS, WU			3-0508
DATE	57-28	APR 200	5	HRS CLAS	SIFIED BY	DAI	SANGER		PAC	GE	of
							DESCRIPTION				
DЕРТН (FT.)	BLOWS PER SIX INCHES OR	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASS	SIFICATION	USCS OR	HOCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8		9		10
1.5	14	5-1 Rec 1.0		· ·	M. DENSE	TAN	SILT AND DECOMPO	DIED SHALE	m	SLICHT	1 MOIST
	18	5-2-		1	<u> </u>		FRAGMENTS				
3,0	24 50/0,4 3730	Rec 1.2 5-3		{	NUDEDIE	_ _					
4.5	22	REG 1.3	· ·						++		
5.2	19 50/0.1	. 5-4 ARC 0;		5.2	SOFT	V	<u> </u>				
		-			<u></u>	TAN	CLAY SHALE - NU	CHL4	BR		FRACTURES :
	57 5.7	1002	38	1		BROWN	WEATHERED		+-+-	5.7.6.25	5, 6.75, 6.9
			1	1					++	4.1 5/	STAINED:
			\vdash	1		-			+		AINED-65° FRAL
10.9									+		4-816 9.0,
				11.5	SOFT	TAN	SILTY SHALE		BA		D.7, 12.0-12.4
	-			12.6	5.FT	TANT	SHALY SANDSTONE -				ACTURE 12.9,13.
÷				13,7	SOFT	GLAN	SHALE - GRADES P		1,1	BUKEN 1	
							TO CLAY - WEAT				CAACTURE 14,8-15.
	9.7 10.0	57%	50	16.4		¥					ACTURES 15.6, 15.
			· ·		SOFT	MALOUN	CLAYSTONE		BR-1		6.45 17.0 17.3
		<u> </u>					-			18.2.18	1.65, 20.6
										· · ·	FLACTURE 20.9-21.3
2.0	<u> </u>										SLICHENSIDE
20.9						<u> </u>				AT 22	2-22.4
	<u> </u>		-					• <u>.</u>			
	┟──┼──									_	
									1 4		
	10.0 10.0	1008	64						BL.		
	10.0	1000	61						+		
		<u> </u>							+ +		
		1									
							USING SIMON 400		BR		

REMARKS .. DRULED BY TERRA TESTIN INC. USINGA SIM CO 4000 -T2 TEACH MOUNTED ORILL

BORING ADVANCED USING 514 \$ SOLID FROM AUCERLS CONTINUOUS SPT, MO-2 WILLING CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B.0508</u> (25)

PROJECT	г <u>ү</u> д А ОМ	EA 182	2/3 50	NL (. AM	87.	20WE	YL	PLA	ST. ALBRNS, WV			GNO. <u>B-0508</u> CTNO. <u>C040384.10-6</u>
DATE			1/2 200S		HRS				0	an sanger			of
				<u> </u>						DESCRIPTION		-	
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RFCOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS		COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	1 :	2	3	4	5		6		7	8		9	10
30.9	\vdash	<u>\$ </u>			-	SJF	-T	MA	rooy	CLAYSTONE	N	3r	LOW & FRACTURES W/
	\vdash	<u> </u>			1	L	<u> </u>		<u> </u>		В	r.	Scialeisides 31.0, 31.15
	<u> </u>				1			L	ļ				31.3, 71.5 32.4 33.0
	<u> </u>			1	1								NERA VERTICAL PARLAGE
		<u> </u>			1								31.8732.1
	91.6	1,0.0	969.	65	4		<u> </u>		<u>v</u>				70° FAAC "/ SUICKENSIDES
					1			61	44+				32.4-32.65
	<u> </u>			ļ	38.5		V	mi	hoot	V			30° FRAC "/ SLICK. 34.
	ļ				20,0	mis	FT	01	100-	SHALY SAPOSTONE - V. FILLE GRAINED	BA	<u> </u>	LOWS FRANTIE 35, 8, 37,3
	ļ							60	<u>A4</u>			1	37.5 37.85
40.9	$-\langle$	<u>}</u>			-			L		•			LOWY ORANGE STAINED
	ļ							L					FRACTURE 39.0
					-	ļ	ļ						NEAR VENTICAL & MAINED
				<u> </u>	-	<u> </u>					_		FANCTURE 39,4-39.7
	_			 	452	<u> </u>				V			HIGH & FRACTURE 40.4
	10.0	10.0	1002	91	4 <u>5.3</u> 46.2	Sof	TO	BAJ	wr) -	SANDY SHALE	51	2	3Roker 40.4-40.9
				· '		m	SFT	G	YAY	SANDSTONE : FING TO MED.	BA	BL	LOWG FRACTURE 43.0
	 			_		M.]	1 PLD			CRAINED MICACEOUS		ţ.	
	 						L				B	Ĺ	
				<u> </u>								<u> </u>	
52.9				+	51,2		Ł						
				<u> </u>	51.9	MIST		011		SANDY SHALE	_	<u> </u>	
	<u> </u>						FTP			SANDSTONE			
					54.3	ļ	ARD	6#	Aγ				
					_	M. 5	oft	OLI		SAPOY SHALE		V	
	10.0	0.0	100%	87				111P	HAY	CLAYSTONE	B	,R	BRUKEN ZONE 55.2-55.4
													LOW & FRANTURE 56.6
											_		57.75
					59.7		<u>(</u>			V	<u> </u>	K	

REMARKS ** __

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0508</u> (25)

OJEC	<u>А</u> т	REA	2/3 JO	HNI	e. An	105 Powe 87.3	r pla	NT .	Sr. AL	BANS, WU	B	ORIN	IG NO. 13-0508
=VAII		100	<u> </u>	WL							P	ROJE	ECT NO. CO40384,40.
TE	27-	2-8 A	PR 200:	5	CLA	SSIFIED BY		AN 54	NGER		P	AGE	<u> </u>
										·····			OT
							1	DESC	RIPTION				
DEPTH (FT.)	BLOWS PER SIX INCHES		SA	ROD (%) OR TORVANE	PROFILE		COLOR		MATERIAL C	LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2	3	4	5	6	7			8	ĺ	9	10
0.9	+	�		_	60.8	Misofi			1 CLAYST			5L	
					-	SOFT	GRA	1 CIA	1 SHALE	<u> </u>	<u>e</u>	n.	LOWX FRACTURES 615
				+	-				<u> </u>				62.2
	+-			+	64.2		*			¥		¥	5 TRINED 450 FRACTURE
	10	0.0	100	60	65.8		GRAY	+ CLA	1 SHALE	, MACE SAND		30	62.6-62.8,63.6-
	10.	10.0	1007	160	-						===	-	63,8.
	+-				-	V.SOFT	MA1500	PURY	1-34072	NERTHELED		+	STAINED VERTICAL FRA
	+	1		+	-	0.55107	. 						64.2-64.3, 64.7-64
					-							-	65.3-65.45
2.9	1	<u>k</u>		+	1					,			1/64-
		Y		+	4							<u>6</u> K	45° FRACTURES 72.9
	1-												73.5
				1	73.5			SALA	SHALE	/		12	
				1	1 100	M.SJFT	GEA	1 < 2 2 2	SHAMLE I	, FINE TO FINE			
	10.0	100	100%	15	1	M. HARD			INED	IFIFO ID FINE			
	•											+	
_					1			1					SHALE PARTING 77.6
]								THUTRILING 77.6
0.9	$\lfloor 2$				Ļ								
		· .			\$2.0		X		1	r		ł	
						M. HARD	GRA	1 SAHO	STONE : P	FINE TO MEDIUM	B	ι	
				1	-				NED			1	
			0.0		4								
	9.3	10.0	73 %	<u> 1</u>	4			-					
	$\left - \right $			<u> </u>	-			<u> </u>					
					88.1			<u> </u>		(1	STRINED VERTICE FLACT
	$\left - \right $	-+			-	SOFT	DIGGN	" CLAY	STONE		B	R_	87.6-88,15
						¥.				-			30° FRAC. W SLICKEN SIDES
ARKS	**												68.9

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

1

BORING NO. <u>B-0508</u> (25)

ELEVATIO	DN _	<u>182</u>	<u>+</u> G	WL		87,3			PROJI	ECT NO. CUY 03 84.40-0
DATE	27-	28 A	PR 2015					DAN SANGER	PAGE	= <u> </u>
· · · · · · -	Τ				1			DESCRIPTION		· · · · · · · · · · · · · · · · · · ·
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR	ROD (%) OR TORVANE		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	-	2	3	4	5	6	7	8	9	10
99		-			-	SOFT	GRAY	CLAYSTONE (CON'T)	BR	45° SLICKENSIDED
					-					FRACTURES 92.0-92.1
					-					92.55-92.65
					-	<u> </u>	$\left - \right $	· · ·		Bhoken 92.9-93.2
	12.		Laval	-	-{		-			30° SLICES SIDED REPARTILES
	10.0	195	100%	31	96.4		- V	V		AT 93.0, 93,25, 13.6,
					4	M-SOFT TD	GRAY	SILTY FINE GRAINED SANDSTONE	BL	<u> </u>
		——			-	MILLARD	<u> -</u>			45° ECALTURES 4 SLICKE
					-					510ES 94.05 94.85
					-					95.75
100.9	+4				101.1		4		V	NEAR VERTICAL FAAL-
					160.2	SOFT	MALDON	CLAY STONE	VBR	THE 98,5-99,0
					4	MISIFT	GRAY	SILTSTONE	BL	60° FRACTURE W/SUCKEN
				- <u> </u>	104,0					SIDE 1016 - 101.9 INTER
					1052	SOFF	A GUNA	CLAYSTONE	BR	SECTED BY YS' SLICKEN SIDE
	10,5	10.0	100%	75		MIHAND	GLAY	SCHOSTOHE		- 45 SLICKERY IDE @ 104,5
				1	8.101		× ×	· · · · · · · · · · · · · · · · · · ·		VENTICAL FRACTULE (NO
						M. SOFT	GRAY	SILTSTONE	BL	5TRIAING) 105.4-106.8
					108.9					
						SOFT TO	TGRAY	SILTY CLAYSTONE	pa	30° 5-16-11.3
1109						M. SOFT	MOTTLED	1	BL	
	\square				112.3					
					11100	MI SOFT	GMM	SILTSTONE	++-	SHALE PARTING 114.3
							1	1		
				1	1.4.7		N			
	10,0	10.0	1001	. 92	116.0		GRAY	SANDSTONE. FINE GRAINED		
				1				SILTSTONE	++-	
				1	1				┼─┼─	
					1				+	
				+	4			·		

REMARKS **

4.1

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

B-0508 (25) BORING NO.

PROJECT	ARE	n°	13 , JOH	12 5	T. AMO	s Power	PLANT	ST. ALBANS	WV	BORIN	GNO. <u>B-0508</u>
ELEVATIO	<u>Р_</u> ис	82	🛨 GV	VL C) HRS	87.3				 PROJE	CTNO. CU40384,40-01
					HRS						
DATE	27-2	NP A	PR 2-001	5	CLAS	SSIFIED BY		DAN SANGE	NR.	PAGE	<u>5</u> of <u>7</u>
	1		·		1			DESCRIPTION		1	
										-	
DEPTH (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL C	LASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2		3	.4	5	6	7		8	9	10
120.9	$\downarrow \phi$			×	120.1	M. HARD	GRAY	SANDSTONE	800	BA	HEAVILY STAINED VENTICAL
	ľ				121.9				4		FRACTURE 120.2- 122.2
	╞╌╿			 	123.4	M. SOFT	GRAY	SILTSTONE		BL	SHALE PARTING 1223
	┝─┤	_		<u> </u>	1	MILIAN	GAAY	SANDSTONE		BL	
	-				125.5			<u>*</u>			
	10.0	0.0	1006	85	-	MUSOFT	GAAY	ARGILLACEDUS	SILTSTONE	BL	
	-				-						
		_		<u> </u>	-						
	+						<u> </u>				
	-			<u> </u>	4		- 				
132.9	1 4	\rightarrow			4						
	<u> ¥</u>	_		ļ	4						
	-				4			:132.8-133.4 MA	LOON CLAYSTONE		
	┝╌╿			<u> </u>	1			133.4- 134.0	SANDY		
				<u> </u>	1						
	10.0	10.0	100%	79	1						
				<u> </u>	137.4				k		
				<u> </u>	-	M, SOFTT MHARD	GRAY	SANDY SILT	STONE W/ THIN	BA	NERL VELTICAL HAAL
				<u> </u>	4	MHARD	·	INTERMITTERT			TURE (HOSTAINING)
				\sim	142.0		V	STRINGERS		L L	138,1-140.0
140.9					141.4	M.SOFT	GRAM	ARGILLACEOUS	SILISTONE	BR	SULCHENSIDES 141-2
	ĻΥ			<u> </u>	1 11-1	SOFT	GRAY - MAROOH YELLAN				LOW & SLICKENSIDES
	$\left \right $						YELLOU				141.4, 142.0, 143.5
				<u> </u>	ं						30°SLICKENSIDES 142.3
				ļ	4		GRAY				142.5. 142.75, 144.9,
	10.0	10.0	1002	78	146.0				V		145.6
	┣┃			ļ	147.2	M. HARD	ERAY	SANDSTONEIN	ALLACEDUS		
				<u> </u>				INTERBEDDED :	SHALY SILTITONE		
						L		AND SILFY SHI			
1	L				150.0	Y			4	V	

1

REMARKS **

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

•

PROJECT	AP	EA	2/3 5	OHY	E.A	mos 1	pov	ver	- PL	ANT ST.	ALBANS WV	BOR	ING	NO. 13-0508
ELEVATIO	C DN	182	- GW	L O	HRS	87.	3							TNO. 2040384.43
	~~	212	ADD -	-	HRS									1
DATE	21-	48	MI-12 2000	2	CLAS	SIFIED	BY		D	AN SANGER	۹	- -		of
						1		r		DESCRIPTION				
DЕРТН (FT.)		OR CORE RECOVERY/RUN		<u>п</u>	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS			MATERIAL CL	ASSIFICATION		ROCK BROKENNESS	REMARKS*
1		2	3	4	5 159.0	6			7		8	9		10
150,9	\vdash	>		-		MiKA	ND	GR	A4 -		FINE TO MEDIUM	B		· · · · · · · · · · · · · · · · · · ·
										CARINED, MICI	<u>redus</u>	H	+	
												┼╌┼		
							_			·····			+	
	10.0	10.0	100%	100										
	<u> </u>			<u> </u>										
	ļ													
												$\left \right $		
160.9											·	$\left \right $		
	\vdash	~						-				$\left \right $		
												╞╌┼		
													+	
	10.0	10.0	100%	100										
											•			
						├──							-	
172.9														
		7-					-					.	+	
					173.0	$\overline{\mathbf{v}}$, ,		7		/		, †	
						M. SOF	٢	GR	44	ARGILLACEOU	SILTSTONE	BR-1	BL	PARTING 173.4, 1762
	10.0	19.0	100%	16										
	-				100 0		\neg							
					177,8	M. SOFT	5			SHAW CONT		BL	+	
						M. HP	20.2	LT C		SHALY SANDITON	, MICACEDUS	1.2	·	
		<u> </u>		L				L J	<u> </u>		1	<u> </u>		

REMARKS ** _

a

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 3-0508

TE	510	-0 1	1			T		-		N SAN				-	-	of	
										DESCRIF	TION	_					
DЕРТН (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN	SAMPLE NO., TYPE &	RECOVERT OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HAHDNESS	COLOR	MA	TERIAL CL	ASS	SIFICATION	USCS OR	ROCK BROKENNESS	REMARKS'	
1		2		3	4	5	6		7		8	3		9		10	
<u>80.9</u>	(<u> </u>				181.6		_									
						101.0	M.S.F		GRAY	SILTST	UNE I		·······				
								_						+ +			
						184.3	SOFT T		C D AM	est of	4	/		AA-B	+		
	(J.)	10.0	10	02	79		A. SOFT	- T	<u>GRAJ</u>	SIGH	CLAYSTO	246	3	BK-B		45° SLICKEN SIDES	195 1
		10.0	10			1.			marso d						+		
								1	GRAY	: 5	ANDY 18:	7.3-	188.8		-	185.75, 186.6-18	76.1
						1										30° s LICKENSIDES	1 26 9
						1		1							1	187.2, 187.3	1.9.9.
90,9																	
										: lo	1.8-200	5	MAEGULAR	BL			
													CLASTS AND				
									MAROON	\$	TRINGER	5	THLOUGHONT				
					-			\dashv	GRAY								
	0.0	15.9	100	16	96			-							_		
								-							-		
			-				- <u>-</u>	-						BR			
								+							-+		
9.9								-				1					
								-		BOTTOM	DE BOO I	<u>v</u>	: 200.9'		+		
								1		10-11-1					+		
												_		1	1	·····	
								I									
															T		

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0508</u> (25) N 541748.6664 E 1724111.6219 Grade El. 824.40

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	509	GNO. <u>B-0</u>		_BC	ALBANS, WV			53.4	пре	// 0	3/3 JD	NEA 82	PROJECT.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						e herhand	(u. f. he	16.0 !	HRS	23			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>		AGE	- P/	r	an sancer	DA	SIFIED BY	CLAS	-	AY 2005	L-02M	DATE 284
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•			·	DESCRIPTION							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RKS*	REM	ROCK BROKENNESS	USCS OR		MATERIAL C	_	s C	<u>e</u> .		SA		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+		e.			5	4			
H g S-3 4.5 10 REC 1.5 13 $5-4$ 4.5 10 13 $5-4$ 10 REC 1.5 7.5 12 7.5 12 7.5 12 7.5 12 7.5 12 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	<u>F</u>	. 2 0.75			<u>M(31)</u> 1	SILTY CLAY					REC 1.0		1 2
H g S-3 4.5 10 REC 1.5 13 $5-4$ 4.5 10 13 $5-4$ 10 REC 1.5 7.5 12 7.5 12 7.5 12 7.5 12 7.5 12 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5		¥ ISTSF		┢──,	V							34	3.0
4.5 10 7.5 7.4 <th< td=""><td></td><td></td><td>-</td><td></td><td>: DECOMPOSED</td><td>CLAYEY SILF :</td><td></td><td></td><td></td><td><u> </u></td><td>5-3</td><td>8</td><td>1</td></th<>			-		: DECOMPOSED	CLAYEY SILF :				<u> </u>	5-3	8	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ì	-			TAN +	ý.			REC 1.2	/0	4.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Drig					GROY	DENZE			REC 1.5	15	·6.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Day						M.DENSE			5-5	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>`</u> _	<u> </u>	¥			V OF		-		12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SLIGHTLY	-1	C		SILTY CLAY > 1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					CCAYNUR	· ·					REC. 115		10.5
9759 13.5 10 REC 1.5 13.5 10 REC 1.5	+4075	ul						· · · · · · · · · · · · · · · · · · ·			REL 1.5	11,5	
		ц.									5-5	7	9
								V					
	# 3.25 TSF		V	<u>;</u>								112	15.0
4 8 S-11 MOENSE CLAYEY SILT : DECONVOSED CLAYTONE 1 1 "		LC 94	~1	m	COMPSIED CLAYSTONE	CLAMEY SILT : DE		MDENSE				8	16.5
6 S-IL V V					V			×					
18,0 812 REC IS STIFF SILTY CLAY "DECOMPOSED CLAYSTOPE CI MOIST & ISTSF 35 S-13 STIFF I MOIST & 13TSF			-	C	COMPOSED CLAYSTONE	SILTY CLAY -DEC					REC 1.5	12	18,0
19.5 5 5-13 STIFF Maist 41.75 TSF	.75 TJF	MOIST 2	+					5111-7-			115 Aux 1.5	2	19.5
21.0 19 NEC 1.5 N-STIFF NOIST \$ 2.25 TS	2.25TSF	MOLST	+	\vdash				N-STIFF					
57 STIS STIFF AND MONTE # 2 ATOF											5-15	7	3
21.5 G Azc 1.5		•						V			Selo	6	22.5
24.0 10 RECIS STIFF V WOIST XISTSF	1.STSF	MOIST :			4		¥						
25.5 14 14CC 1.5 25.5 14 14CC 1.5 25.9 V.DENSE GREEN 25.9 V.DENSE GREEN 25.9 V.DENSE GREEN 25.9 V.DENSE GREEN CAMP DECOMPOSED SANDSTONE V.DENSE GREEN					3MOTZOMAZ	DECOMPOSED			270		5-17 THEC 1.5	1 1	1 1
	.K: 2519	TOPSFR	W Oct	-	A.C.	CAUDIO					6-18 LEC 09	10.4	<u> </u>
SOFT BROND SANDSTONE: HIGHLY TO COMPLETELY UBR WERTHEYZED	•		MR				DILONP	20-1					
1.1 6.1 18% D			+			NUT REALE D				Э	18%	6,1	
			\mathbf{t}	-									

REMARKS .. DRILLED BY TERLAA TESTING, INC. USING A SIMCO 4000 TZ TRACK MOUNTED OLILL

BORING ADVANCED USING 514 SOLD STEM AUGERS, 4" I.D. STEEL CASING, NO-2 WIRELINE WRING TOOLS.

* POCKET PENETROMETER READINGS

BORING NO. <u>B-0509</u> (7)

** METHOD OF ADVANCING AND CLEANING BORING

PROJEC ELEVAT	т <u></u>	RE 82	0 ^{2/3} 5±	GWL	- 0	ሲ HRS	ج ح	AM 3.4	20	Po	WER (LANT	ST, ALB	ANS W	V BC		IGNO. <u>B-0509</u> ECTNO. <u>C040384.4</u> 3
					21	LUDO	- h										
	10 141)		SSIFI	ED BY	<u> </u>		· DA	NSA	NGER		_ P/	AGE	of
							—				DESC	RIPTION			Γ		•
DEPTH (FT.)	BLOWS PER SIX INCHES		SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS		COLOR		MATERIAL	CLASSIFICATI	ON	USCS OR	ROCK BROKENNESS	REMARKS*
1	┼──	2	3		4	5		6		7			8			9	10
32.0	+	+				72.			+-,	<u> </u>	ļ		ļ				
32.0	┼─┥	\rightarrow			<u> </u>	32.2	80	Y if-T-	_		CLAV	CEALC	4			1	
	1			- [-			20	-1	1 10.1	1	CLAY	STONE			B		
								· [· ·	+				,		1 1	36	
•								1						·		\vdash	
	7.1	1, 1	71	4	制			1									
	<u> </u>	\vdash													1		
	 							V		V							
				\rightarrow			M. (SFT	GRE	EN-		. 4.1	REGULAR C	ALCARESU		\square	
					_			<u> </u>	_			<u></u>	7 6424 1714	the second		\square	
42.0	┝─┥	}			_			<u> </u>	<u> </u>	<u> </u>		[t	v 431)				
					{				_	<u> </u>							LAND A. FILAC MALLSM
																	AUTOLENAMES MELLER
_											· ·						44.4,44.55,46.2.
	98	10.0	981	17	9												46.45 46.95 17.4
					4												49.0
				1				1				,				$\left \cdot \right $	
						19.7	'Ph H	Q10"	1.7.1	0.65	5.0.000						
						\$2,4	W S				SAPDS CLAYS						
52.0	_/					[G1L	A4					1	\vdash	
															BR	-	
						3.9		¥		j			V				
				_	_		fix c	.ET	CAE		SILTY	TO SAN	DY CLAY IT	545	BR-	BL	LOW & FAACTUIES
			[a,			-		ļ	G	LAM			MARDING				549,555,57.2,52.7
	10.0	10,0	1007. 8	8	5	┝					C L/R-1975					59.0,60.0	
					4	┝						SANNY S	16.7 то 57.3				7
				+-		┝				-							
l	<u> </u>	<u> </u>						<u>k</u>	1	\square	¥		······		V	L L	

REMARKS ** ___

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

•

BORING NO. B-0509

.

			5± G	2	1000	5 17			·	AN SAN				CTNO. CO40384.4
						ASSIFIED BY DAN SANGER								
DEPTH (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERV	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS	COLOR			LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2		3	4	5	6		7			8	ę)	10
62.0				 						15TUNE (CO	(<u>1'4)</u>	· · · · · ·		.LOW& F-MACTURESS 63.2,62.6 62.8, 63.4, 63.7 641,642 64.5, 64.9,45.2
											6			
	10.0.	; .	100%	117	66.5	m. Sol	= =	GRIAU		1. Ballon	SILTYTONE AND			
										433788 <u>8</u> 			-	
122		>												
	0.0	10.0	1002	92	<u>76.6</u>									
						M. HAR	٥	GRAY	SAN	STOTE DI		V BL		
					81.2	V		V					·	
32.0		\succ				M.SOFT	0	K GALI	SILA	1 TO SAD OY	SHALE .	Ba	. /	DAL FLACTURES 81,3
					<u>83.6</u>	Sofr		RAY	CLAY	JHOTE			_	PI.45, 827, 83.1 83.6
	60	101	الحدا	77				_						83.9,84.1,84.2, 54.7, 85.1, 85.5 NIGHX REAL W/SLICKER 1118
							+			: BECOME	S SILTIER @ 87.5		_	870-87,2

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. $\frac{\beta - 0 S \cdot 0 q}{(7)}$

.

gai consultants transforming ideas into reality

-

ELEVATIO	SN 8	:25	t GV	VL C	HRS	53.4		PLANT	PROJE	IG NO. <u>Вир 559</u> СТ NO. <u>Сачозку ч. 5. 5</u>
DATE 28	99 <u>4</u>	(- 9;	2 10 10 1 2.	220	CLAS	SSIFIED BY			PAGE	of
					<u> </u>			DESCRIPTION	-	
ОЕРТН (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	Ř		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1		2	3	4	5	6	7	8	9	10
92.0					91.0	W HACO	15114	5AHOSTONE	V	
	\vdash	\rightarrow						381 331082	Br I	
					936	SOFT T	o maroso	CLAYSTOME	BIE	
						MISSET				30° FRACTURES 95.1
	8,0	89	1002	62						95.6,96.4,97.3 R.4,98.6
										28.4,986
					98.9					60° SLICKENSIBE 98.0-
120.2				-			C A .A.4	SILTY SHALE/SILTS Johe	BL	58.2
					140.0	MINGICO	Gichart	BOTTOM OF BORING 100.0	55	
										· · · · · · · · · · · · · · · · · · ·
				 						
		_								
							├			

REMARKS **

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>3-0509</u> (ר)

PROJECT ALER 7/3 JD H.J. G. AM.OS POURE PLANT ST. ALBR/JS, WV BORING NO. D-OSI ELEVATION GWL 0 HRS 3/6.0 PROJECT NO. CO4038 DATE 03-00000000000000000000000000000000000	reality
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S*
1.5 1.8 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.8 1.7 1.8 <th1< td=""><td></td></th1<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
His D Grad D Grad D Grad D <	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
1.3 2.3 1.00% 50 10.7	8.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D HIGH
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4, 9.7
Image: Non-open-set in the construction of the co	
Image: Non-open-set in the construction of the co	2.6,12.
100 100% 58 M. HAND GAAY ~15.25 MICACEOUS, EINE TO MEDIUM GRAINED STAINED LONG & FA No. 190% 58 M. HAND GAAY ~15.25 MEDIUM GRAINED STAINED LONG & FA No. 190% 17.0, 17.3, 18.0 No. 190% 30.7 No. 190% 50.7 No. 190% 50.7 No. 190% 50.7 No. 190% 58 No. 190% 58 No. 190% 58 No. 190% 58 No. 190% 59 No. 190% 50 No. 190% 50 No. 190% 50 No. 190% 50	
20.7 2.0 SNFT GAAY CLAYSTONE VBQ 22.0 SNFT GAAY CLAYSTONE VBQ 23.9 V V 5.6 J 00 % 65 OK CAN CLAYSTONE VBQ 5.7 LT. GRAY CLAYSTONE VBQ 5.7	
20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	
20.7 22.0 SOFT GAAY CLAYSTONE VBQ 22.0 SOFT GAAY CLAYSTONE VBQ M.SOFT GLAY SILTSTONE/SILTY SHALE BR STAINED HIGH 23.9 V V I FRACTURE (60-70 SOFT LT. GRAY CLAYSTONE VBQ - 12.8-23.0 DNO 10.0 100% GS DOK GRAY	PAC THRE
22.0 SDFT GARY CHRYSTONE UBQ M.JOFT GRAY CHRYSTONE UBQ D359 U V FRACMAE (60-70 SJFT LT.GRAY CLRYSTONE VBL- 12.8-23.0 DNO 10.0 100% (5 0 0000000000000000000000000000000	
22.0 SDFT GARY CHRYSTONE UBQ M.JOFT GRAY CHRYSTONE UBQ D359 U V FRACMAE (60-70 SJFT LT.GRAY CLRYSTONE VBL- 12.8-23.0 DNO 10.0 100% (5 0 0000000000000000000000000000000	
M.JOFT' GLAY SILTSTONE/SILTY SHAVE BR STAINED HIGH 239 V V V STFT LT.GRAY CLAYSTONE VBR- DIO US OK GRM BR	
D3.9 V V L FLACINAE (60.70 STFT LT. GRAY CLIQUES TONG VBQ- 22.8-23.0 DNO 10.0 LS OK GRAY BR NERR VERTICAL PART	
D3.9 V V L FLACINAE (60.70 STFT LT. GRAY CLIQUES TONG VBQ- 22.8-23.0 DIO 10.0 65 OK GRAY BR NERR VERTICAL PART	¥
DID 10,0 100 45 OKGRAY BR JEAR VERTICAL PAR	
mation p STANED FRACMOR	= 23 3 -23

REMARKS "DAILLED BY TERAA TESTING, INC. USING A SIMCO HOPO-TO TRACK MOUNTED DAIL

BORING ADVANCED USING 54" SOLID FREM AUGELS, 4"I.D. STEEL CREINE, NO-2 WIRELINE CORNE TOOLS

* POCKET PENETROMETER READINGS

BORING NO. 3-0510 (26)

PROJEC	т <u>А</u>	LEA	43 304	NE.	AMS:	s pou	NER !	PLA	NT	ST. A	LBANS WV	BOF	RING	NO. B-0510
ELEVATI	ON _		GV	VL (0 HRS	30	5.0							TNO. CO43384.41-0
DATE	03-	04 N	1147 2.23	<u>×</u>		SSIFIE				DANSANGER				2_ of _9_
										DESCRIPTION		<u> </u>		•
DЕРТН (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS		COLOR	MATERIAL C	LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2	3	4	5	f	6		7		8	9		10
30.7	$+ \rightarrow$	}		+	1	305	-T			CLAYSTORE (W)	+) HIGH-4	BRID	N	
		·			4		<u> </u>			WEATHERED		1		
					4									
		-		ļ			<u> </u>							
			N		35.0	1	/				· · ·	V		
	2,9	10.0	95%	60		10.50	FT 79	GAE	HIIG YAJ	INTERBERDED S	SILTY CLAYSTONE	BR-C	51 3	30° FRACTURE 36.2
						M. H	and			WITH CALCARED	US CLASTS AND			D'FRACTURE 36.2-36.65
	<u> </u>						1			SADDY SILTSTO		11		
								N	U			VBR		
40.7	\vdash				-			to de	4001			L		
												BL		
								GRA	м					
												┼╌┼╴		
-												+		
	po	10.0	100 %	91					,	•		+	+	
								MAR	460			┼─┼╴		OW & FRACTURE 45.8
								GLA.				┼╌╂-	-1-2	6.0, 48.0, 52.5, 52.6
								10011	162			$\left - \right $	15	53.5,55.1,55.5,57.85
												╎╴╎╸	_	
50.7								-				$\left - \right $	+-	
		7						-+	-+			V	- <u> '</u>	
				<u> </u>								BR		
								-+					<u> </u>	
								_	\dashv					SLIGHTLY
	C,0	0.0	100%	76	-			_	$ \rightarrow$					MINED VENTICAL
					ļ								F.	LALTURE 55.75-56.1
					ļ									
					L									
1						Y		\mathbf{V}			!	Ý		

REMARKS **_

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0510</u> (24)

.

ELEVATI	ON		G	WL.	0 HRS	36.0)			ans, wv	PR	OJE	CTNO. <u>Co40384.40-</u>
DATE	03-	04 M	AY 2005		HRS			D.a	N SANGER				3 of 9
			1		T								of
							Т		DESCRIPTION		-		
DEPTH (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR			SOIL DENSITY - CONSISTENCY OR POCK HARDNIESS		COLOR	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1 60.7		2, *	3	4	5	6		7		3		9	10
	1	Ψ		+	1	M-SJFT		heary par	INTERBEDDED CLA		BR-	81	LOW & FRACTURES
	1-							1	SILTSTOPE (C	1			61.1,616,62.0,63.2
								1					63.5,63.75,63.9
		<u> </u>					Ι						0 1101) 4 3 10
	10.0	10.0	100 2	92				\downarrow					
							┢	-				_	
	+			+	ł								
	1-			+			+-	+					
75.7		5					\uparrow	1			$\left \right $		
								Í				-	
		_				· ·							· · · · · · · · · · · · · · · · · · ·
						 		<u> </u>	SANDY SI	LTSTONE 73.3-75.0			
	100	10.0	100%	01			+-					_	
	10.0	10.0	100.8	176			+	-				_	
				1			┢	1					
							\uparrow					-+	
0												-	
80.7				╞═╡		 	_				V		
							-				BR		30° SLICKENSIDES
							+-				_	\rightarrow	81.3,81.5, 81.8, 82.
							+-				+	+	82.7,82.9, 83.8,84.
_	(0,5	(0,0	100%	60			\square				+	-+	
					97.			1		(\neg	-	
					87.6	•			V		Ý		
				┝		M. HARD	GRI	54	SANDSTONE FINE		BL		
							<u> </u>		G LHINED, MICAC	eons	¥		

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0510</u> (26)

gai consultants transforming idease into reality

								212	PLA	NT ST			NG NO. B-0510
ELEVATIC	DN		GW				0						JECT NO. (2040384,40-01
DATE C	3-04	mA	7 2005 T	-	HRS CLAS	SIFIED	BY .		DA	N SANGER		PAG	E <u> </u>
						· · · · · · ·				DESCRIPTION		_	
БЕРТН (FT.)	BLOWS PER SIX INCHES			Я	۵.	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS			MATERIAL CL	ASSIFICATION	USCS OR	REMARKS*
1	2	2	3	4	5	6			7		8	9	10
	\models	\geq				M. HA	2140	170	<u> ሊ</u> ላነ	SANDEDARS	(w ¹ ⁻)	BL	
	10,0	10,0	100 %	00									
F.001	-			<u> </u>									
100.1	=	\geq											
					{	├ ──┼	—						
							—						
	10.0	P.0	100%	100									
110.7					{								
					112.0	1			/				
						M-Sof.		GA	AΥ	INTERBEDDED SO	ChA Short 204	BR-	LOW& FRACTURE 112.4
						M- HAI	4.5			SILTSTOPE, Son		BL	
										WHITS			
	10.0	10.0	100%	91								+	
	$\left - \right $												
					ł	\vdash							
								1					

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0510 (26)

PROJEC	т <u> А</u>	lea	2/3	JOHN) E.A	MOS	Pow	212	PLA	NT ST. ALBANS, WV	BO	RING	GNO. B-0510
ELEVATI	ON		G	WL () HRS	30	ø · O				PRO	JJE	CTNO. <u>CU40384.40-01</u>
DATE	03-0	oy M	2006 120.		HRS CLAS		ED BY		DA	IN SANGER			<u>5</u> of <u>9</u>
										DESCRIPTION			
DEPTH (FT.)	BLOWS PER	OR CORE RECOVERY/RUN		R R	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS		COLOR		USCS OR	ROCK BROKENNESS	REMARKS*
120.7		2	3	4	5		6		7	8	9		10
					121,5		T TO	GRI	+ 46 4000		BA VBF		LOW& FRACTURES "/ SLICKENSISES 122.35
					-					CLASTSESTAINGERS: 122, 6-	_		122.8, 123.35, 124.2
	10.0	10.8	100%	47						124.0, 135.0- 1387		_	124.7, 124.9, 125.4, 126.1, 127.65, 128.3, 129.1,
													130.1. 130. 45. 130.7 131.5, 131.9, 130.6, 134.5 135.2
130.7		} 											1410H & SLICKENSIDE 133.25-133.6
	10.0	10,0	100%	(.0									
140.7					เนื่อก								
	\models			-		M.s:		CREE GA		SILTY CLAYSTONE : INTERMITTENT	BI	=	
						1 1.21		MAN YELL MOTTL	ow,	IMEGULAR CALCAREDUS CLASTS AND STRINGERS			MOST PIECES 0.2- 0.4' LONG
	10.0	12.0	100%	73									
			····										
								-			+	\square	
						1	V	V	1		$\overline{\mathbf{v}}$		······

REMARKS **___

* POCKET PENETROMETER READINGS

BORING NO. <u>B-0510</u> (24)

PROJECT AREA 3 JOHN E. AMOS AWAR ALANT BORING NO. B-0510 ELEVATION _____ GWL 0 HRS 36.0 PROJECT NO. C343384.43-31 HRS PAGE 6 of 9 DATE 03- MAY 2-005 CLASSIFIED BY DAN SANGER DESCRIPTION BLOWS PER SIX INCHES ROCK BROKENNESS OR CORE RECOVERY/RUN % ROCK RECOVERY RQD (%) OR TORVANE SAMPLE NO., TYPE & RECOVERY OR CONSISTENCY OR **USCS OR** ROCK HARDNESS SOIL DENSITY -MATERIAL CLASSIFICATION REMARKS* DEPTH (FT.) PROFILE COLOR 1 7 2 3 4 5 6 8 9 10 150.7 SILTY CLAYSTONE (CONT) 153.2 MIHALD LT GANY SANDSTONE : FINE TO MEDIUM BL 1 GLAINEN, MEACEDUS 10.0 10.0 100% 84 PELE OF COLE: 7.6' 160.7 1 PIECE OF CORE 6.7' 100% 10.0 10.0 100 170.7 • V 175.1 V 100% 0.0 0.0 53 SOFT TO CRAY+ CLAY STONE MOST PIECES 0.2' VBK MAADON M-SOFT ~30° SLICKENSIDES 176.0, 176.35, 171.55, 177.7, 178,1, 178.45, 178.65, 179.0 60° SLICKENSIDES 179.1-179.35, 179.65-179.85 REMARKS **

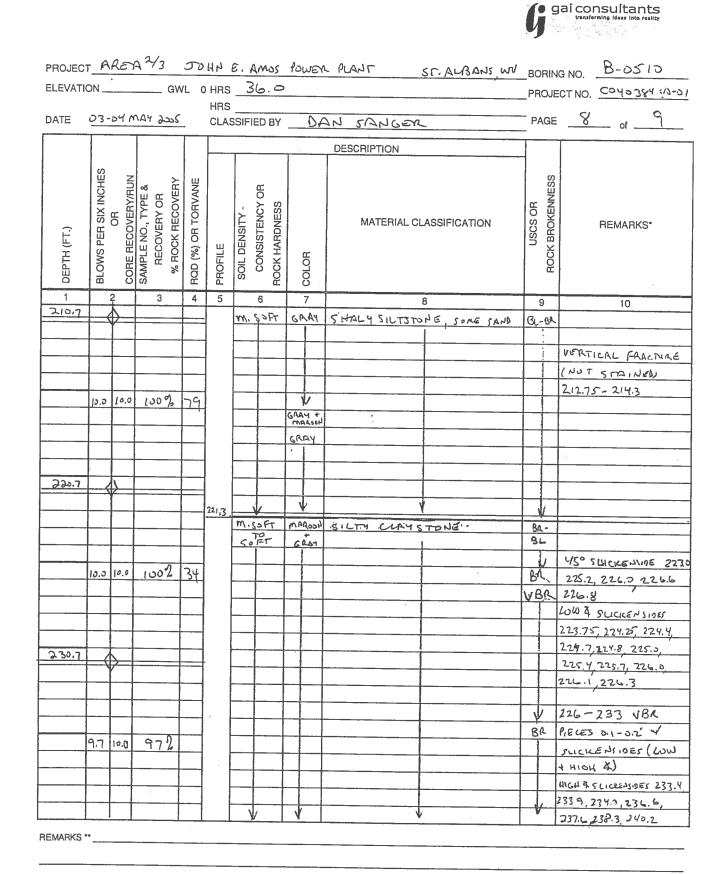
* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0510</u> (26)

gai consultants

gai consultants transforming ideas into reality


BORING NO. <u>B-0510</u> (26

.

												gai consultants transforming ideas into reality
(PROJECT	AR	EA 2/3	J	२४५ १	8. Amos	POWER	L P	LANT ST. ALBANS, WV	B	ORIN	IGNO B-OSCO
	ELEVATIO	N	G	iWL	0 HRS	36.	0		;	0	ROJE	ECT NO. Co 40384.40-01
	DATE 6	ה כ ר	4 MAY 2	~				<u> </u>	2N SANGER			7 of
			1 1.000 0000	- <u> </u>		SSIFIEDE	іт	07		'		of
					-				DESCRIPTION			
	DEPTH (FT.)	BLOWS PER SIX INCHES OR	δ δ	RQD (%) OR TORVANE		SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS COLOR		MATERIAL CLASSIFICATION	LISCS OR	ROCK BROKENNESS	REMARKS*
	1	2	3	4	5	6	- 7		8 CLAYSNNE (CON'T)		9	10
		=₽		-	181.5	M.JOF	GRA	-				
									SANDY SILFSTONE	50	BL	
					_							
		10.3 11	00 100%	, 84	185.8			_		_		
	'	10.0 11	00 100 %			SOFT TO	MAR	40	CLAYSTONE		<u>v</u> sa	
				+	1	M-SOFT				<u> </u>	1	Low X SULCHENSIDES 187.0, 187.6, 187.8,
-											-	189.0
(_		190.2						$\overline{\mathbf{V}}$	
-	193.7			_	=	MIHAP	D LT GA	AY	SILTY SANDSTONE	B	L	an anna an anna an an an an an an an an
					-			-				
					-			-				
				+	194.0	1	GARY	-	<u> </u>			
	,	0,0 10	1000	-8	i l	MLSOFT	Marlao		INTERBEDDED SANDY CLAYSTONE AND SILTSTONE	β¢ .^		LOW & SLICKENSIDES 194.15,
			- <u> </u>		1			-†	7443 3164 51046	-		196.1. 196.75, 197.15, 197.5, 197.85, 198.2,
					198,2					1,		11110, 111103, 11012,
						MSOFT	GRAY .	+	ENTERBEDDED SILTSTONE AND	THE OWNER OF	BL	
					1	W. HOULD	LT GAL	AY.	SCONSTRUE		ł	
-	200.7	_₽		-				_				
								_		_		
		-		+	203.0	V_		+	¥	_	<u>v</u>	· · · · · · · · · · · · · · · · · · ·
					1	SOFT TO M.SOFT	manoo	4	SILTY CLAYSTONE	113	R	LOWA SLICILENSIDES
	└────┤ ₁	3.0 10	1.0 100%	70	,	1 1044	+	+				204.25,205.0,205.25
				1	1			╉				235.8, 206.7, 206.85
]			+		+-		207.25, 207.7, 207.85
										1		
					2-0-7	¥		_		1		
	REMARKS **											

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0510 (26)

			A4 200		HRS	36.2	0	AN SANGER			CT NO. <u>C343384.43</u>
	T			T	-			DESCRIPTION		1	
DЕРТН (FT.)	BLOWS PER SIX INCHES OR	CORE RECOVERY/RUN	SAMPLE-NO., TYPE & RECOVERY OR	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR		ASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2		3	4	5	6	7		3	9	10
40.7		\Rightarrow		+		M.Soft	MARJOY + CIRAY	CLAYSTONE		VBA	
				_		SOFT	PURPLE				SUICHENSIDES
					_					V.	
					_					BR	30° SUCLEASIDES
		_			-					_	APPLON EVER 3 4-0.5
_	10.21	٥.٥	1002	56	-			· · · · ·			
	┝╌┠				1.1		 				
		\dashv		_	248.3	<u> </u>			V	VBR	
		\dashv			_	M.SOFT	400000	INTERBEDDED	SANDY CLAYSTONE	BR-BL	•
<u> </u>		_		_	_		GROY	AND SILTSTONE			
50.7		=		+-		- ¥	<u> </u>		/	V	
		\downarrow			- 1			BOTTOM OF BO	RING: 250.7'	_	
		_		_	-		ļ				
		_			-					_	
	 	-			-			· · · · · · · · · · · · · · · · · · ·	•		
	 	$ \downarrow$			-						
		+			-	·					
				_	-						
		_									
					-						
	· · · · ·	-		\perp	-						
		\rightarrow		_				· · ·			
		-			-						
		-			-				······		
		_							·····		
		-			-						
					-			·			
		-		_							
		-+			-						

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 13-0510 (26) N 541746.9425 E 1724116.3536 Grade El. 824.57

					HR	S					
	03-00	1 11	VA4 2.00	<u> </u>	CL	ASS	SIFIED BY	/_	an sanger.	PAGE	of
						F			DESCRIPTION		
рертн (гт.)	BLOWS PER SIX INCHES OR	CORE RECOVERY/RUN		Ĭ			SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2		3	4	5	\downarrow	6	7	8	9	10
		_			-	F			AUGER "& SAMPLING		
		·			-	┝			PIEZOMETER INSTRUER		
				+	-	┝			PIEZOMETER INSTRUER		
		-			-	\vdash			T:P AT 25.5 FT		
					-	┢				_	
		-+			-	┢					·
		-+		+	-	┢					
		┥		+	-	┢					
	+	+		+	-						
	+	+			-	$\left \right $			· · · · · · · · · · · · · · · · · · ·		
		+		+	-	┢					
	+			+	-	┢					
		-+		-	-	┢	· · · -		· · · · · · · · · · · · · · · · · · ·		
		+		+		┢					
		\uparrow		+					· · · · · · · · · · · · · · · · · · ·	-	
		+		+	-						
				1	1						
		1		1	1	F				+	
				1							
				1	1					1	
		T			1				· · · · · · · · · · · · · · · · · · ·		
					1					-	
					1						
		T			26	0					· · · · · · · · · · · · · · · · · · ·
		T				T			BOTTOM OF BORING: 26'		
]					1	
		T			1						

REMARKS .. DRILLED BY TERRATESTING, SHE USING A SINCO 4000 TO TRACK MOUNTERS MAIL

POR HO AVANCE D WEING SUL SOLD STEM ANGERS

* POCKET PENETROMETER READINGS

N 542140.8876 E 1724101.7636 Grade El. 784.29

PROJEC	т <u>А</u> оп_	REI	A 2/3	JT NL	이 HBS	E. A	MOS	Ро	WER	R PLANT					IGNO. <u>B-05/2</u>	
			MAY 22		HRS			_							CT NO. <u>C340384.4</u> 0	
	0 <u>4</u> ·	05	1	<u>_</u>	CLA	SSIFI	ED BY	_	<u> </u> D	AN SANGE	ER.		_ F	AGE	of	
								-		DESCRIPTION	1					
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	L M		SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS		COLOR	MATER	IAL C	CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*	
	- . .	2 I	3	4	5		6		7			8		9	10	
1.5		2	S-1 AZC 0.8	+		1.0	2052	<u>b.(</u>	LOWN	SILT, TR	ACE	BEGAPICS		nl	MOISE	
3.0	2	23	464 1.4		1	ST	IFF	Br	Lowal	SILM CL	24		$\frac{1}{c}$.1	MOIST # 1.5 TB	c
4.5	2.	<u>3</u> 5	5-3 ACC 1.3			Lo	o SE	BA	له دن ها			SUME ROCK FLAGMEN	ŢĘ ,	m	SLIGHTLY MOIST	
6.0		9	3-9	-												
	12	<u> </u>	REC 1.2 5-5		1.		TIFF		AY +	SILTY CLAY	, TH	acé rock fragmést	1		SLIGHTLYMOIT + 1.5	TJF
- 7.5	9	2_	5-5 REL 0.8	-	8.0	1/	<u>. M. I.</u>						-	:(WET + 1.0TJF	
9.0	2	43	REL IS			Vib	ENSE	<u> </u>	4001	ROCKFRAGME	NTS	AND SANDY SILT:	0	im	DRY	
10.5	23	2	5-7			<u> </u>		GA	44 			CLAYSTONE	1	m	DRy.	
/12.0	13	8.0	5-8 REC 1.5			<u> </u>	<u> </u>					······································			DRY	
12.3	5-1	D 0.0	5-9 Ale 0.0	╞╱	12.0	Mis	٥F٢	GAE GR	en-	SILTY CL		- 16	+	m	TOP OF NOCK. 12.0	,'
								MAA	ر نبوه. ر نبوه. ۲۰۶	VICITY CL	AY 5	<u>тъле</u>	18	<u>r</u>		
							·		TLED							
													VB	R		
	100	120	100%	40									9	3r		
	10,0	10,0	100%	40												
												<u></u>	$\left \cdot \right $			
								_								
22.0	-4	$ \downarrow $			22.65			_				/				
						MIHE	AD	46	R-AY	SILTY SANOS	אסז	6	B			
									\vdash							
											_		\vdash	-+		
					ĺ								$\left \cdot \right $	-+		
	10,0	مدا	1002	91	28,5			_				/				
								SRA		SILTY TO SAN	<u>14</u>	SHALE	BR-	BL		
						M. HQ				C. u Han	J	/	L¥	<u> </u>		

REMARKS . DRILLED BY TEXAA TESTING, INC. USING A SIMCO 4000 -T2 TRACK MOUNTED DRILL

BURING ADVANCED USING 514" SOLID STEM ANGERS, 4" ID STEEL CASHE, NO.2 WIRELINE CORNET TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0512

LEVATIO						HRS									CT NO. C. Y D384.40
DATE 3	<u>4-0</u>	5 M	AY 2	2005	•	CLAS	SIFIED) BY	(JAK	SANGER		_ PA	GE	of
											DESCRIPTION				
DEPTH (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS	0.00	COLOH	MATERIAL C	LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2		3		4	5	6			7		8	9)	10
20							Missi W.L	2	6	244	SHALE (co	<u>, 1, 1</u>	BR-	BL	
32.0		\succ				4	W.6	H2.4D					-		
						ł									
						{							+		
						35.7		/		-		V	-1	7_	
	10.0	10.7	1.00	2	าร	1	Mixa	FT	GA	YA	INTERBEDDE	SAJOY FUAR	BI		
-						1	Misc Misc	64N			AND SILTST			-	
						1									
												·	\square		
						1			-						
42.0															
		7				42.95	J	/	V	r		/			
							SOF	۲ -	DIL G	LAY	CUAYSTONE		BR		LOW & SUICKENSIDE 43.1
						1						1			44.15, 45.0, 45.2, 45.8
						46.0		/		<i>r</i>		/			
	19.0	C,0]	100	η.	90		M. 5p	FT	GR	AY	SANDY SHALE		BA-A	SL	
						47.6	530		GA	+ +	CLAYSTONE	<u> </u>	50	-	In an internet state and an internet
						49.7			1	1004			J		LOW & FRACTURE 49.0
						71.(M. 3*		LTG		SANDY SILTSTOPIE		ВС	-	
							MIHA								
52.0						52.25		r				/			
							m.sa	FT	mAa	406	CLAY STONE		BA		LOW X SLICKENSIDES
															52.55, 53.0, 53.6, 53.8
															54.4, 54.65, 55,35
· .															
	9.9	0,0	999	6	85	57.1				,		/		<u> </u>	
							M.SO		LTO	, r.Ay		ANDY SHALE AND	B	_	
							m. H	AND			SILTSTOPE		1		

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-6512

INCHES	5 M)	± G		HRS		D BY		01					ст но. <u>Соч</u>	
					SSIFIE	D BY		5					0	e 1
ER SIX INCHES	NUR/YF	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-					AN SANGER		- PA	GE	_3	of
ER SIX INCHES	NURUN	2		1	1		1		DESCRIPTION					
		SAMPLE NO., TYPE & RECOVERY OR	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	ROCK HARDNESS		COLOR	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	REM.	ARKS*
1	2	3	4	5			<u> </u>			-	9)	1	0
			+.	-			150	AAY	INTERBEDDED SA	NOY SHALE AND				
\vdash				-L	M	. HARD	-	<u> </u>			<u> </u>	_		
			+	-			<u> </u> ,		· CLAY STORE	62.7-63.2	NE	<u>s</u> r		
			+	- 64.2	SOFT	70	<u> </u>	×	U AVETONIE		20	, 		e 111
				65.1			<u> </u>		001131008		_			LTNRE 67.
10,0	120	100%	94	1	M. HA	RD	17 6	IAY	SHALY SANDET	DHE : FINE TO	BI			
				_										
				_										
				-										
\prec	\succ			-										
				73.3		/		<u>k</u>		1		\square		
			+-	-	M·SO	Fĩ	hA m H	10 0 N	SILTY CLAYST	DHE	BA			THE 75.1-
			1-	-{							┝─┼			
10.0	10.0	100%	12-	76.5							 ↓	- 1	45° FRACTURE	75.65
				4		1215	616	2.47	DANDSTORE : MI	icaleous		-		
				1			-				\vdash			
]								-		
	$ \downarrow $													
				1										
				-										
	-+			85.0					¥		V			
90		00 ⁹	-	-	Mr. 5.	PFT	GAI	<u>~</u>	SILTSTORE		BR	-		
1,0		786	177	1				-				_		5, 86-5, 88
	-+			1	├		_						89.3	
	\dashv		+	81,7					V	/		_		
			2 3 2 3 10,5 100 155%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0512

PROJECT	ARE 70	A ²⁴ 3	JOH	NE.	Amos Pou	NEN P	LANT,	BORIN	IG NO. B-0512
LEVATIO	ON <u>7 7 7</u>	5±_ G	WL C						-د: برجود می ECT NO
DATE	04-05	MAY 200	25	HRS CLAS	SSIFIED BY	D	AN SANGER	PAGE	<u> </u>
					· · · · · · · · · · · · · · · · · · ·		DESCRIPTION		
DEPTH (FT.)	BLOWS PER SIX INCHES OR	SAMPLE NO., TYPE & RECOVERY OR	% HUCK HECOVEHY ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
				{	MUSSET	MALOON 4 GLAU	INTERBEDDED CLAUSTONE	BR	· .
92.0	-		<u> </u>	ł			AND SILTSTONE		
	-¥-			-			[+	
				{					
	12.2 12.3	100%	67-	96.7			V	$+ \downarrow$	
	1.1.5 [[3.0	1000	- 61		M.SOFT TO SOFT	GRAY + MARDON	CLAYSTONE Y LANTER MITTENT	BR	
		<u> </u>		1	SOFT	MAQDON YELLON	IRREGULAR CALCANEOUS CLASTS +		300 SLICKENSIDES 97.0
			-			181410	STRINGERS. PITTED CORE SURFACE		97.2,97.6,98.75,
									59.25, 59.35, 59.7
102.0									100.1 100.6, 102.3
								BL	102.5, 103.8, 104.1, 109.15, 109.7
		<u> </u>							107.12, (27.0)
								┨╌╌┨╌╌	
	6.8 8.0	852	52					+ + -	
								BR	
								Ť	
110.0				115.0	V	V	V		
							BOTTOM OF BORING : 110.0'		<u> </u>
			_						· .
			-						
								ļ	
		<u> </u>							

REMARKS **

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 3-0512

gai consultants

.

N 542140.8876

E 1724101.7636 Grade El. 784.29

gal consultants

ELEVATIO	ON	GV	VL O	HRS			OR PURAT ST. ALBANS, WV	- _PROJE	CTNO. (040384.40.
DATE	06 mg	4 2005	-	HRS	SIFIED BY	N	AN SANGER	PAGE	of
	1		-		<u></u>			-	
DEPTH (FT.)		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	<u> </u>		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	. HOTOD	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
							BORING NOT DRILLED LOG INCLUDED FOR CON- TINNITY RING COMPLETIENES	· · ·	·
•							PIEZOMETER INSTRUCED IN FRAME PODE HILL		
							AT B-0512		
						•	· · · · · · · · · · · · · · · · · · ·		
							· · · · · · · · · · · · · · · · · · ·		
							·		· · · · · · · · · · · · · · · · · · ·
									·

* POCKET PENETROMETER READINGS

BORING NO. <u>B-0513</u> (10)

N 540555.6419

Grade El. 948.40 E 1725145.9412

PROJECT AREA 2/3 JOHN E. AMOS PIWER PLANT, ST. ALBANS, WV BORING NO. B-0514 ELEVATION _____ GWL 0 HRS 32./ PROJECT NO. CO-10384.V.D. HRS DATE 09-10 MAY 2005 PAGE _____ of ____ CLASSIFIED BY DANIEL SANGER DESCRIPTION BLOWS PER SIX INCHES OR CORE RECOVERY/RUN ROCK BROKENNESS ROCK RECOVERY ROD (%) OR TORVANE SAMPLE NO., TYPE & CONSISTENCY OR RECOVERY OR **FOCK HARDNESS** USCS OR SOIL DENSITY -MATERIAL CLASSIFICATION **REMARKS*** DEPTH (FT.) PROFILE COLOR % 1 2 3 4 5 7 6 8 9 10 44 5-1 LOUSE BROWN SILTY PAND, COME ROCK Sm 1.5 AZC S! 5-2 ERROME 113 1 3 2 V 30 NZC. 0.2 V ء ٦ 5-3 VI'STIFF MAROON SILTY CLAY *3.5 TSF C1 4.5 REC 1.1 2 3.0 TSF 49 REC. 1.3 6.0 7 5-5 * 3.0 TSF 7.5 REC.O. V 5-6 ٩ 9.3 9 REC 0.4 HARD : DECOMPOSED *> Y.5 MJF 5-7 13 CLAYSTONE * > 4.5 TSF 10.5 ALC. 1.0 10.5 <u> 32430</u> 17 5-8 TRA DECOMPOSED EANDY SHALE 9 M 15 16 REC 1.4 120 2120 5-9 13.5 22 PZE 1.5 5-10 AEC 0.7 U. DENSE 14.2 DEBANNE DECOMPOSED SANDSTONE FRAGMENTS <u>s</u>m 11-11-11 SOFT LT. ADON' HIGHLY WEATHERED SHALY VBA-HEAVILU SMAINED BR SANDSTONE / SANDY SHALE VENTICAL FRACTURE HEAVILY STRINED 14.3-14.5, 17.5-17.7 18.2-18.3 7.8 7,8 100% 45 V STAINED BY FRAME 19.3 M. HARD BROWN SANDSTONE: STANKED TO 11 8 15 S 11. 15 11. 20 ~ 22.2' V 17.1.17.6 22.0 GRAY 22,8 Ý \mathbf{V} N. SOFT Y44D SILTSTOKE STRIPED 23.85-24.25 BR OWA STAINED FRACE 24.1,24.15 24,2 Miss FT DK ELAY STOPE / CALCAREOUS BR LOW & STRIKED FADGURE GRAY SFT CLASTS + STAINGERS 25,4, 26.6 10,0 10.0 100% 62 · SAPOY 25.8-26.25 LOW & FRACTURES 27 1 27.8 28.2 MIDEr OHAY INTERBOOD STARY SHALE AND

REMARKS .. DRIVED BY TELLA TESTIN USING A SING YOOD-TI TRACK MONNTED BRICK

11

BONING ANOVANCED USING 514" SOLID STEM AUGERS, LI"S.D. STEEL CASING, NZ-2 WIRELINE COAING TOOLS

V

SILTSTOPE

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0514 (22)

BR

V

gai consultants

			G	NL (HRS	32.1						NG NO. B-0514 ECT NO. <u>C04138440</u>
					HRS				<u> </u>		_PROJ	ECTINO. CONTRACTOR
DATE (09-	101	MAY 200	<u>72</u>					DAY ZANGER	٤		of
						······			DESCRIPTION			
ОЕРТН (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	R R		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		_	MATERIAL CL	ASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1		2	3	4	5	6	<u> </u>	7		8	9	10
32.0					34,8	M.SOFT			SHALE/SIL	(T'4W) 34 0777	BR I	Lov & FARCINES 29. 31.9, 31.15, 32.9, 33.45, 34.5
					27.0	5.5-		400.		/		
	10.0	18.0	100%	51	1	SOFT	10.144	-100. 	CUBYSTONE		BR	
												5.1.02.05.1053 35,8, 37.8,39.2,39.8, 40 41.15, 41.35
								<i>.</i>				
42.0	\vdash				42,0	N	V		N	<u>l</u>	V	
	<u> </u>	·			-	M.SOFT TO	GR	AY		o sandy shale		
						M. HARD			AND SILTS OWA	<u>.</u>	GL	
		· ·			1							
	12.0	10.0	1000	89	47.0					1		· · · · · · · · · · · · · · · · · · ·
						W. HARD	17 6	1.1.4	SANDSTONE		BL	
								\$			1	· · · · · · · · · · · · · · · · · · ·
				<u> </u>								
52 0	\vdash	\rightarrow										
·											-	
		-+					-				┼-┼	· · · · · · · · · · · · · · · · · · ·
							-					
	10.0	10,0	100%	97								
				1	57. g	₩	_			(
					69 2	M. SOFT	GRF	54	SILTY SHALE		BR	- 30° FLACTNES 57.9.
					212		PK.G	ADY	CLAYSTONE, SLIGH	TLY CALCARENUS		58.4

BORING NO. <u>B-0514</u> (221

PROJECT	г_1А	REY	2/3,	lor	175	, kmos	POWE	R PLANT ST. ALBANS WV	BORIN	IGNO. B-0514
						32.1				ECT NO. 0384,40-01
DATE	09-	-19	MAY 200	25	HRS CLAS	SIFIED BY		ORN SANGER	PAGE	3_ of _5
	Γ							DESCRIPTION		
DEPTH (FT.)		OR CORE RECOVERY/RUN		ŭ		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	$\left \right $	2	3	4	5	6	7 GRAY	8	9	10
62.0	K	<u>}</u>				M. SSFT	MARoon	CLAYSTONE (CON'T)	BR	Low & FAARCTURES 59.5, 59.9, 60.4, 61.2
72.3	(6,0	401	100%	86	16.7	M. SOFT TE M. HARA	GRAM	SAMOY SHALE/SILTSTONE W NUMEROUS IRREGULAR CALCAREOUS CLASTS AND STRINGERS : MEROON CLAY STONE 71.25-71.55, 72.0-72.4		4/5° FARCTURE 7 SUCKENSING 62.1-61.25 30° FARCINIES 62.1-61.25 30° FARCINIES 62.6 62.7, 62.8, 63.0, 63.9 63.5 64.1 64.4, 65.25 65.5, 65.75 66.1, 66.5 SUCKENSIDES 71.4, 72.0
	10.0	10,0	1002	91	76.0				V	
			1306	10			GRAY + MALOON MOTILED	CLAYSTONE "/ NUMERIONS IR- REBULAR "CALCAREDUS CLASTS AND STRINGERS	BR	
82.0	R	\rangle			82.2	M. SOFT	GRAM	SILTY SHALE WINTERMITTENT	BL	
						M. HARD		CALCAMEOUS STRINGELS, SOME THIN (22") SANDSTONES		-
	10,0	10.0	1000	90					BR BR	VERTICAL FRACTURE 86.6-87.6
						¥	\vee			

•

REMARKS ** _

* POCKET PENETROMETER READINGS

BORING NO. B-0514 (22)

PROJEC	T <u>IARE</u> ON	H	<u>13 JD</u> GW	<u>11 0</u>	2. A	32.1	er pur	WT ST. ALBANS, WV		
	<u> </u>		un		HRS					CT NO. <u>C340384.40-0</u>
DATE	09-10	m	AM 2005	-	CLAS	SSIFIED BY		DAN SANGER	PAGE	of
								DESCRIPTION		
. DEPTH (FT.)	*	CORE RECOVERY/RUN		Ĕ		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	-+	3	4	5	6	7	8	9	10
92.0					93.0	M. SOFT	LT. GRAY		AL 	
	10,011	>.0	1001	95				CLAY SHALE 9.8.4-990	BR	Low & Farcones 984
102.0					104.3		MALDOF + CLAY MINTILED		BL	SUCKENSIDE 102.0 111.0 (~150)
	10.0 12	2,0	1002	48				SANDSTONE	······································	
1 2.0	10.0 10	.0	<u>، در :</u>	73						
							¥			

REMARKS **_

* POCKET PENETROMETER READINGS

BORING NO. <u>B-0514</u> (22)

PROJEC	<u>r ize</u> e	A -/	3	JD I	HNE	ā, 4	Mos	; Pow	EY: PLANT ST. ALBANSW		1GNO. B-0514
ELEVATIO	DN		GW	L O			1				CTNO. <u>COYO384.40-</u>
DATE	29-10	MAY	2005		HRS CLAS	SIFIE	D BY	D	an sanger	PAGE	<u>5</u> of <u>5</u>
						T			DESCRIPTION		
DЕРТН (FT.)	BLOWS PER SIX INCHES OR	COHE HECOVEHY/HUN SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3		. 4	5		6	7	8	9	10
122.0						M.	HARD	LI GAL	SAPOSTONE: MICACEDUS (CON'T)	BL	· · · · · · · · · · · · · · · · · · ·
162.0	$\vdash \Leftrightarrow$							1			
]			a second a s			
		_									
	10.0 10.	0 100	»″/s	GC		<u> </u>					
-	-					<u> </u>	-	<u> </u>			
			-								
						<u> </u>					
132.0											
									2		
		<u> </u>								171	
	$\left - \right $					<u> </u>			1		
	10.0 10.5		2								
	10,0 10,0	1 100	<u>, 15</u>	[50		<u> </u>			· · ·		
		1						-			
142.0	+								1		
	-¥-				143.2		<u>/</u>		V	\checkmark	
						Mis	<u>, 67</u>	DKGRAY	CLAY SHALE	BR-BL	~30° FRACTURE YSLICK
	8.0 8.0	10	32	27							
				<u></u>							LOWA FR. HCTV RE 1493
						<u> </u>					
150.0							/	¥	BOTTON OF BORING: 150.0'	V	

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 3-0511/

N 539572.1065 Grade El. E 1723680.1660

933.64

E 1/	23000	5.100	0 0	lauei					-	· ·
PROJEC	т <u> </u>	REA	2/3 5	чна	E.A	nos Poura	R PLA	T Sr. Albans, WU	BORIN	IG NO. <u>B-0515</u>
ELEVAT			G\	NL (0 HRS	42.3				CTNO. COYO384.40-0
DATE	10	11	0.4	_					-	
DATE	10-	-1 (MAY 2009	5		SSIFIED BY	<u> </u>	AN SANGER	PAGE	of
								DESCRIPTION		
. DЕРТН (FT.)	BLOWS PER	_	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	L M		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	BEMAD
1		2	3	4	5	6	7	8	9	10
1.5	1 -	3 <u>4</u>	8-1 Rei 1.3 5-2		1	STIFF	Bhau	JANDY CLAY	cl	+ 1.5 TSF
	~	<u> </u>		-	Ŧ	U.STIFF	BRUN	VV		
3.0		<u>5</u>	KEL 1.3	+	$\left\{ \right.$	DETIE	GRO		cl	# 2.5 TSF DAY
-1.6	16	20	5-3 Rec 1.2	<u> </u>	-		BROW	IN THE THE THE THE THE		
5.1		12.4	5.4 nec. 0.9		5.4	NOENIE	GAA			TOP OF TWOCK S. 4
	· ·	1			11-11-1		SAOW	The second provide	VAA-BA	
	3.6	49	739	40	1	M. SOFT TO	BRON	MODENATELY WEATHERLED SAND-	BR	
				1	8.8		5149	110-6		
10.3				1-		SOFT	MARDO	CLAYSTONE ! HIGHLY WEATHERED	VBR	~30° 41. 19 19 19
		$\widehat{\nabla}^{=}$		+	1		TAN	CONTOTONE INIGHT WERE REILED	I	MACHINE DIMES
		·			1				BA	10.5, 1.0, 1.4, 17, 1
]					13.9
]					
						•			BL	
	10,0	10.0	100%	65				· · · · · · · · · · · · · · · · · · ·	1	
L	<u> </u>				17.3	V				
						M SOFT	OLIVE	CLAY SHALE: MODELATELY TO	BR	LOWA FRATING
	<u> </u>			<u> </u>		SOFT	Gar	HIGHLY WEATHERED		1 176 BA 341 - 10 C'
2.0.3				<u> </u>						and the second second
		\square			21.0		\vdash	V		NEW VERTICAL PARINES
					22.2	M.DET		SILTY SHALE	BC	FLACTORE PART PLAT
						73.5755	SIN	SILTY SMANDSTONE MICKEDUS	BL	-
				-		MILIARD	-			
			10 (3)	0.5			_ _			
	10.1	0,0	100%	83						
									_ _	
							GRA		_ _	
L	<u> </u>			L			V	V	V	

REMARKS .- DRILLED BY TELLA TESTING USING A SIMICA '1000-12 IRACK MAUNTED ORILL

BORLING ADVANCED USING STY SOLDSPERAUSERS. Y"STEEL CASING, MD-2 WIRELINE COLING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

ŕ

BORING NO. <u>B-0515</u> (24)

gai consultants transforming leess into reality

ELEVAT	10N _		G	ŴL	0 HRS	<u>н</u>	2.3						s kang usi				40384.	11)-
DATE	12-	1.	MAY 200	5	HRS CLA	S SSIFIE	D BY	,	N	AN	SANGER			PAG	E	2	of _7	
					1						SCRIPTION						or <u> </u>	
	0					Τ		Τ		T								
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR & DOCK BECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY -	ROCK HARDNESS		COLOR		MATERIA	- CL/	ASSIFICATION	USCS OR		REN	MARKS*	
1		2	3	4	5		6.		7			8		9			10	
		Y			-						ots OGAS	15	((0)))		165	STAIN	ED FERCENI	r.E
	+			+	32.1		V	C.eo	V				(V	30.6	-31.0,	LOST WA	TER
					-	S:	Fr	MAM	4 + 1004				CLAY SHALE AN				L. T. J.C=	
	+			+	34.3							<u>e::</u>	HISPLY WEATHER				<u>, 31,9,33</u>	3.05
	8.8	10,0	882	51	1	20	E7	mean	<u>54</u> 501	CLI	LYSTONE			BR	34.0	<u>34.3</u>	35.1	
				1	1			10.377	-16-									
				1	1			+										
				î	1				•									
]													
42.3		2-		•	49.8	·	1	V	/	-			1					
					42.4	Miss	FTR	0 61	2.14	SAN	OY SILTS	HOT	6	BR	VERT	CA FO	HETWING 4	11.1
						h, H	ARD	k							42.			
					-	Miss	FT	GRA	14	cur	MSTONE .	1 107	TERMITTENT	BR	~ 2	5.3001	FACTUR	E
					-					11	AEGULAN	<u> </u>	ALCALEDUS	1	wise	CILE NS	ides 43	.15
	10.0	10.0	1002	63		ļ				N	ODULES	3	STRINGERS		44.5	5, 45.	45, 47.4	
						┣───		V									6,49.85	
				┼─	{			MAR	400						53.			
		-			{			$\left \right $										
50.3	= 4	\mathbf{x}						SM			. 0.							
	<u>†</u>			-				1-1-1	<u>`</u>		· IDECOME	55	ANDY AT SO.1		•			
		-						┟╾┼						++				
					53.7		r											.
						Mis	155	GAR	4	SAP	TOY SHAL		THERMISSENT					
	(D.0	10.D	100%	93				Ť	-	SM	ALL (=2 m	m) (CALCALEOUS	1SR				
								MAR	400		ULEE		Succession (Service)					
								GRA	3			ſ			1			
		$- \downarrow$												- - -	1			
							,					Ţ						

REMARKS **___

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 13-0515 (24)

gai consultants transforming ideas into reality

			GW		HRS	42.3					-	NG NO. <u>B-0515</u> ECT NO. <u>COM0384.43</u>
DATE	10-	11 n	are han	5	HRS	SIFIED BY		AN SAN	IGER		PAGI	= <u>3</u> of <u>7</u>
				-	1							
					. 			DESCRIP	TION			
DEPTH (FT.)	BLOWS PER SIX INCHES		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	Ř		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MA	TERIAL CLASSIFICATION		USCS OR BOCK BROKENNESS	REMARKS*
1		K	3	4	5	6	7		8		9	10
	15	Ż		<u> </u>	1			SAN	BY SHALE (WN'T)			LOW & FRACTMES
				<u> </u>	-		 		·			63.0, 63.4, 68.0
	<u> </u>				4		!		: MARDON CLAYINHE G			(SLIGHT SLICKENSIBE)
	<u> </u>				-		┼ ╎──		6	3.4		68.6.
			Ĥ									VERTICAL FLACTURE 69
	10'0	10.0	100%	80	4							69.5,70.3-70.
	·				(_		70.25-71.25,74.8
	<u> </u>				1							75.176.25-77.4
	<u> </u>		···									/
	L											
73.3	\vdash	\geq										LOW & FRACTURE
												772.7.79.4,79.45
												80.05
	10.0	10.0	100%	80								
								1				
					[-	
80.3	\neg	7				· .						
		~										
											-+-	
					83,5	SUFT	N/	V				
						201-1	J I	CUAYSTO	HC			PITTED CORESUMFACE.
	9.2	10,0	92%	71								LOWY FRACTURES SLICK
	1.1*	10.0	10/0	14					· · · · · · · · · · · · · · · · · · ·			SIDES 836, 83.95
					87.7	├ <u></u>						84.2, 84.55, 84.7 85.
											N	85.45
						M.SOFT	GRAY	SAPDY	SHALE		BA-BL	
						V		L V	i		Ý	SIDES 86.2 - 86.35

REMARKS **

C.

C

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0515</u> (24)

ELEVAT	ION		G'	WL (0 HRS	42.2				5	I. ALDANJ, WV	BC		GNO. <u>B-0515</u>
					HRS	5								
DATE	1 <u>-</u>	1 11	AY 2005		CLA	SSIFIED BY		DA	IN SI	ANGER		P/	AGE	of
						1			DESC	RIPTION		\Box		
DEPTH (FT.)	BLOWS PER	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % BOCK PECOVERY			SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		COLOR		MATERIAL CI	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1 <u>पंछ,उ</u>		2/	3	4	5	6	+	7	ļ		8		9	10
	+-	¥-			-	SOFT Y	2 6	RA4	CLA	SHALE	1	BL-	BR	NEAN VERTICAL
				+	1	M.SOFT	+	\vdash						IRREGULAR FRACTURE
	+	<u> </u>					 ,	t	<u>+</u>				-	WISLICKENSIDES 91.65-
					<u>94.4</u>	M LOFT		C 0 64	C HALL	1 50.005	NE " MICACEOUS			92.05 (NO STAINING)
	10.0	10.0	100%	75	1	m. HARD			1 STINE	1 0440010	ME MICACEPUS	BL		92.4-92.8, 93.35-
					1		1	1	<u> </u>			100		93.85
]							1	, –	1
	-l											BI		
100,3	<u> </u>													,
10015														
				<u> </u>										
				<u> </u>										
	10.0	12.0	1002	100										
	<u> </u>			 										
							-+	_						
10.3		\geq					$\left \right $							
	\vdash	\square		$\left - \right $			$\left \right $	-						
				$\left - \right $			┝┤							
				-						· SHALE	CLASTS 1125-113.4			
				$\left - \right $							······			
	10.0	10.0	100%	97			$\left - \right $							
			100 %		1.0 -	V		,		/				
				$\left - \right $	117.0				V C			V	\rightarrow	
		-+				SOFT TO	GRA	17	CLAY	SHALE		BR		V.BROKED 118.4-119.1
						M. SOFT		-						HIGH & REACTURE 119.0-119.
										J	1			

REMARKS ** ___

C

C

• POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-OSIS

EVATIO	NC			GW	Ľ O	HRS	42	-:3									GNO. <u>B-0515</u> CTNO. <u>C040384.40</u>
ATE	10-1	1 m	MY a	ک دن		HRS	SIFIE	DBY		NG	A S	AN	EV		P	AGE	_5_ of _9
		-	-			T											
	1								1		DESC	RIPTI	ON		-		
DEPTH (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OH ROCK HARDNESS		COLOR		MATE	RIAL C	LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2	3		4	5		6		7				8		9	10
						120.5	m.:	is F-T	50	LAY	SAND	4 SI	ALE		В	e	
					-	122.6		/		ļ						<u> </u>	
										¥					-	<u>v</u>	
							M. HI		1LT (<u>2004</u>	S LAAI	<u>14 5</u>	2005 T	DNS: MICALEOUS	Br		
	10.0	10,0	100	2	64	125.55								V			
							SOF	2	MA	TLED	CUAY	210	<u> </u>	1	A	<u> </u>	126,9-127,05,
							_021	 [100.13						,	MECER ~0.2-0.4'
															V	- P	LOW & FRACTURE EVERY
2. 2																	0.1-0.85'
<u>3ა.3</u>		\geq															25-30° 5 LICKENS108.
																	131.1, 131.25, 131.3
																	131.75
																	V. BROILEN ZONE 131.75
	1			01	32												137. 1 : NUMEROUS
	10.0	10,0	100	6	24											$\left \right $	~30" SLICKENSIDES
				-+	\neg				MAA	400						-	PIECES DI1-0.3'
				-+		138.5	<u>N</u>	<u> </u>	199 100	<u> </u>				k			CALCAREOUS NODULES
	_			-		İ	Misz	P1		441				EROUS INAELULAA DULLES AND STAINGE		2=	137.2-1380
10.3		\succ				İ					UNLU	1	us po	OULES AND STRINGE	15 - 3		
											· .						
																	•
	10.0	120	100	2 9	1.1	-				_							
-+	_					-											
						-						: 5	ANDY	148.3-148.6			
						┝							14	9.35-150.15			

BORING NO. B-0515 (21)

						E. AMO	s Aw	ER PLANT		19 NO. B-2515
					HRS	1				CT NO. C340384 41-3
DATE	10 -	11	MAY 2.5	20	CLA	SSIFIED BY	_DA	N SANGER	PAGE	6 of 9
					<u> </u>			DESCRIPTION		
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RFCOVERY	<u> </u>	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1		2	3	4	5	6	7	8	9	10
<u> </u>		Y -		-	T			SHALE (CONT)		
	10.0	19,0	100%	88				: SANDY 154.6- 155.7 157.0-160.2(FEN NOBULEZ)		60° MAEGULNA FRACTURE 155,2-155,5
(60,3					161.0	M.SOFT	GRAYT	CLAYSTOPE	BR-	20-32, 2010KEY2,052
	10.0	0.0	1009.	77	<u>164.7</u>	M. IDFT	CRAY	SANDY SHALE	BA-BL	161.4, 161.8, 162.2 163.2, 163.35, 163.65 164.0, 164.1
170.3		<u> </u>								
					171.7		v	V		
						M. HARD	LTGARY	SANDSTONE : MICACEDUS	BL	
					1748					
	15,5	10,0	(000).	001	. 10	M.SOFT	GRAM	SANDY SHALE	BL	-
							(1	
BEMARKS '	· I			<u> </u>		V	¥	¥	¥	

REMARKS ** ___

C

* POCKET PENETROMETER READINGS

									IDWER	PLANT				GNO. <u>B-0515</u>
ELEVA				_ GV	VL (HRS HRS		·· >				PF	OJE	CT NO. <u>COY0384.40</u>
DATE	10-	11 14	AY 21	25	-		SSIFIE	D BY	<u>N</u>	AN SANGER		. P/	AGE	of
					ĺ		- <u>r</u>		1	DESCRIPTION				
DЕРТН (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE &	% ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	ROCK HARDNESS	COLOR .	MATERIAL C	LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2	. :		4	5	6	6	7		8		9	10
180.3		\rightarrow						[SANDY SHA	LE (CONT)			
		·									1			
		-						<u>[</u>						
						184.0		L			L			
				5			8.5F		DKGARY	CLAY STONE		VB	۹	
·	100	10,0	100	5.6	50		N - 5	SFr	├-				3R	~30°JUICKENSIDE.
	+							<u> </u>	├ ├					EVERY 0.2-0.4'
	-								*				<u> </u>	
									marcoon					
190.3						190.3		<u>/</u>			¥			
	+						M.S	PFT	GRAY matuon	SILTY TO SONDY S	HALE	BL	- BR	
									manon			_ _	_	194.1, 194.3, 195.0,
			_											196.05, 196.4, 196.
										,				197.6, 197.9
	10.0	10.0	100	27,	82									•
					0-	197.0		1						D
						- سالية الم	SOFT		macod	CLAY STO HE		- Ra		30° RAACTURE 196.1
							Mi se			0011131010	1		1 <u>00</u>	BOP SLICKENSIDES ~ EVERY 0,4'
												-		
200.3	$+\langle$	\geq				200.5	Misi	1	MALOOF	SILTY SHALE		81		GAADES INTO SILM
									i		}	- 81		SHALE
										· · · · · · · · · · · · · · · · · · ·				
						·								
	10.0	10.0	100	2	100	[
						206.55	M . 50	FT			/			
						[TY HA	ARD	GRAY	SHALY SANDSTE	SYE	BA		· · · · · · · · · · · · · · · · · · ·
						[V		V		7	
					ľ		M. Up	no	LTGRAY	SAND STONE		B		

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B- 2515</u> (24)

PROJEC	т_А	LET	12/3	JOI	42 6	: AM	ios f	3-WER	PLANT ST.	ALBANS , WV	BC	DRIN	GNO. B-0515
ELEVATI	ON		G'	WL	0 HRS	_ <u>4</u>	23						CTNO. CO40384.400
					HRS								
DATE	10-1	(mn	4 2-00 5		CLA	SSIFIE	D BY	_151	AN SANGER		. P/	AGE	8 of
									DESCRIPTION				· ·
						T							
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERV	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL C	LASSIFICATION	USCS OR	ROCK BROKENNESS	- REMARKS*
1 210.3		2	3	4	5		6	7		8		9	10
				-	1-1-1013	M. 5	o Fr	GRA	SANDY SHALE		····· B	R.	
		<u> ·</u>			212.4	M. H				1			
						<u> </u>		¥		V		Y	
					214.3				SILTY SHALE		BI	r_	
		<u> </u>	1002	100	4		SEFT	BROWN	CLAYSTONE	1	B	<u> </u>	25-30° SLICKENSIDES
·	10.0	10.0	1006	88	-			MAROON	2				215.0, 215.20, 215.55
					-				1		_		216.15, 217,85, 218.15
					218.8	,						-	60° SLICKENSIDE 215.3-
										<u>v</u>			215.45
2-20.3						MIL	41-0	LIGAN	SHALY SANDSTO	1	B		
	\vdash	1-1		+	221.5			V		*			
•				+		Mr So	<u>F</u>	MARODA	JANNY CLAYSTO	240 	ß	_	
					223.5	m. so				¥			30'SLICHENFIDE 123.1
				-		1111.20	-	GRAN	SANDY SHALE	1	BR.	-5L	
	10.0	18.0	100%	90					· · ·				LUW & FAALTURES
				1									125.55, 125.8
				\square									
				1									
				[229,7			V		V		,	
230,3	\neg	\mathbf{F}				M.Sol	FT	GRAY,	CLAY STONE		BR		20-30°SLICILENSIDES
						SOF	o	OLIVE, MAROON		1		-+	229.9, 231.4, 231.5
						<u> </u>	<u> </u>	MOTILEP	· · ·				
												$\left - \right $	232.2, 232.4, 232.5
				<u> </u>									233.0, 233.2, 233.8
	0,0	10.0	100%	56						<u> </u>			234.4.235.6.236.1
			0-10							1			236.4 237.5, 237.9, 1289 250, 059,
									<u> </u>				238,9,239,1 239.6.
													239.8, 240.1
				<u>├</u>	ŀ					· · · · · · · · · · · · · · · · · · ·			
I				<u> </u>				1					

REMARKS ** __

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

.

.

,

PROJECT	AR	EA	a/3 J	онн	E.A	(Ma)	Pow	ER	PLA	NT ST. ALBA	NS WV	ВС	RIN	GNO. <u>B-0515</u>
ELEVATIO	DN		GV	VL O	HRS	4:	2.3					PR	IOJE	CT NO. CO40384,40-01
DATE (<u>0-1</u>	lma	14 220 5	-	HRS CLAS	SIFIE	D BY		D	A N SANGER	· · · · · · · · · · · · · · · · · · ·	P/	AGE	of
										DESCRIPTION				•
DEPTH (FT.)	BLOWS PER	_		ŭ		S	CONSISTENCY OR ROCK HARDNESS	<u> </u>	COLOR	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1 <u>a40.3</u>			3	4	5	SSF	6	<u> </u>	7		3		9	10
						1721	T	MRA	4.00	CLAYSTONE	(2017)	-14	3R	
						<u> </u>								EVERY 0.1-0.3'
											•	·		
·	10.5	10, <i>0</i>	100%	0			<u> </u>		 					
								<u> </u>						
250.3							v		<u>/</u>	·	/			
										BOTTON OF BOI	21 NG: 250.3'	_		
										······································			·	
										· · · · · · · · · · · · · · · · · · ·				
						·								•
									-	- 				
											·······			
									-			-		
					ĺ									

REMARKS ** _____

ī.

1

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0515</u> (24)

.

N 540842.6369 E 1724930.8565 Grade El. 864.94

gai consultants transforming ideas into reality

PROJECT	ARE	A ^{2/3}	<u> </u>) H H D H H D H D H D H D H D H D H D H	E. Ama	os pour	ER PLANT ST. ALBANS, WU	BORIN	GNO. B-D516
				HRS					CT NO. <u>CO40384.40-01</u>
DATE	<u>13 m</u>	142005	-	CLAS	SIFIED BY	<u>.</u> D	AN SANGER	PAGE	of
							DESCRIPTION		
DЕРТН (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY			the second second second second second second second second second second second second second second second se	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
1.5	5	S-1 Rec 1.5 5-2			120SE		SIAPOY SILT, FEN NOUL FRAGMENTS	ml	DM
3.0 3.9	922	AEC. 1. Z S-3 Kar U.9		3,9 <i>TFICIT</i> :	W.D2418	Browry MRRWY	SILTY (AM AN AD ADUC FLAGMENTS : DECOMPOSED CLAYSTONE	5 ⁻ M·9M	Dry
							BURING CANCECLED		
							AND BACKFILLED		

REMARKS .. DRILLED BY TEALA TESTING, ENC USING A SIMCO 4000-T2 TRACK MONNTED DRILL.

BORING AD VANCED USING 514" SOLID FORM ANGERS

* POCKET PENETROMETER READINGS

N 542185.2965 E 1725391.3276 Grade El. 945.55

PROJEC	л_А_т	Rie	EN 2/3		JOU	NE.AV	mas	Po	WER	PLAN T	ST. ALBANS, WU	/вс	RIN	G NO.	B-D	517
ELEVAT		148	<u>±</u> GI	NL								PR	OJE	CT NO.	COYO	384.40-0
DATE	16-1	11	NAY 2005	5	HRS CLA	SSIFIED B	Y		500	SANGE	n	P#	AGE		of .	5
									DESC	RIPTION			·	•		
осертн (гт.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	Ц Щ		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		COLOR		MATERIAL	CLASSIFICATION	USCS OR	ROCK BROKENNESS		REMAR	KS*
1	2		3	4	5	6	0	7			8		Э		10	
115	1 2	3	S-1 Rec. 1.5 S-2		-	VISTIFF	R	<u></u>	SILM	YOUAR OT J	CLAY LDECOMPOSE	DC	(+2.5	TSF	
	3	_		1	7	V			_ <u> </u>	LAYSTO,	1三)					
3.0		7	Rec 0.8	_	4	STIFF		<u> </u>			V			¥ 1.5	TSF	
4.5	69		5-3 Rec. 115	\vdash	-	11AAD		1	0:	COMPOSE	D CLAYSTONE			74.5	TSF	
	17		REL. 1.5 5-4	<u> </u>	1						LEDUS NODULES	·				
6.0	a '	22	REC. 1.2		4			1	ļ							
7.5	1 20	>	5-5	<u> </u>	4				ļ							
	825		AEL 115		8.0	<u> </u>		V	ļ		V	V	/			
9-0	28-	42	AEC I.S		9,9	V.DENSE		LOW	DEC	omposed	SANDYSHALE	am				
7.7	50/	6.4		1	11-11-11-11	<u></u>	+	¥ć	<u> </u>		4		' -			
	2.0	2.1	95%	81	11.1	MISIET	OL			Y SHAL	2	BR				
12,0		-		<u> </u>		M. HAND	15	LAY	SAI	DSTONE		BR			-8-1	74
	<u> </u>			<u> </u>	12.9			6			<u> </u>	J	_			
	┼─┼				1	M. SOFT	04	GANY	INT	ER BEDDES	SANDY SHALE	BR.	-			
	┥			<u> </u>	4			<u> </u>	MO	SHALY S	shoredai	BL	_	STAIN	ED -60	FRACTULE
					-		ļ									105-19.3
_	10,0 1	0,0	1007	74	-	·	<u> </u>								9.20.2	
	╞╌┠				{											
	┼╌╂╴				{		-	<u> </u>						Lowx	FRACIN	LES 14.3,
	╉╾╌╂╴	-+			ł			\vdash						15.25,	15,4, 1S	1.65
22.0		\dashv										$\downarrow \downarrow$			3,20.1,2	
22.0	╞╋	+					$\left - \right $					+	_	STAINE	D V. BRO	Ken
	┼╌╂	-+								: SANO ST	pre 22.5-23.5	!	_	ZONEI	9.3-19	7
	╞╌┠╴	-+			214											
		\rightarrow			24.7					+						FRAC-
	9.9 1	0,0	992	0,1		SOFT	RAQ	400	CLAYS	LOYR		BR-			22.35	
	· · · · ·		/	54	27.1	V					4	VBA		239,2	4.15,24	.25,25.0
						M-SOFT TO M. HARD			SHAU	[SANDST	ONE-MICACEDUS	BA	-	UBA 25	1-26	.2
						MHARD	· · ·	LAY				BL				
	RA					V					¥					

REMARKS ... BRILLED BY TERRATESTING USING & SIMCO LOUD-T2 TRACK MOUNTED BRILL

BORING ADVANCED USING 544" SOLID STEM AUGERS, 4"\$ STEEL CASING, MQ-2 WILELINE CORING TOOLS

* POCKET PENETROMETER READINGS

BORING NO. B-0517

ELEVATI	ON <u>9</u>	48	<u>}±</u>	GWL	0 H	RS _	1811			R PLANT ST. ALBANS WV	PF	ROJE	ECT NO. COY 0384.40-01
DATE	16-	17 1	MAY 2	2005	C	LASS	IFIED B	Y		DAN SANGER	P.	AGE	of5
			1							DESCRIPTION			1
DEPTH (FT.)		CORE RECOVERY/RUN				PHOFILE SOIL DEMORTY	CONSISTENCY OR		COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2,	<u>`</u>	3		4	5	6	_	7	8		9	10
32 -					_	N	HARD	G	ANY I	SANDI SHOTICHAL		}	
32.0	-4	\succ				-			-				
				+		┝		+-	+-		_		STAINED LOW & FRAC-
					\neg		_		+-		-		TURES 32.3, 34,15
					36	,		+	T				
	10.0	6.0	100%	18	2	_	SOFT	mA	Moo d	CLAYSTONE	BR	·	
							1		1		- 131	1.	20-30' SLICKENSI
											VG	30	36.7, 37.4, 37.8, 38.9
		_			4o	5						[
						m	. SLET	G	LAY	WIEN DEDDED SHALE AND		a	
42.0		\vdash			_				1	SANDTONE			
					_	-							
				+	-	\vdash							
		-+		+	-	-		+		·			44.6 CLAYSERM
	9.6 1		96%	a	-	┢		┼─	├				
	110 11		1010		<u>47</u>				-	V	+		
		7		1-	-	m	HARD	115.0	RAY	SANDSTONE-FINE TO MED GRAPH	B	-	
				1			_	\uparrow		TRICALE DID	++	{	
								1			+		
52.0										· · · · · · · · · · · · · · · · · · ·		-	
	¥	_											VERTICAL FRALM
		_									$\uparrow \uparrow$		(No smining) 53.3-54
· .					55.	,		<u> </u>			\Box		
		+	0	+-	-		HARD	5 60			V		LOW & FAALTURES SS.
	0,0 10	1.0	100%	70	, <u>, , , , , , , , , , , , , , , , , , </u>					CALCAREOUS SANDSTONE	BQ		56.2,56.7, 57.5, 58:1
		+			-	62	FT	GAN	<u>4</u>	CLAY SHALE, SOME SILT	BR	·	59.25, 59.55, 59.7, 60.0,
				+	59.	-1-	1		/	V	+		0.25

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

.

.

BORING NO. <u>B 0517</u> (21)

PROJE(ELEVA1	ст <u>А</u> гіоп_	RE 948	± 0	G.P D.P	0 HR	s _1	8.1	ວເປຣ	RI	PLANT ST. AL	BANS, WV			IGNO. <u>B-0517</u> ECTNO. <u>2403844000</u>
DATE	16 -	1) yr	בניל אא	5		S		,	1	DAN SANCER	· · · · · · · · · · · · · · · · · · ·	_P	AGE	of
			1			•								
→ DEPTH (FT.)	BLOWS PER SIX INCHES		လိ	% ROCK RECOVERY ROD (%) OR TORVANE		SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS		COLOR	DESCRIPTION MATERIAL CLA	SSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
	+	2	3	4	5	-	6	DAI	7 AK	8			9	10
62.0		1.			-	120	Fr	- · · ·	ŧ	CLAY STONE				.20-35 SLICKENSIDES
- 01. 1		\			-	-		1114	1			<u> </u>	BR	~ EVERY 0.2-0.41
	-	1 -			-			+	+		· · ·			
_		1		-	1		-	+	1-			┼─		
				_	-			+	+				+	
	10.0	10,0	100%	67	66.		V	1-	V	V			¥	
						M.	HARD	GA	AY	SILTSTONE WINT	FLMITTENS	BI		
							1		1	INFEGULAR CALC		1.7	-	LW & FRACTURE 70.35,
										NOAULES AND		1		INTERSECTING
		<u> </u>								SOME SAND		1		45° RAALTURE AND
720		4								1			\square	30° FRACINE 71.6-71,9
		Y										\vdash		
		<u> </u>											\square	NEAR VELTICAL FRAC-
					- 75.5		V					1	ļ,	TWAE 72.9-73.4
					_	501	-	MAR	haf	CLAYSTOPE		Be	-	30° FLICKEN JIDES
	6.01	10.0	100%	79								VB.	R	~ EVERY 0.2-0.3'
					78.0		1	<u> </u>	/	V			,	
				+	-	M. 1	OFT 10	GR	KY	SANDY SILTITONE		BR-	BL	
		├			-	Mu	VARD			IRREGULAR CALCAN				~45° FLACTURE AT
01					-	<u> </u>	<u> </u>			(1 1/2") AND STRIN	bers			LARGE CALC. NOONLE
82.0	$+-\langle$	₽-┨			820	1	¥			V			1	AF 78.6-78.8
		-			-			MAR		INTELBERDED CLL		BA	۶-	SUCKEN SIDES (30") 82.25
					1	M. 1	OFT .	GRA	4	SANDY SILTSTONE		BL		
					1					0.9-1.5' 10 TNICKAES				
	100		100%	97	1					IAREGULAR CALCOR	EOUS NOOLLES(41/2)			
	10.0	10.4	1007	<u></u>	1	<u> </u>				AND STRINGERS				
		-			ł	<u> </u>							\square	
					1									
	1	<u> </u>		1	L	L	₩	Y	/					

REMARKS **

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

.

BORING NO. <u>B-0517</u> (21)

PROJEC ELEVATI	IT ARE	48 =	, <u>3, J</u> GW	VL (0 HRS	amos po 18,1	WER P	LANT, ST-ALBANS, UN		NG NO. <u>B-0517</u> ECT NO. <u>640384.40-01</u>
DATE	16-171	NAY :	<u>کەدىر</u>	_	HRS CLA	SSIFIED B	DA	J SANGER		4_ of5
				Γ				DESCRIPTION		· · · · · · · · · · · · · · · · · · ·
DEPTH (FT.)		CORE RECOVERY/RUN SAMPLE NO., TYPE &	RECOVERY OR % ROCK RECOVERY		PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2		3	4	5	6	7	8	9	10
92.0						M. UAAD	LT GLAY	SHALY SANDSTONE : MICACEDUS	BL-	
•	10,010.	• 10	070	90	<u>97.4</u>	<u>لا</u> ۲۶۲۲ حک	GRAM	SILTY SHALE		Low & Francis 9815,
132.0					101.8	M·SSFT	Mahaod			9.8, 131.0 W FADERILE 99.1-99.4 100.0-100.5
					103.0	M. WARD M.SOFT		SHALY SANDSTONE	BL	
	10.0 0.1	> 10	2022	94	134,7	M. JSFT	MARDON MA	CLAYSTONE "I INTERMITTENT	BA BA	30-30, 211646431062
112.0					/12,0	M. SOFT M. HARD	GRAY	NODULES (472") AND STRINGERS SANDSTONE WITH SOME SHALE SEAMS TO 120.6	BL	109.2, 109.85, 110.75, 111.2, 111.45,
	10.0 10.0	100	, Ŋ_	100						· · · · · · · · · · · · · · · · · · ·

REMARKS **_

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0517</u> (21)

.

. .

LEVATI	ON 94	18:	GW	IL D			_		PROJE	CTNO. (240384.45-
ATE	16-17	MA	42.05	-	HRS	SIFIED BY	07	AN SANGER	PAGE	5 0 5
		T		1				DESCRIPTION		
DEPTH (FT.)		CORE RECOVERY/RUN SAMPI F NO TYPE &		Ĕ	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	-	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	+-	3	4	5	6	7	8	9	10
22.0	10,0 10,		1002	[00			LT. CRAY	SANDSTONE (WHIT)	<u></u>	
32.0					<u>131°</u>	M. 5> Fr	CASY	SANDY SHALE		
	10.0 10.	3 1	00%	96	1360	V Miltipao	V	SANDISCONS.		
					139. 0		LI LAAY V			
42.0		+				M. SOFT	LT	SHALY SANOSTONE		
	8.5 2.					M.SJAT JO SOFT	GRAY BILLASY	SANDY CLAYSTORE	BR	142.3, 143, 65, 144.2,
	8.3 6.		<u> </u>	15	146,0	W.SOFT	GRAY	SICIJIONE	¥ 8∟	145.75. DUMETLOUS BREAD CALCAREDUS JOALLE
		+								146.0-146.2
50.0		+				V	V	BOTTOM OF BORINGS 150'		

REMARKS **

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

.

BORING NO. <u>B-0517</u> (21) ,

N 541508.473 1015.78 Grade El. E 1724947.2614

gai consultants

ELEVAT	10N _	100	5± G	WL () HRS HRS	_14		<u>, P</u>	A	CKFIL	LED		PRO	JECT NO	<u>C040384.4</u>
DATE	17	MA	4 200	5				_ (A	NSAN	GER		PAG	E	1 of
						1				DESCR	IPTION			1	
DEPTH (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERV	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS			h	IATERIAL CLA	SSIFICATION	USCS OR BOCK BROKENNIESS		REMARKS*
1	2	2	3	4	5		6	7			. 8		9		10
1,5		2 <u>-</u> 4	5-1 Rec 1.4 5-2		1	100	sé	BR.O	5	FINE	TO MEDIUM	SAND	Sp		
3.0	5	12	REC 1.3		24	M.De	erse								
3.6	55 5		5-3 A.C. 0.4		11=11=11	VOE		Yell	رتساه		V		-		OF ROLK: 3.6'
				+		SOF	27	BRO	در	SANI		LICALEOUS,	VBP		ER THIS RUN
	5.0	7.2	69%	0				┝──╁		· · · ·	COMPLET	ELY WEATHERE		DADI	JE CASING TO 10.
														+	
		\vdash													
10.8															
											: NIGHU	I WEATHERED		PIEC	ES 0.3-0.6'
															2,0,,0,0
	┼──										1		٠V.		
	9.4	10.0	94%	46				\rightarrow	-+		· 20119(6	TELY WEATHERLY	VBR	PIEC	ES 5 0.2'
									\dashv						
								+	+				┢╌┝─		
20.8		\geq			, [Ì					+-+-		
								-	-						
					ŀ			-+	+						
									+						
	6.8	12.0	68%	18	-				-						
					-		, -		_				J.		

REMARKS - DRILLED BY TERAA TESTING IN. USING A SIMCO YOOD-TZ TRACIL MOUNTED DAIL

BAING ADVANCED WIND 54" SOLID STEM AUGERS, " STEEL CASING, NQ-2 WIRELINE CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0518</u> (29)

LEVATIC	N <u>13</u>	202	- G 2005	WL	0 HRS HRS	s <u> </u>	4.2	- 1313	CKF:	SANGE		P	ROJI	ECT NO. <u>CO40384.4</u>
						•			· · ·	IPTION				0i
	BLOWS PER SIX INCHES OR	CORE RECOVERY/RUN	BAMPLE NU., IYPE & RECOVERY OR % ROCK BECOVEDV		PROFILE	Ø	CONSISTENCY OR ROCK HARDNESS	COLOR	N	IATERIAL CI	ASSIFICATION		ROCK BROKENNESS	REMARKS*
1 30.8	2	+	3	4	5		6	7 YGUOW-			8		9	10
	=₩					183	Fr	YELLOW- BROWN	SUND	STONE (NBR	
				+	1					; HIGH	4 WEATHERED		34	20° STAINED FRACTURE
													-	30.8-31.3
				1-	1								+-	
1	0.9 1	0.0	100%	39	1.							-+		· · ·
				-	36.8	1	V	V	Y	r			×	
					1	M.S	DET	BROWN	SAPOY	TO SILTY	SULAIE		BR	210 0 == 1 =0 1
					39.0		ļ.	GLAN		10 0101 1	1		1	BD'STAINEDI FRACTURES 37.6
						598			CLAY	STONE	V		SR	
10.8	-	_						PHAPLE, YELLOW			1		1	SLICKENSIDESIHI.
								GRAY					+	41.3,41.7,42.9,43.
					1								<u> </u>	44.9,45.15,45.85
													1	46.5,47.3,47.95,
													1-	48:15,49.25,49.8,
1	0.0 10	<u>.0 1</u>	00%	64									1	50.15, 50.45, 50.8.
								_						51.1,51.4,51.8,52
		_											\square	52.75, 53.15, 53.
														54.2;
0.8		+-		-										• 1
0.0		+		<u> </u>										· · · · · · · · · · · · · · · · · · ·
		+-												
		+-			ļ									•
					-									
	5 10,		752	64				-				_		
	<u>v 14</u>	<u>+</u>	126	07	ŀ	-+							V	
		+-			ł	-+						V	BR	
		+			ł									56.4-58.7
		+			ŀ	$\neg \downarrow$								
		_]					- V		¥	/	1	¥	

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0518

(29)

. .

				HHS			AN SANGER			CT NO. CO 40384.43
	1	1	-	ULA:	SIFIED BY		AN SANGER	•	PAGE	<u>3</u> of <u>3</u>
							DESCRIPTION		4 1	
DEPTH (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/BUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY			SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CL	ASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7		8	9	10
	=				SOFT	MARWON'	CLARISTONE	(CONIT)	BR-	
	4,2			62.8		GRAH, PURPLE VELON			VBR	
				Net.	M.SOFT			V		
5.0				65,0	V	CILLAN			BA-	
				63,0	V		NODULES AND ST		BL	
							BOTTOM OF	BORING: 65 11	┼───┼-	•
									-	
				Ì						
									┟┈──┟╴	
				ŀ			·····		├	
				Ī				······		•
				ſ						
				ſ					┝╍┊╾┥╸	
										•
				L						
				L						

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0518 (29)

N 543732.8856

E 1725136.5233 Grade El. 991.07

PROJEC ELEVATI	T <u>A</u>	LEY	7 ² /3, <u>-</u> gv		(人 E 0 HRS	- AMO: 328	5 Pow	ER 1	2 ANT ST. ALBANS, WV	_BOI		. <u>B-0519</u> 0. <u>Co40384.4</u> 1~
					HRS	SSIFIED BY		1 50				of
			1	<u></u>				224				of
								DESC	RIPTION			
DЕРТН (FT.)	BLOWS PER SIX INCHES		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR		MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2		3	4	5	6 V.LOUSE	7	TOP	8	9		10
1.5	2	3	S-1 Rec. 1.2							+	_	
3,0	18	-	5-2. Rec. 1.3			LOOSS M.DENSE	BROWN	LAC	BY SILT	M	\	
	17 10		5-3		1	1		51	LT, TRACE CLAY	+		·····
ч,5		10	AE2 1.2 5-4]				NI NI			
6,0	15	0	Rec. 1.0]	DENSE	BROWN	DE	LOMPOSED SHALE	am	<u></u>	
7,4	28 41	·	S-5 REC 1.3		7.4	VIDENSE				1		
			10		1515	SOFT	BROWNT	CLAY	SHALE : COMPLETELY	VB	R T	POFROLK 7.4
	3.1	3.1	100%	0			GRAY	ι	VERTHERED			MERLOUS LOW &
10.5											FA	ACTURES
	$\left - \right $	-						•				ILY BROKEN ZONE
					1	<u> </u>				+	8.1	-8.7
					13.7							
					14.7	SOFT		CLAY	STONE: OMPLETELY WEATHERED	BR	Hall	\$ FRACTURE 13.7
	9.51	0.0	95%	49	15.5	MIHARS	MARJON		STONE	84		
						SOFT	MOTTLING	CLA	YSTONE : HIGHLY	BR	30	SLICILENSIDES
		$-\downarrow$							WEATHERED	1	18	19.4.15.85
		_									23	.0,23.3 23.6
2015		·									23.	9 24.35
	Y	-							1 4			,
	┝╌╌┢	+		-		SOFTP	- -		SOME CALCANEOUS			
		+				MISPET			NOULES		_	
		-†				MISOFS					45	· FRACTURE 22.2
	12.0 1	0.0	10.2	60		,	V			$\left \cdot \right $		·
			- lat	-			GRAY W		* PIECES 0.2-0.4' LOPE	┝┠	STAI	NEO 20-30" FRAL-
		Τ					MAROON MOTTLING					= 24.7, 25.2, 25.8,
		\square					i				26.0	11, 23, 2, 23,8,
					[V	N		Í		

REMARKS .. DRILLED BY TERAA TESTING USING A SIMCO 4000-T2 TRACK MOUNTED DAILL

BU LING ADVANCED USING 51/4" SOLID STEM AUGERS, 4"STEEL CASING, NO-2 WILELINE CONING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-OSI9

(20)

PROJECT ELEVATIO							WER	PLANT ST ALBANS,	wV			GNO. <u>B-USL9</u> CTNO. <u>CO40384.40-01</u>
DATE			AM 200		HRS			IN SANGER		_		$\frac{2}{-2} \text{of} \frac{5}{-2}$
	<u> </u>			<u> </u>	T					-		
							<u> </u>	DESCRIPTION				
. DЕРТН (FT.)		CORE RECOVERY/RUN		۲ ۳		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFIC	ATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2	-	3	4	5	6	7	8			9	10
	F-Y	-			31.4			CLAMSTONE (LON'T))	11	3A	
		+				MISOFT	GRAY	- SANDY SILTSTONE		6	1	STAINED LOW A
	++-	╈			33.2	SIFT TO	GRAY	CLAY SHALE		-		FLACTURE 32.2, 33.0, 33.3
					35.1	Mi SOFT						34.3, 34.8, 35.1,
	10.0 10.	o.	100%	58	36.4	MISSFT	OLIVE-	SAPOY SILTSTO NE			-	
					1.1.1	SOFT TO	MANDON			80	L	
		-				MISOFT	GRAY			BL		
		+										
40.5				-								
		-			41.5			· · · · · · · · · · · · · · · · · · ·			<u> </u>	20° SLICKENSIDE, 40,5
						M.HAND		Sault - K - Hud -	- 15	0.0		70°56144825102 410-41.3
		+			43.8	MINALD	GRAM	SANDSTONE: MICACET	DUS		-BL 1	
		+		1		H.SOFI	CRAY	SHALY SILTS TOPE, SOM	ECAND	BR	· · · ·	HEAR VERTICAL FRACTURE
	10.0 10:	a l	100%	1		1		- THE STEPSIONE SOM	C SALLY			44,05 - 45.8
					47,4	V				,		
		\perp		· ·	1	M, SOFT	GRAM	SILTY CLAYSTONE		Br	_	
							MAROON				[20-30° SLICKELSINES
50.5		+		 			DH GRA					48.65, 49.6, 50.2
		+		<u> </u>								JO18,52.8, 53.2,
		┿										53.5.54,2 54.8
		+								<u> </u>		55.3,55-6,55.8,56.0
		+										56.657.0, 57.4
	10.3 10.		100%	62							$\left - \right $	57.8, 58,1, 58,4, 59,2
	10.0 10.	╧╋	100 (0	2							$\left \cdot \right $	
								····			$\left - \right $	
						¥	1			1	5	
								· · · · · · · · · · · · · · · · · · ·			l	

÷ .

REMARKS ** ____

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0519 (20)

ELEVATI	ON _		G\	NL I	0 HRS	32.	35		0.1 31 7-	CDANS WV	BORI	NG NO. B-0519 JECT NO. CO40384.41-0
DATE	17.	-19 0	1 AM 2005	-	HRS		,		AN SANGER			E <u>3</u> of <u>5</u>
	<u> </u>		 	-	T							
					-				DESCRIPTION	<u> </u>	_	
DEPTH (FT.)			SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY			SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		COLOR	MATERIAL CI	LASSIFICATION	USCS OR	REMARKS*
1 60.5		2	3	4	5	6		7		8	9	10
	F	₽			1	SOFS TO	MA	Neer	CLAYMONE	(10NT)	62	
	+	-		+	-	MSSFr						EVERY ~ 0.2-0.5'
				+	-		+				VBR	· · · · · · · · · · · · · · · · · · ·
	1	<u> </u>		\vdash	1		+				BR	
	8.7	10.0	87%	41	1		+				+	
					1		1					
]						VBR	
												30° SLICKENJIDES
70.5				<u> </u>	1							70.9,71.7
1919				-			_				BR	
					71,9			¥_				70.5-70.8, 71.9-72,
					1			MAY	U: SHOTZOHAZ		BR-B	<u> </u>
				-	-	M. Harr	4		ALGULACEDU			
	100	10.0	1002	170		<u>├</u>	-	$\left - \right $	CROSS BEDDIN			
	100-	10.0	100 60	10			+		NO DILLES	IL CAREDUS		
	<u> </u>				1		+		54663		╆┼╼	
]		\top				++	VERTICAL FRACTURE
0.5]						+ +-	78.5-78.8, 50.0-00.
80.5	\vdash	\geq			1							
	<u> </u>						1					
····	<u> </u>							_				
							–					
	10.0	120	100h	aL								CLOSED VENTICAL FRAG
	10.0	10,0	100.10	17.	86.2	Mi SoFr	-	4001	V.	<u> </u>	V	TURE 84,3-85,3
						1	1-	-	SAPOY CLAYST	DHE	BR	
				1			GR	Ver.			+ $+$	33 SLICKENIDE 88.5, 89.15
					<u>89.6</u>	M SODE L UNA	1		JHALY SANDST	/	BR	0117

REMARKS **_

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>3-0519</u> (20)

LEVATI	ON		G	WL (D HRS	32.9	85	FLANT ST. ALBI	·		CT NO. C040384.40
ATE	<u>17-1</u>	<u>5</u> N	124 220	5	HRS CLA	SSIFIED BY	DR	AN SANGER			_4_ of _5_
			T	1				DESCRIPTION			•
DEPTH (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % POCK DECOVEDV	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR .	MATERIAL CLASSI	FICATION	USCS OR ROCK BROKENNESS	REMARKS*
1			3	4	5	6	7	8		9	10
		<u>·</u>				M. SOFT TO M. HARD		SHALY SANDSTONE	(CON'T)	BR	10-20° FRACTURE 91.1,91.55,92.0,
					94.0					· ·	92.4, 92.6, 93.1,
	10.0	۵,۵	100%	50	95.2	M.SOFT	MARDON MOTTLE	SANDY CLAYSTONE		BR	VENTICAL FRACTUR 92,6-93.1,943-9
					·	4		CLAYSTONE		BR-VBR	20-30' SLICKEASIO
		_				TO SOFT					EVERY ~ 0.1-0.3'
20.5					ļ			· · ·			100,5-102,7 VERLY
	¥									VBIL	BLOKEN ZONE, HEA STAINED 100.5-101.7
			·				GRAY				STRINES 100.5-101.7
		_			104.5						
		_	1.0	1						¥	
	(6.0	0,0	100%	58		M.SOFT M. HARD	LT.GMAY	SITALY SANOSTON	6	BR-BL	
			·								•
10.5		\square			£.q3	- V	V				
						M. HARD	LI.GRAY	SANDS TONE : MICA	icions	BL	110.5-114.7 - 1 PIELE
		-		$\left - \right $	114.7						
	10.0 1	0.0	10000	77		M. SOFT	GRAY	SANDY SHALE		BL	VERTICAL FRACING
					117.5	V		į,	· · · · · · · · · · · · · · · · · · ·	1 1	115.25 - 115.75
				╞╌┛				CLAY STONE		BA	20-30 SLICKEASIDE
		+		$\left - \right $			MARDON				EVERY 20.3-0.5'
l		<u> </u>	<u>.</u>			V.	Norriced				· · · · · · · · · · · · · · · · · · ·

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0519 (20)

. .

DEPTH (FT.)	P1-7	CORE RECOVERY/RUN SAMPLE NO., TYPE &	 κ RECOVERY OR % ROCK RECOVERY 		CLAS BIDGEITE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		DES		ASSIFICATION	PAGE PAGE NOCK BHOKENNESS	CT NO. <u>COYO384.(/)</u>
1 120:5	2		3	4	5	S ON ON	7		MATERIAL CL	8	9 VBA-	10 . 20-3-5 LICKENSII
1 @o:5	2		3	4	5	S ON ON	7	CL		8	9 VBA-	10 . 20-3-5 LICKENSII
120.5		c) 6						CL	ALSONE	8 (csr. 7)	VBA-	. 20-30 SLICKENSI
		۲. ا د ا	02	47.	196 6	MSFT	MARODA		AUSTOPE	(252.1)		
	0.0 13.	ə (:	02	47.	196.6						BL	N. EVENY 0.1-0.3'
	0.0 10.	ð (2	02	47.	176 00						1 1	
	0.0 Is.	ð (s	o's	47.	Inca				1	· · · ·		
	0,0 I.a.	c) 6	02	47	Inc a				: SAHAY	1 124.0-125.1		
130.5					<u>ר.כייון</u>		V	`````	1		V	
130.5				<u> </u>	-	MUHARD	UT CALY	SW	ALY SANDST	3400	BR	ROD IPTHIS UNI
130.5	1	- 1			-							
130.5					129.15	MISSET	V/		ERBEDDEN	V	BR	
						TTAC	MARONA			AND SILTSTONE	152	
					1)	NE SANDSTON		+	
]							
					133.8		V		N	,	×	
0	<u>).2 10.</u>	010	010	76	135.3	M.SOFT			SHOTZYE		UBR	
						M. SOFT	1 1		DY CLAYST		BR	LOW & FRACTURE
		+		<u> </u>	{	MHARD				EDUS NODULES	4 11	136.05 136.4, 136.
	+							Ain	O STUDGE	1	$\left \right $	137.3, 137.9, 138.4,
		+				V					┼┼─	13-2.9, 139 2
140.5	-	1				M.SOFT	MAROON	··				
					142.0	ł	V	. •	1	· · · · · · · · · · · · · · · · · · ·	V	
						M. SOFT		SHA	UH SANOST	026	BL	
						M. HARD						
				40						STONE SEAM		
v.	.0 10,	0 100	<u>, 1</u>	80	146.3	¥	¥			1-144.65		
					147.4	MISOET	GRAM		NOTE YALD YO		BR	VERTICAL FLACTURE 147.2 -
		+			148.8		MARJ	CLA	YSTONE			148.15
50.5						MUHARD	GRAY	SAP	M SHULF/ CILL	ALLY SAJOSTONE	BL	

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0519</u> (20)

N 542378.3755

gal consultants

ELEVAN	ON		GV	VL C		18.6			PROJE	ECT NO. <u>COY0384,40-0</u>
DATE	: <u>2</u>	3 M	127 2-205	5	CLAS	SIFIED BY	DA	n sanger	PAGE	1 of
				T		·		DESCRIPTION		1
рертн (гт.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR .	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	+	2	3	4	5	6	7	8	9	10
1.5	1 3	5	S-1 AEL 1.5 5-2	-		STIFF	MARWON		- 1	+ 2.073F
70	4		5-2 Rec. 1.5					mz ~ zy		
3,2	5 5		S-3						<u></u>	+62,5TSF +2.0 TSF
4.5	5	_6_	A.C. 1.5					· · · · · · · · · · · · · · · · · · ·	. V	+ 0.5 13-
6.0	6	10			1	M.DENSI	BLOWHE	CLAYEY SILT AND ONGANICS	mi	. WET
	8 13	1	5-5		7,0	¥.		sle	V	
7.5	50/0	-1 -1 -2 -2	REC. 1.5 5.6 Acc 0.1	-	7.6	V.DELSE	MARION	DECOMPOSED CLAYSTONE	gm	TOP OF ROLK: 7.6'
	<u> </u>			ļ		SOFT	monood		VBR-BR	MOST PIECES 0.2
	4.4	Ц.Ц	100%	12	{			- CRAM 10.9-11.2		
(7) -	<u> </u>						<u> </u>		_	
12,0	$+ \cdot$				12.0	V Cocc	V		V	
					13.7	SOFT	GRAY	SANDY SHALE : WEATHERED	NBR-BA	
				<u> </u> '		SOFT	marcool	CLAYSTORE	BR	
						1		CCASUS TOPE	136	VERTICAL FRACTURE
					ŀ.		GRAY	CALENAROUS NO DULLES 16.0-	n.d	10.0-11.9
	9.3	10.0	93%	51	.			2 SAPDY 16.5-17.1	100.0	
				ļ			MAROON			20" SUICKENFIDE 19.75
2										
22.0	+-4	\succ						· · ·		· · · · · · · · · · · · · · · · · · ·
										· .
										30° RICKENSIDE 26.4
	9.2	0,0	922	65						
								5 9 9		27.7,28.7,2925,29.8

REMARKS . DRILLED BY TERRIA TESTING, INC. USING A SIMCO YOOD-TZ TRACK MOUNTED DRILL

BORING ADMAKED USING 514" SOLID STEM AUGERS, "I" STEEL CASING, NQ-2 WIRELINE CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u><u>R-0520</u> (15)</u>

		2/3,5				PSWER	PLANT ST. A				а NO. <u>B-2522</u> ст NO. <u>Сочо384:42-01</u>
				HRS		N.o	N SANGER				_2_ of _4_
			<u> </u>	T				•	-		
ļ					1	<u> </u>	DESCRIPTION		-		
DEPTH (FT.)	BLOWS PER SIX INCHES OR	SAMPLE NO., TYPE & RECOVERY OR	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7		3	-	9	10
20				-	SOFT	MAADON	CLAY STONE (C	(זיבם	Br	۲	
32,2	+			-]		
				-				·			
· _ ·				-				•			
		-	+	35.5				y			
	9.9 10.0	99%	47		MIHARD		SHALY SANOSTONE /S	S LALA VALAN	BI		
		1		37.2	MIST		CLAYSTONE	The grant strate	ß		
			1	1	1			1			
		1		40.2	V			/			
			1	10112	M. HAAD	LT GAAY	SHALY SANDSTONE /S	ADDY SHALE	-	R	VENTICAL FRACTURE
42.0					1			1	Ť	-	40,4-41.0, 42.0-42.3
	Y			41.7	V	V.		/			
		ļ			M. SOFT	MARDON	INTERBEDDED S	ANDY CLAYSTONE	BR-	BL	
		ļ			M. HARD	GRAY	AND SANDY SHI	ALE FEW THIN			
							(50.5') SANDST	TONE UNITS,			
	10,0 10,0	100%	85				FEW INAELULAN	CALCAREOUS			
				-			NODULIES AND	ATRINGERS			
	┨										
·	┫───┼──								┼╌╢		
52.0		1					•	/		,	
24.0	$+ \oplus$		+	52.1			SILALY SANDSTO		B		•
					(L	LT GAMY	-14-14 SHANDS (D		12	~	
		1		54.4	MISOFT	madood	CLAYSTONE MYN	MED DUS MAG	<u>↓ ₩</u>	R 0	81.016. 1.051 51
	1 1	1		1		H GREEN-	CALCAREOUS NO			101	3615,56.75,57.0
	10.0 10.0	100%	81			GARY	STRINGERS				60.7,61.0 61.3
										-	
					V	N	N.	y		,	

REMARKS ** ____

C

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

•

BORING NO. <u>B-0520</u>

ر بر

	т <u> </u>	REF	1 2/3	Joi	HNE	AM	<u>s</u>	Psw	ar	PLANT, ST. ALBANS, WV					
			0		HRS		6				PR(OJEC.	TNO.	640	384.40-0
DATE		231	NAY 23	05			D BY		D D	W SANGER	PA	GE	3	of	<u> </u>
						1		1		DESCRIPTION			•		
DEPTH (FT.)	BLOWS PER	_	ŝ	% HOCK HECOVERY ROD (%) OR TORVANE		SOIL DENSITY -	PR DR	<u> </u>	COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS		REMAR	aks∗
1		2	3	4	5	+	3		7 00 H	8	9			10	
620						M.So	FT	64	00 P	CLAYSTONE (LONIT)	Ba	2 .			
					66.2				,	· · · · · · · · · · · · · · · · · · ·					
	10.0	/0.0	100%	75	1	Mr Sc	PT	GRI	AY	SANDY CLAYSTONE, FEW	Br				
		-		+	-					SANDY SILTSTORE SEAMS					
72.0	$\left \right\rangle$			-											
					73.6					V					. <u>.</u>
						M. S.F	7	GRA	4	INTERBEDDED SILTSTONE AND	BRT	R1			
		•						1		FINE GRAINED SANDE	+				
		1.	()) ()		-										
	10.0	100	1994	96					-+						
				+										_	•
				-	81.1	V		V							
82.0						MLHA	-	-		SANDSTONE	-		-		
								1		£	BL				
		[++				
												+			
	9.9	10,0	99%	100								-			
							[
		-	·					\downarrow							
	1							V		V	V				

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0520

PROJEC	т_ДЛ	er	72/	3 :	JOH	NE	· Ar	ras	Pou	JEV	2 PLANT, ST. ALBANS, WV	B	ORIN	GNO. 13-0520
ELEVATIO	ON			_ GW	/L C	HRS	18	ى.						CT NO. CO 403840, 40-0
DATE	23	M	14	dusz		HRS CLA	SSIFI	ED BY		D/				of
											DESCRIPTION			·
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE &		RQD (%) OR TORVANE		SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS			- MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2		3	4	5		6	+	7	8		9	10
A2.2		<u>}-</u>					M			<u>74</u>	SANDSTONE ! (0N'1)	B		
•	7,6	8,0	9	5 %		4 2 a					· · · · · · · · · · · · · · · · · · ·	· 		-
						97.8		V					*	
100.0							Mis	SFT 1		_	CLAYSTONE	Br	2	
,00.0								¥	1	, 		_		
			. <u> </u>			I					BOTTOM OF BORING: 100'			
														· ·

REMARKS **_

6

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 8-2520

PROJEC	т <u>А</u>	100	2 ² /3, 2 3 GI	10 K	NE	· Amos	Ŕ	มผฏ	2 PLANT ST. ALBANS, WV			
					HRS							ECT NO. <u>Coyo384,40-01</u>
	<u>لم</u> 	3 1	NAY 2005		CLA	SSIFIED E	ΙΥ 	D	an Sanger	- PA	\GE	of
					-	1	T		DESCRIPTION			
- DEPTH (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN	SAMPLE NO., TYPE & Δ RECOVERY OR % ROCK RECOVERY	A RQD (%) OR TORVANE	G PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	NSCS OR	ROCK BROKENNESS	REMARKS*
	23		5-1		5	6 V. ST.FF	= ,	7	BILTY CLAY/ LIAYEY SILT	9	_	10
1.5	16	4	AGC. 1.2 5-2		1	DENSE		BADWA	SAPDY SILT, FEW SHALE FRAGMENTS			. & 3.0 TSF
3,0	7	24	A=c. 1.2		3.4	V.DE.J		V				
3.4	20/		5-3, Rea 0, 3	\$ <u> </u>	11=11=1		_	OLIVE				an mening an angle taget and a set and an an at a set
					1	SOFT	_	BROWN	SILTY SHALE, JOME JOND	Br	2	STRINED VENTICAL
					-		_					GRACTURE 4.5-5.1
	70	7.0	1002	40			+					6.1-6.7
	1.0	7.0	100%	70			+			\rightarrow		LOW & STRINED FLACTURES
	+			1	1		+					4.0, 5.1, 5.5, 6.1, 8.0
10.4	\vdash	}			10.3				SANDY SWALE			8.55,9.55
	<u> </u>					1	4	GAAY	SHADY SHALE	UBR Bn		PIECES ON-O.Y'
				—	13.3		+			1		1200 0,1-0,4
					13.2	M-HAR	5 10	LROWH-	SANDSTONE : MEDIUM GRAIDED	BL		
						1	C	DAAY	Giverrer			
	100	10.0	100%	78								
							_					
		-					+					
20.4							+					
							╀			_		
							╀			_	-	· · · · · · · · · · · · · · · · · · ·
					ŀ		+			_		
					ł		+			+	+	
	10.0	13,0	100%	92	ŀ		+			+	-	LOW & FERCTURES
					ľ		\top			+		28.2,28.45,28.85,29.35
							T					29.85, 30.15, 30.3
		-			Ļ							VELTICAL STAINED
			1			¥		V		V		FLACTURE 29.3-29.7

REMARKS . DALLED BY TELLA TESTING, NC. USING & SIMCO YOOD-TZ TRACK MOUNTED. O LILL

BORING NO VANCED USING 514 SOLID STEM AUGERS 4" STEEL CASING, NO-2 WILELIDE CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0521</u> (К)

. .

PROJEC	T <u>A</u>	1014 203	2/3, _= ≥= GV	<u>гоц</u>	<u>s e.</u> Hrs	·AM:	<u>s P</u> i	OVE	r f	LANT ST. ALB	NW, ELA	_BO PR	RIN	GNO. <u>15-0521</u> :CTNO. <u>СЭЧДЗ8Ч.43-01</u>
DATE					HRS) Al) sanger				of
				_						DESCRIPTION		-	•	· · · · · · · · · · · · · · · · · · ·
рертн (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	м	PROFILE	SOIL DENSITY -	ő	<u> </u>	COLOR	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1			3	4	5	+	5	<u> </u>	7		8		_	10
	\vdash				Ī	M. H	an <u>d</u>	BRO	WN-	SANDSTONE :	MEDIUM GRAINED,	Bı		
								00		MICACEVU	IS (CONIT)	•		ALL BAEAKS ARE MECHANICAL - CORE
											· · ·	-		IN 4' AND 6' PIECES -
					1								-	BADKE DURING HANDLING
	10.0	10.0	100%	100										
40.4	 													
		\geq												
	ļ													
ļ														
														•
	0.0	10,0	100%	100										
			·											
									_					
5014														
					·									
														•
								_						
	0-		070											
	4.7	10.0	972	<u> </u>										
								[
		\vdash		—				[
							-		,				_	0.05 CALBOHACEOUS SURLE
L	L					1	<u> </u>	1	<u> </u>	Y		V	(· Ar 59.8

REMARKS ** __

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

.

BORING NO. <u>3-0521</u> (19)

ELEVATIO	N <u>L</u>	203	± GN	NF (Jor	UHRS HRS HRS	2	4.6	POWER	PLANT ST. ALBANS, WV		GNO. <u>B-0521</u> CTNO. <u>C=40384.43-3</u>
DATE	231	MAY	2005		CLAS	SSIFI	ED BY	DAN	SANGER	_ PAGE	<u>3</u> of <u>3</u>
									DESCRIPTION		· · · · · · · · · · · · · · · · · · ·
	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1 60.4	2	2	3	4	5		6	7	8	9	10
		2		1		MI	LAND	BROWN- GRAY	SANDITONE (CONT)	BL	
	9.6	10.0	962	58	64-0 65,1 66.5	M-5	off	GARY	VI SANDY CLAYSTONE SILTY CLAYSTONE CLAYSTONE	× Bl	30°56100000000000000000000000000000000000
70.4					70.4						69.0 68.25, 68.4, 68.6, 69.1, 69-45, 69.7, 703, 70.4
									B)TTOM OF BORING : 70.4		

REMARKS ** ____

(

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

•

.

BORING NO. <u>B-0521</u> (19)

E 172	873.4417 2326.414	8 Gr			901.64			9	gai consultants transforming ideas into reality
PROJEC	TARE	$\frac{\gamma_{2}^{2}}{3}$	JDI	4 h 6	E. Amos	POWER	- PLANT ST. ALBANS, WY	_BORIN	IGNO. <u>B-2522</u>
ELEVAID	JN <u>10 4</u>	<u> </u>	WL.		56,8)		_PROJ	ECT NO. CO40384.40-0
DATE	24-25 M	1A4 2005	-		S	Dr	an sanger	PAGE	of
							DESCRIPTION		
рертн (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERVIATION		1 K		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
1.5	22	S-1 REL D.6		-	U.STIFF	MAROON	SILTY CLAY	C1	* 3.5 TSF
	3	5-2		-					
3.0	1838	Rec. 112 5-3		-3.4		<u> </u>	V		
4.2	38	REC 1.0		4.2	V.DENSE	BLINE -	DECOMPOSED SANDY SHALE		
			-	1/2110	SOFT TO	DLIVE		BR	LOW & FRACTURES
				-	M.SOFT	GRAY	SHALY SANDSTONE		1.7,51,6.1,6.255,
	1240	- <u>a</u>	-	-					6.95, 7.35
	6.3 6.3	100 %	63	-		<u> _</u>			STRINED 30" FRALE
		<u> </u>		-		┟			THE 8.4
15:5				-					VORTICAL STAINED
									FLACTURE 8.85-9.2
			┣	-					STAINED LOW & FRAN
			<u> </u>						TULES 10,8, 11.4, 12.55
				-					12.65, 14.7, 14.9, 15,2
			ļ	-				V	15.3.15.9,16.05
	10.0 10.0	100%	36	4				VBR	16.45, 16.5, EVEN-Y 0.1
			 	Į				BR	TO P.3 14.5-
			<u> </u>						
			<u> </u>						
20.5			ļ	200		V	*	V	
	\rightarrow		<u> </u>	ŀ	SOFIN		CLAYSTONE	BR	
					V.SOFT	CRAY		pin.	
								V	
								BL	
								V	
	8.8 10.0	88%	1					WBR-	
				27,3		V	V V	BR	
					MUHARD	GRAY	SHALY SANDSTONE	BR	STAINED VERTICAL
			-					1	FLACTURE 27.0-28.0
						<u> </u>	*		30.7-30.9

REMARKS .. DAILLED BY TERRA TESTING, INC USING A SIMON 4000-T2 TRACK MOLINEY DRILL

BORING ADVANCED USING 514" SOLID STEM AUG2LS, 4"STEEL CASING, NQ-2 WIRELINE CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0522</u> (1.0)

ELEVATION 9.02 ± GWL 0 HAS 56.5 PROJECT NO. Co-4/378/4/400 DATE 24-25 MAY 2005 CLASSIFIED BY DATA 5A.N 5A.N 6ER. PAGE 2_01 9 DATE 24-25 MAY 2005 CLASSIFIED BY DATA 5A.N 5A.N 6ER. PAGE 2_01 9 Image: State of the state of the	PROJEC	т	245	A 2/1	3, Ja	344	E. AM	ST POW	TER PLANT	ST. ALBANS WU	BORIN	GNO. B-0522
DATE DATE	ELEVAT	ON _	10,	<u> </u>	WL			8			_PROJE	CTNO. <u>C343384.45-01</u>
Sign V Sign V Sign V MATERIAL CLASSIFICATION Sign V REMARKS* 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DATE	24-	251	NAY Ju	5	HRS CLA	SSIFIED B	IY	DAN SANGER		PAGE	of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Τ				DESCRIPTION		<u> </u>	·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					_		ŭ					REMARKS*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 · ·			3	4		6	7	1	8	9	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						31.1	V. 50F1	MARODA	CLAYSTONE		VBR	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3.L	10.3	3.6%	24	1						· · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						37.5	MIJAF	TOLIVE	THTTCAFADEN	CLAYSTONE AND	R0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $]	ſ					LOW & FRACTURES
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>				1				L		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40.5		\geq			1						43.8, 46.8, 48.4, 49.4.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					+	4						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	┝∤		· · · · · · · · · · · · · · · · · · ·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-					1	
52.5 52.5 52.3 V		10.0	10.0	1.200	51				·			47,4-47,9 48.1-
52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 1 52.3 Status Status 1 1 1 1 Status 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td>1.01</td><td></td><td>100 1</td><td>100</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>48.15,</td></t<>		1.01		100 1	100	1						48.15,
52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 1 52.3 Status Status 1 1 1 1 Status 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					1	1						
52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 1 52.3 Status Status 1 1 1 1 Status 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>]</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>]						
52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 52.3 V V V 1 1 52.3 Status Status 1 1 1 1 Status 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>. <u></u></td><td>ļ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	. <u></u>	ļ,										
31-3 ALSOFT OLIVE- SANDY SHALE BR LOW & FRACTURES 52.7 1 CRAY 1 53.9,543,54,65,55.156.4 1 CRAY 1 57.45,59.3 10-0 100% 30 57.45,59.3 57.9 V V 57.1,58.4 Go.0 50-FT TO March 2004 CLAY STONKE BR	- 20.2	$ \vdash $	\geq		+							
Image: CAAY Image: S39, 543, 54, L5, 55. 1, 56. 4 Image: S39, 543, 54, L5, 55. 1, 56. 4 S39, 543, 54, L5, 55. 1, 56. 4 Image: S39, 543, 54, L5, 55. 1, 56. 4 S7.45, 59. 3 Image: S30, 543, 54, L5, 55. 1, 56. 4 S7.45, 59. 3 Image: S30, 543, 54, L5, 55. 1, 56. 4 S7.45, 59. 3 Image: S30, 543, 54, L5, 55. 1, 56. 4 S7.45, 59. 3 Image: S30, 543, 54, L5, 54, L5, 54, L5, 1, 56,						52-3				V	¥.	
10.0 100% 20 57.9 57.9 57.9 57.15 57.9 57.15 57.15 57.15 57.15 57.15 57.9 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 57.15 58 57.15 58 57.15 58 57.15 58 57.15 58 57.15 58 57.15 58 57.15 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 <td< td=""><td> </td><td></td><td></td><td></td><td>+</td><td></td><td>N.SFT</td><td></td><td>SANDY SHALE</td><td></td><td>BR</td><td></td></td<>					+		N.SFT		SANDY SHALE		BR	
10.0 10.0 10.0 10.0 20 STRIMED WVX FRACTURE 53.45, 55.75-55.9, 56.5 53.45, 55.75-55.9, 56.5 57.1, 58.4 60.0 57.1, 58.4 60.0 50FT TO MARLOOP CLAY STONE BR- HICH X STRINED FLACTURE								G (LIST)				
53.45, 55.75-55.9, 56.5 57.9 V V 57.1, 58.4 60.0 SOFT TO MARJOON CLAYSTONIE BR- HICH & STRINED FLACTURE		13.0	10.0	loog								57.45, 59.3
57.9 V V 57.1, 58.4 60.0 SOFT TO MARSON CLAYSTONIE BR- HICH & STRINED FLACTURE		10.0		190 /0	120							
SOFT TO MARJON CLAYSTONIE BR- HICH & STRINED FLACTURE				· •		57.9	V		·			
							SOFTTO	Marson	CLAYSTONE		BR-	
											UBL	58.7-593

.

REMARKS ** ___

 \subset

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-2522

ELEVATI	ION 9	02	± G\	VL C	HRS	56.5	}		21. A			NG NO. <u>B-0572</u> IECT NO. <u>C240384.42-0</u>
	•			_	HRS							- 3 9
DATE	24.		MAY 2-004	_	CLAS	SIFIED B	Y	. DV2N	SANGER	٤	PAG	E <u>3</u> of <u>7</u>
								DESCR	RIPTION			•
DEPTH (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR	COLOR		VATERIAL C	LASSIFICATION	USCS OR	REMARKS*
1		2	3	4	5	6	7			8	9	10
60.5	+	\geq			607					•	=	·
					┨.	MIOFI		SAN	34 SHALE		BR	and the second sec
					63:0	V		4		V		TULES 60.75, 61.0,
					64.0	MISOFT	mano	CA	4 STONE	i ve levui		61.5, 61.9
		100	100%	12/	{	MISOFT	CANT			STONE / SANDY		HEAVILY STAINED NEAR
	-10.0	1012	100 10	136	1			SIH	102	}		VERTICAL FRACTURE 65.35-67.2 DOG 7' LOD & WATER LOSS
· · · · · ·					1							
	+				1							SMAINER VERMEAL FARE-
				1	1						UBR	TURE 68.1-68.7,69.2-
70.5	+	\sum			<u>-70.4</u>		MANOON	C.L.O.	STOLE	•	BR	
					1		GAAY		I JICKE		1312	VENTICAL FRACTURE
				1	1							74.6-76.5
]							
]						VBR	
	0,0	10.0	1002	61					•		BR	
]							
				ļ								
									: SAN	14 78.5-80.5	BA	· · · · · · · · · · · · · · · · · · ·
80,5	<u> </u>					└──└──						LOW& FAACTURE 80.8
-0-11	$+ \rightarrow$				1	 						81.2, 83.1, 83.7 PY.5
					-					·	VBR	U.BLOKEN 2015 21.3-83.1
						 	V				<u> </u>	
							DIL GRAY	-				
	1		1007	67	5				1	·	BR	
	10,0	10.0	100%	121	86.1							
				+		M. SOFT	GRAY	JUCT	STONE	1	BR	
				+								88.3,
				+				<u> </u>				NEAR VEXTICAL STUDIES
		<u> </u>		1	L	¥	¥			V	V	FRACTURE 88.5-89.2

- 6

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>β-0522</u> (1.9)

PROJEC ⁻	T AR	<i>2</i> 2	² /3 J <u>+</u> 0	iWL ロバク	<u>е</u> . д 0 hr	s_	56.8	er v	PLA	NT.	ST. ALBANS, W	JV	_BO _PR	RIN	G NO. CT NO.	B-0 Co4	0522
DATE			1AY 2-00		HR	s _					NGER						r
								1.		DESCI	RIPTION			•	•		
DEPTH (FT.)	BLOWS PER SIX INCHES	-	Ś	ROD (%) OR TORVANE		SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS				MATERIAL CLASSIF	FICATION	USCS OR	ROCK BROKENNESS		REMA	ARKS*
1		<u>}</u>	3	4	5 		6 HARD	1		SILA	8	(3		1	0
100.5	6,61		100 ^h									0- 1076 (BA) ES/сниs					
		-+							+					-			
	_						V	V									
				<u> </u>	L	1	V	V		V	r 		V				

REMARKS ** ____

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

.

BORING NO. <u>B-6522</u> (18)

PROJEC	т <u>А</u> оп_	RE 902	A 2/3	J.H WL (∦ €.) HRS	An: 5	6.8 8	Pow	EVL	RANT ST.A	WANS WV	BC	RIN		B-0522
DATE	<u>2</u> 4-	-)< "	11 AY 2.5	5	HRS				1.	JAN JANGER					of
[T		T	<u>~</u>						DESCRIPTION		· · · · · · · · · · · · · · · · · · ·			of
	6							1	•	DESCRIPTION					
DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & RECOVERY OR	Т <u>к</u>	<u> </u>	Ľ"	CONSISTENCY OR ROCK HARDNESS		COLOR	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	F	REMARKS*
120.5		2	3	4	5	+	6		7		8	_	9		10
	\vdash	¥ .				HA HA		176	MAY	SANDSTONE ((co + ·T)	BI	L		·
												_			
	 														
<u> </u>	12.0	10.0	1,202	lan			Γ γ ζ				•				
	110,0	10.0	(,))6	00											
130.5	L														
				+-1											
										·		-1-i			
	lo ,3	G.01	100%	100											
			····	+											
			•	+-				-+		· · · ·		_ _			
142.5	$ \rightarrow $	\geq													
				$\left - \right $					_]	_[
				+ - 1				-	-						
	10.J	10.0	100%-	CCI	ŀ			-†					-		
												-	+		
									\square						
	_				╞	-	,	V	_						
L								Y		V	, 	V			

REMARKS **

6

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

.

BORING NO. B-0522

BORING NO. <u>B-0522</u> (18)

.

PROJEC	т <u> </u>	LEY	2/3	701	1) E	Anos	P	OWER	PLAN	IT ST. A	LRIANS, WU	BC	DRIN	GNO. B-2522
ELEVATI	ON C	102	± G\	NL () HRS	56	8					PF	ROJE	CTNO. COY0384.43-31
DATE	<u>-</u>			-	HRS									6 0
DATE	<u>24-</u>	9211	VAN 2005	<u></u>	CLAS	SSIFIED I	3Y		10 2	ANGER	•	- P.	AGE	6 of
						····		1	DES	SCRIPTION				•
DEPTH (FT.)	BLOWS PER	OR CORE RECOVERY/RUN		Г М	PROFILE	Į	ROCK HARDNESS			MATERIAL CI	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		2 K	3	4	5	6		7		ANDSTONE	8		9	10
		<u> </u>		-	1	S>F1	_	magoon				A -		
					1	1 222		C AAT PURPLE		MADIONE .	Some sans	Br	1	22 21 21 22 22 22
	+			+				YELLON	"					33° SLICKENSIDES 153.05,
				+	154.5	M.SOF		GLAY	CN3	500500	SANDY SHALE		<u>V</u>	153.6, 154.0
	10.0	6.0	100%	75	1	1 10		TP LT. GALAY	1	ND SANDST		B	1	
					1			1			1		+	
												+		
]			·	1				1	
160.5	\vdash	\geq			1									
	ļ												Τ	
	ļ			ļ										
	 								<u> </u>					
					Į				ļ					
	10.0	10.0	1002	100			_		ļ					
				<u> </u>					ļ					
							_		<u> </u>			1	<u> </u>	
	-						_		<u> </u>				-	
17015												ļ	-	
							-						<u> </u>	
							-		·					
					173,2			V			/		V	
				╞╼┥	1747	SOFT		GRIAY	1 cut	Y SHALE		ß		
	10.0	10.0	100%	72		S.FT	=		<			<u> </u>	¥.	
		10.0	100 10	16		1		DH GROY	1316	MTO SANDY C	LAYSIDNE	B	1	20-30 SLICKENSIDES
							-+	MARCON					-	175.0, 175.4, 175.55, 176.1,
							+			2 10.000	AR CALCAREOUS			176.6, 177.35, 177.65, 178
							-				S 179.4-180.0			178.35, 179.15, 179.4,
				<u> </u>		v			V		5 1/7.4-18010	1	V	

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

,

CLEVAIN	UN			à₩L	0 HF HF	ls <u> </u> ls		<u> </u>			PRO	OJE	CT NO. <u>CO 4332 22</u> 01
DATE	24	-25	W24 90	05	CL	ASSIF	IED BY	(Dr	IN SANGER	PA	GE	of
								- -		DESCRIPTION			•
L DEPTH (FT.)	BLOWS PER		5 S	% ROCK RECOVERY ROD (%) OR TORVANE		_			COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
180.5		2	3	4	5 180,	~	6	+	7	8	9	-+	10
		¥		-	-	M.	<u>50F7</u>		<u>цач</u> 1	SHALY SILTSTONE	BL	-	
					183	.0	V	+-	\downarrow		+	,	
			 		_		SOFT	mp	4001	CLAYSTONE	BL-		30° SLICKEISIDES AT
					_	507	T ⁰	GN	<u></u>	· · · · · · · · · · · · · · · · · · ·	BA		185.1, 185.3, 185.5,
•	0,0	10,0	100%	178	릐	-							186.4, 186.7, 187.0, 187.2
					-						$\left - \right $	_	187,55, 188.1
					188.	6			₩	V			
10.0						50	57 50	ma	Roor	INTERBEDDED CLAYSTONE AND	RL	Ŧ	
190.5	$ \rightarrow $	\geq				- F	50F1	6	2 64	SANDY SHALE, SOME SANDSTONE	1		
				+	-		<u> </u>		-				
				+	-	-							
				+-	-							+	
	10.0	10,0	100%	90					<u> </u>	· · · · · · · · · · · · · · · · · · ·		+	
								-				╉	
												╉	
					1								
20015				-	200.9	<u></u>	y	<u> </u>	v_		Ý		
					-								
		-+		1	1	<u>m.s</u>	<u> 17</u>	man _st	400	CLAYSTONE	BA-P		20-30° SLICKENSIDES
				1	1	-		- 3,4			E		202.3,202.45, 202.9,
]					7 (E. 4)		┽	203.2,203.45,203.7
!	0,0	10.0	100%	86	206.5						1		
					-	Mill	ARD	GR	AY	SANDY SILTSTONE	BL		
				+	-								
					209.7		/						

REMARKS ** ____

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0522</u> (:?)

BORING NO. 5-0522 (18)

PROJECT	r <u>A</u> R	EA	-2/3 50 +	НР Е	AM	<u>66</u>	POWE	r F	2LAI	JT	ST. ALBA	ans r	JV					522
ELEVATIO			<u> </u>	WL C	HRS HRS	20	P, 0											384,40-0
DATE d	<u>24-2</u>	s m	LY 2005		CLAS	SSIFIE	D BY	1	AC	NSA	MGER			P/	AGE	_8_	o	9
										DESC	RIPTION							
ОЕРТН (FT.)	BLOWS PER SIX INCHES	OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERV	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY -	ROCK HARDNESS		согон		MATERIAL C	LASSIF	ICATION	USCS OR	ROCK BROKENNESS		REMA	NRKS*
1		2 // -	3	4	5		6	+	7			8			9		1	0
	\vdash	¥		+-	t	M. H	ARD	И.С	NAY 1		DHOLSUL			B	L			
										_ME	Dun Glu	AIHED 1	NUCLEOUS					
	10,0	10.0	100%	100		 												
220.5					220.0			I				,	· · · · · · · · · · · · · · · · · · ·	N	~			
						M.S SoF	oFT P	MAR GR RIR CREI G	64, PLE, Er- Aay	CLI	SILT		20-225'	ß	R			
	10.0	10,0	100%															a. <u>s</u> -
												LEOU:	SNODULES					CES 0.2-0.1 (KEIS10ES
230.5	\leq	\geq																
	0.0	10.0	100%															
																		•
						V	/		1	,	1							

REMARKS **_

1

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

PROJEC	т <u>да</u> ол <u>9</u>	50 0 2	2/ <u>3,</u> ±G	الادر WL () HRS	56	Pou .8	151	- Pi	ANT, ST. ALI				GNO. <u>B-0522</u> CTNO. <u>C040384.40-01</u>
DATE	24-	<u> 9-8 1</u>	MAY 200	5	HRS CLA	SSIFIE	D BY		DI	an sanger		_ _ PA	GE	9_ of _9
	Τ									DESCRIPTION				
→ DEPTH (FT.)	BLOWS PER		SAMPLE NO., TYPE & BECOVERY OR	ŭ	on PROFILE	SOIL DENSITY - CONSISTENCY OR	л С		-	MATERIAL CL	ASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
240.5			3	4	5	6			7 קמטו (8		9	10
	\vdash	F			-	M. Sof	0	MAA GL PUN GA	AY, PLE	CLAY STONE	(CON'T)	BR	٤	CORE AVECES 0,2-0,4'
					1	550		162	AY					1/20-30° SUCKENSIDES
]									
													_	
	10.0	10.0	100%											
						┝──┦								
				+	ł						: SILTY 247.8-248,9		_	
250.5		.							,					
	<u> </u>	_			1					BOTTOM OF BE	Dunica Cl			
				1					\neg	13 5 1 1010 81 13	NING . 220.2			
			•											
				+										
									-				\dashv	
									-+				-+	
													\neg	
													-†	
		_												
		-+							_					
				+-1					_				[
				+-									\square	
L	L			.L]	{									

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>3-0522</u> (18)

E 1722	742.2422 2248.6749				696.90			У .	Jai consultants millimiti lina ina miliy
PROJEC	T_ARE	D 2/3	, <u> </u>	ЧНG	E. AM	~s	POWER PLANT, STALBANS"		NG NO. B-0523
ELEVATI	ON	GV	NL	0 HRS	220			PROJE	ECT NO. C.242384.42-
DATE	2 d ma	42005							
	7	<u>- 2005</u>			SSIFIED BY		DAN SANGER	- PAGE	of
						1.	DESCRIPTION	_	
DEPTH (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERVIALIN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
	1	S-1 REC 0.7		_		BROW	SILT, SAME CLAY	ml	
	44	5.2		2.0	×	┝╌┥	J.		
3.0	4 5	ARC 1.2 5-3		+	LOOSE		· · · · · · · · · · · · · · · · · · ·		
4.5	5	REC D.6					CLAYEY SILT AND ROCK		
.6.0	43	5-4 REC.0,5	·	6.0			FRAGMENTS	+ $+$	
	44	5-5	1		STIFF	BROW	CLAYEY SILT / SILTY CLAY AND	ml·cl	MOIST X 2.0 TSF
7,5	7	REC. 93 5-6	-]	1	GEAY	S ROCK FRAGMENTS	1	1.10131 × 2.012F
9.0	85	RE4 1.5			V.STIFF		SILTY CLAY - DECOMPOSED		# 3.075F
10.5	5 10	5-7 AEC 1.1		4	·		CLAYSTONE		
	10	1.0							
12.0	1023	REL. 0.6		12.0	HARD	MARDO	¥	<u>↓</u> ↓	*> Y.S TSF
13.5	34	REC. 1.3			V. DENSE	GRAY	DECOMPOSED CLAYSTONE	gm-gc	·
150	34 23 25 34	5-10 REC 0.9	-	1		YELLO	/		
	128	5-11	-			├ <u>─</u> _┞─	· · · · · · · · · · · · · · · · · · ·	- -	· · · · · · · · · · · · · · · · · · ·
Hart	57	061 08							
17.9	3850%.4	AEC 0.4		17.9	•	ł	V		TOPOF ROCK: 17.9'
				ালা	SOFT	mador	CLAY STONE : HIGHLY		LOW & FRACTURE
	3441	83%	니민			BROW	WERTHERED		19.5, 20.3, 20.5
72.0	<u> </u> i					GRAY			21.0,21.2
J				-			· · · · · · · · · · · · · · · · · · ·		45° FLICKENSIDE
									20.5-20.25
							•		Louis Filing
									23.6, 24.55, 24.85
									26.4, 27.9, 29.1.
	10,0 10.0	100%	88			·			30.3, 30.6 31.2,
]			₩	V	V	V	

REMARKS - DRIVED BY TERRA TESTING INC USING A SIM OF LOOD - TZ TRACK MOUNTED DRILL BORING ADVANCED USING SHY SOLIDSTEM RUGERS, 4" STEEL CASING, NO.-2 WIRELINE CORING TOOLS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-05 23 (13)

DATE	24	MAY	1 200	5	-	HRS CLAS	SIFIED BY	1	AN FANGER		PA	GE	of 2
									DESCRIPTION				•
DEPTH (FT.)			SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL C	LASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1		<u> </u>	3		4	5	6	7		8	9		10
			 			Į	SOFTP		CLAYSTONE	(co) (T)	BR		
320	\vdash). 			•	1	MISDET	GANY					
		í											LOW & FALCTURES 34.0
						34.7							34.5, 34.7
						3 14	V			V ·	<u> </u>		
·						36.5	M.S>FT	GRAY	SHALY SANDSTON	E		,	•
	10.7	12.5	100 5	2	15		SOFT	MAROON	CLAYSTONE		VAS	2-	LOW & FRACTURES
	· .					32.5	/			·	BI		37.05, 37.9 38.1
	<u> </u>						M. LOFT	GRAY	SILALY SANDSTON	16	B		
	<u> </u>			_		40.3	10 M. 4222 D	<u> </u>			V	,]	LOW & FRACTURE 39.95
	<u> </u>						SOFT	MANON	CLAYSTONE		B	2	nan ann an
42.0						_		GRAY					LOW& FRACTURES
													40.5 40.6 40.8, 40.5.
													41.1. 42.4, 43.3 "3.4
													43.7
	8.2	0.8	100)	,	73								33 SULLEASIDES
						[42.75, 43,9, 44.2,
													44.4.44.1,44.85,45
													45.75, 48.0, 49.4
50.2							ł	V	1	4	11	_	VER TO AL FILL, 40.0.4
									BOTTOM OF B.	the second second second second second second second second second second second second second second second s	- ``		and the second s
						[
					_	ſ						-	•
						ľ						+	
					_	Ī					1	-+	
						ľ						+	
				-		ŀ						-+-	
		-			_	F					_		
						ŀ						_	

.1

0

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-0523</u> (13) _

N 542745.0961 E 1722251.4149 Grade El. 696.91

PROJEC	AREA	2/3 50	ЧЧ	ε./	imos por	WER	PLANT ST. ALBRANS, WU	BORIN	3NO B-0524
ELEVATIO	ON	GW	/L (HRS	DRY			PROJE	CTNO. (040384.40-01
	26.00			HRS					
DATE	d > MA	4 2005	-	CLAS	SSIFIED BY		DAN SANGER	PAGE	of
							DESCRIPTION		
DEPTH (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ŭ		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
				-			AUGER W/d. SAMPLING		· ·
				-			TO 18 FT		
			<u> </u>				INSTALL PIEZOMETER,		
							TUP AT 18FT		
							SEE BORING B-0523 FUR SOIL		
							DESCRIPTIONS		·
								}}	
				[· · · ·		····
18.0				18.3			V		
							BOTTOM OF BORING: 18.0 Fr		
				·			<u>.</u>		
				ļ					
				Ļ					
				ļ					
				-					
				-					
				ŀ					
			(·

REMARKS .- DRILLED BY DEMAR TESTING USING A SIMCO 4000-TZ TRACK MONNTED DRILL

BALING AGRANCED USING 5 1/4" SOLID STEM AUGERS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. <u>B-052-1</u> (14)

N 542379.9472 E 1721745.3670 Grade El. 679.43

PROJECT AREA 2/3, JOHN E. AMOS POWER PLANT, ST. ALBANS, WV BORING NO. B-0525 ELEVATION _____ GWL 0 HRS _____ PROJECT NO. COYO3 84.40-01 HRS PAGE _____ of _____ DATE 25 MGY 2005 CLASSIFIED BY DAN SANGER DESCRIPTION BLOWS PER SIX INCHES OR CORE RECOVERY/RUN SAMPLE NO., TYPE & ROCK BROKENNESS RQD (%) OR TORVANE % ROCK RECOVERY CONSISTENCY OR RECOVERY OR USCS OR ROCK HARDNESS SOIL DENSITY -MATERIAL CLASSIFICATION **REMARKS*** DEPTH (FT.) PROFILE COLOR 1 7 4 5 2 3 6 8 9 10 AUGER W/O SAMPLING TO LO FT. INSTALL PIEZOMETER TIP AT 10 Fr SEE BORING B-0520 FOR SOIL DESCRIPTION 10.0 10.0 BOTTOM OF BORING 10.0 F.

REMARKS .. DRILLED BY TENRA TESTING, INC. USING A SIMCO 4000-TZ TRACK MOUNTED DRILL.

BOLING ADVANCED USING 5 1/4" SOLID STEM AUGERS

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. B-0525

gai consultants

	ION		GW	LC	HRS	Dry		Piwer Plant			NO. <u>0536 (MW</u> STNO. <u>COY0384</u> , 40
DATE	7-17	05		ર્ષ		13.8 SSIFIED BY		Gower			of
•		1						DESCRIPTION	-		
						1			1		
DEPTH (FT.)	BLOWS PER SIX INCHES OR	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	RQD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS*
1	. 2	3		4	5	6	7	8	9	+	10
			_				Red	Clayey Silt and Rock Fragments - Trace Sand			Start 1:35
			+		ଟ.ପ		BR	Fragments - Trace Sand			Moist
		+	-+		8,0		BR	Sond and Rock Fragments		+	
		<u> </u>			0.0			Sond and Rock Fragments		-+	Damp RF72" p
							Red	Clayry Silt and Rock		+	Moist RF<2"d
					11.0		BR	Fragments		+	MOIST NEVE Q
•							Red	Decomposed Claystone			Damp.
			+	-	19.0						Dry @ 14'
			+	\rightarrow	17.0		<u> </u>	4 V 0 19 0'			
								Bottom @ 19.0'		-+	Finish 2:00
								· · ·		+	<u> </u>
								Installation		+	Materia
	·					· · · · · · · · · · · · · · · · · · ·					
				-	ł			Sand 19.0'to 18.0'		4	10' Screen, ca
			-+-					10'Scrien 18:0 to 8,0'		-	9 Bags Sond 13/4 Bucket Pelle
					ŀ		•	Sand 18.0' to 6.0' Bentonite Pellets 6.0' to 3.0'			194 Bucket Pella
								water added to pellets		-+-	10 Bars Console Mix 16 x5 sterl Casin
			+					19'stekup pvc		1	
				_	-			2.3' shek up Strol Casing			
			+	-	┝	•				\downarrow	·
·			+		ŀ						
					ľ					╉	•
										+	·
					Ļ					1	
			_	_	Ļ						

Ò

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

7

BORING NO. 0536 (mw-1)

									nos	Power Plant		NG NO. 0535 (MW
							38	_			_PROJ	ECT NO. <u>CO40384.40</u> .
DATE	7-12	5-9	25		_	CLAS	SSIFIE	DBY	T.R.	Gower	- PAGE	= of
•	T	-			T							
							1			DESCRIPTION	-	
DEPTH (FT.)	BLOWS PER SIX INCHES OR	CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OB	ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	. 2	4	3	-	4	5	6		7		ļ	
		+			<u> </u>	<u> </u>			Red	B Clayey Silt and Rock	9	10
		+				1			BRR	Fragments -trace sand	<u> </u>	Moist Start 8:45
						10.0			1	trace sand	·	RF 72"4
				·					Red	Decomposed Claystone		Dry
						18.0						TOR 18.0
		_				Q, OÇ			Red	. weathered Claystone		Amger to 20.0
		_			<u> </u>				BRS	Fine Grain Sandstone W/		
· ·		+				23,0			Red	Interbedded claystone		
		╉					Har	.d	Gravy	Interbedded sandstone &		•
		╋							-+-	5.1-stone -frwthin Red		
	<u> </u>	╉	·			<u>ж,</u> 0		,	Red	Claystone Seams		
	·	╈				લ્નુ.)			REG	Claystone		few see. of molit
		╈		-		(), "', e =#			(stav/	Siltstone/shale		cutture @ 42.0'
						58.0			1/	JIII ONC/SMAIL		mat isvan & th
		T				60.0			Red	Clayston-e		AN AND AF AN ADDA AN
									Growy	Silfstone		Moist cuttings boil
		\perp				<u>-25</u>			1C			water in hale
		_							·	Bottom @ 62.5		End 10:35 AM
		+		\square								
		+-										•
		╋		-		ŀ		-		Installation		Materials
		╋				ŀ				Sand 62.5 to 62.0'		20' 2" \$ PVC Some
<u>-</u>		╋		-+		ŀ				Screen 62.0' to 42.0'		4 Bags Sand
		\uparrow		+	-	ŀ		\dashv		Sand 62.0° to 37.0°		1/4 Bucket Pellet
		\uparrow		-		ŀ				Bentomite Pellets 37.0-34.0 Pellets into water		4 Bags Valclay grad 10 Bag Conside MIX
						ŀ				Volclay to 4.0'		IN Das Conclose MIX
		Γ				L L				Concrete 40 to 0.0', 6' & Pad		
				T		Ī				Steel Casing 2.1' Stickup		f

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0535 (MW-2)

N	541672.50	
Е	1755563.50	Grade El.

823.00 Top of PVC Riser El. 825.00

							ios p	ower plant		GNO. 0527 (MW
ELEVATIO	ON	•	GWI		HRS	Dry.			PROJE	CT NO. CO40384. 40.0
DATE	6-2	4-05	5	40	CLAS	17.0 SSIFIED BY	TR	Gower	PAGE	of
•								DESCRIPTION		
ОЕРТН (FT.)		တိ	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	. 2	3		4	5	6	7	8	9	10
							Red-	Silty Clay		Start 10:15 AM
			\rightarrow		2.0		BR.	V		Damp
	·				1		BR	Clavey Silt		Dry
					12.0		¥.			1
		. · ·			ŀ		Red-	- Silly Clay to Decomposed		Dril, slow
				\neg			BR.	claystone		augering damp at =16
					25.5	/	V			damp at =16
					<u>w.j</u>	<u> </u>	Gray	Weathered sandstone-with		moist at 25
							BR	fine mica grains		Auger Refusal 25.
			+	-	30,4			- V		6-27-05 WL=17
				-			Red	Siltsbure		Start air rottoning
	·····	L	-+-	-	41.0		- V	Y		@ 8:30 AM
			+					Bottom @ 41.0		Finish@ 9:00m
										Clean hole 9:00 to
	··			{				Installation		11:00. Drilling
			+					Pellets 41 to 32,5'		while drawing 41:0
		<u>_</u>	-+-					Sand 32.5 to 32.0		Material
				\neg				20'Screen 32.0'-12.0'; 11/2"cop		20' 2" à screen
			+	\neg		•		32.0 to 9.0 Sand Bentonite pellets 9.0 to 7.0		à caps
								pennille pellets 7.0 to 7.0		12 bags sand
			+	-1	ł			rbucket water poured mpellets Volclay grout to 3.3'		1 bucket pelle
				\neg	ł			Concrote MIX 10 Bags		Va Bag Volclay
			-					5' steel pipe 6"\$ 2.5' stickup		10 Bags Concrete Mi
•					f			> Our whick O		6"xs' steel Casing
					Ī			2' pvc stick up 2.5' steel Casing Stick up		
					ſ					
										·····
					Ī					
T			T	7	[•				

SIMCO 4000-TA Track Rig, Doug Novothy Driller, Trive Testing

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0527 (MW-3)

				GW	ΈL C	HRS	19.2		over Plant	_BORIN	GNO. <u>0532 (mw-u</u> стно. <u>Соно Зач.</u> ч
ATE	7-7	- 6	05		24	HRS	17.9	TR	Gower	PAGE	of
•		Ť				1			DESCRIPTION	-	· · · · · · · · · · · · · · · · · · ·
DEPTH (FT.)	BLOWS PER SIX INCHES OR	COHE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	. 2 .	Ť	3		4	5	6	7	8	9	10
	12	+		_		2.0		BR	Sandy Silt .		Damp, start 9:45
		+						BR	Sand and Rock Fragments		Domp
		╉				6.0		+	of shale		
		╋						BR	Sandy Clay-some Rock		RF < 2" \$, Moist
		+	:			9.0		Red	Fragments of Soudstone		Auger to 10.0' refus
		+		-+	<u> </u>			I I	. Decomposed Claystone		Damp, TOR 10.0'
		╈		-+		12,5			weathered claystone		· .
		+						Gray	Siltstone Interbedded with		
		T						Red	Claystone/clayshale		
		Τ				41.0					
								Gray	Silt shale / Sil-stone - trace		
						49,0		↓'	Red scams of claystone.		
		╇		\square	•	•	soft	Red	claystone		
		1		_		53.0		V.	4		
		╇		-+		_		Grand	Termine Stashale 1		·
	<u> </u>	╋				<u>68.0</u>		Red	claystone		
		┢		-+		70.0		Gray	Silfrane	•	Net cuttings lost
		╋			-	10.0	• •	Grav	Sandstone	-	dust@ 58:01 wat
		╋		+		78.5		V			from hole by 62:0"
	1	+		-†		1	¥		Bothom @ 78.5'		More water (71.0!
-		T		1					001 GW & 78.5		
									Installation		Maiterials
·		Γ				Ì			Sand 7815 to 7810', 20'		4Bass Sand
									Screen 78.0 to 58.0' Sand		1/2 bucket pellets
						[7510 to 53', Bentonite to		2 bags Volcley gr
		1		_		ļ		· .	49.0' Volclay growt to 3'		10 Bays Concrete Mi
		+-	-	_					Concrete to 0.0, 6'd pad		6"x5' strel Casing
	·· 41/4 "-	L	·				•		PUC stickup 1.6, steel 2.1		

4

* POCKET PENETROMETER READINGS

.

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0532 (mw-4)

N	542305.96
---	-----------

E 1753080.68 Grade El. 674.84 Top of PVC Riser El.

676.84

PROJECT	Are	مر	2/3	>	70	hn	E			·	BORING	ANO. 0533 (MW-5)
ELEVATIO	DN			GW	LO	HRS	D	\underline{r}			PROJE	CTNO. <u>CO40384,40.01</u>
DATE	7-7-	5	\$	9	14	HRS CLAS	SIFI	ED BY	TR	Gower	PAGE	of
						<u> </u>				DESCRIPTION		· · · · · ·
DEPTH (FT.)		CORE RECOVERY/RUN	SAMPLE NO., TYPE &				SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	+	3		4	5		6	7	8	9	10
						3.0			BR	Sandy Silt		Domp
	•					6.0			BR	Sand and Rock Frequents.		Pamp
									BR	Sandy Clay and Rock		Moist
· · · · · · · · · · · · · · · · · · ·		_				9.0				Fragments		
					<u></u>	10.2			Red	Decomposed Claystone		Dry
		-					<u> </u>			Buttom @ 10,2'		
						1	<u> </u>			Installations.		Material
							╞─		•	3" send tor 10.0		4 Bra Sand
						1				3" sand to 10:0" 5' Screen w/ cap 10.0-5.0"		4 Bog Sand 1/2 Bucket Pallints
										Sound 10.0 to 4.0		10 Bass Concrete Mix
										Bentonite Pellets 4.0-3,0		10 Bass Lincrete Mix L"x & Sterl Casing
		\downarrow								Comment 3.0'- o', c'ppad 2' stick up pVC 2.2' stick up steel Casing_		
										2' stick up pvc		
		-				1				2.2 Stick up steel Casing_	· ·	
												· · ·
						1						
												· · · · · · · · · · · · · · · · · · ·
						ł	<u> </u>					•
		+										· · · ·
		+	· · · ·									
		+										· · · ·
		_										•
	l								L			
REMARKS	**41/4	Y	TO	H S	<u>p.</u>	72-	10	.2,	Sim	CO 4000 -Ta Thack Rig	• • • • • •	•
Doug	Nov	19	tny	<u>, v</u>)r()	ller	· , ⁻	Terre	Te	ting		

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0533 (MW-5)

E 175										/C Riser El. 929.59		
	- in	1 .		-			1	$n \epsilon'$				NG NO. 0526 (MW 6
LEVAIN				GW	יב 0 בעל	HRS	6	2+0	in we	241	_PROJ	ECT NO. 0040384.40
ATE	6-	23.	05		ел -7,- -	CLAS	SSIF	ZIS ZIS	TRO	FOWEF	- PAGE	E of
•		<u>_</u>								DESCRIPTION]	· · · · · · · · · · · · · · · · · · ·
DEPTH (FT.)	BLOWS PER SIX INCHES	OH CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY -	CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1			3		4	5		6	7	8	9	10
	· ·								Red	Clayey Silt .	1.	Start 9:00 AM
	<u> </u>					10.5			Brn.			
	<u> </u>					/010	Ľ		Vellow	Highly weathered siltstone		
	<u> </u>								BR	to-fine grain claystone		· · · · ·
	 					13.5						Augento 14
										Sandstone		Air Hammer 14 togi
									Gray	C 25	<u> </u>	8 /10 min in sandstone
•	{					28.0				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
							┣		Gray	shale		
						30.0			Red	V V		
						36.0	<u> </u>		1 NEG	Claystone		
		_				36.0			Gray	Sand stone	+	
	<u> </u>			-		38,0			Gray	June stone		
									Grow/	Interbedded shale and		
					₩	76.0			Red	siltstone / fine sand stone		Water encountered
										water @ 76		@76'
						91.0					ŀ	End II: SOAM
									•	Bottom of Baring Callo		
										Tustallation		material -
	<u> </u>								L	Cleanhole 11:30-12:25		
									ļ	Stabilize watere 62.55 2:00		·
	<u> </u>				_					Place bontonite pellets 91.0'		2 buckets bentomite
		<u>.</u>								to 78.5', Sand 78.5' to 78.0 Set 20' screen @ 78' to 58'	1	4 50165 bags sand
•										Set 20 screen @ 78 tr 58'		2% 5010 bag volctay
		-+								B" screen caponend, stick up		10 Bags Concrete Mix
					-					2.3' Sond 78.0 to 55' bentonite pellets 55 to 50'		6"x 5" steel casing
				-+				·				
	ļ									Volcay grout to 4.0 6-29-05	1	

Simed 4000-To Track Rig, Doug Novotny Driller, Terra Testing

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0526 (MW-6)

	T <u>Are</u> ON		GWI	_ 0	HRS	40.0		tour	- Plant		GNO. <u>0528 (</u> # CTNO. <u>C04038</u>
DATE	6-27	-05		18		37.0 SSIFIED E	IV (TRG		PAGE	of
•	1	1			1				DESCRIPTION	-	0/
									LESCRIFTION	1	
DEPTH (FT.)	BLOWS PER SIX INCHES OR	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR	ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	. 2 .	3		4	5	6	士	7	8	9	10
	ļ	<u> </u>	_					BR	Silly Sand and Sandstone	·	Start 3:50 PM
					<u>a.o</u>			<u>.</u>	Rock Fragments		Drv
			+	_	6,0			BR	Decomposed Sandstone		Dry
		1	+		40,0			Gray	Sandstone		Auger Refusal@c
								BR			Ory
					22.0	Hard	-	Gray	18.0' to 22.0'		\$17/min
•			-	_				BR	Sillstone		
			+					Gray	¥		
		+	+	-				Red Gray	from 24'		Water Encountere @ 40.0'
			-		<u>es,s</u>			J'			End 5100 PM
									Bottom @ 55.5		Clean with air
			-	· .	•						Untill 5: 40PM
			+	-			_		· Installation		Materials
		1	+				╉		Sand 55.5'to 52.0'		4 bag sand Vy bucket pelle
									Sand 52.0 to 30.0'		2 Bags Volclai
									Bentonite Pellets 30.04028.0		1.0 Bags Concret
	 		+	_					Bucket of water on Pellet >		6" \$ steel Co
				\neg		••••••	+		Volclay Growt to 3.3; 3.3'of		5' total Iruq?
			+	-			+-		Concrete. Pad 6 diameter		
		<u> </u>	+	\neg			+-		2' stickup PUC 2.5' stickup steel casing		· · · · · · · · · · · · · · · · · · ·
					ļ		1		are storing abor casing		
			+								•
	· · · · · ·		+		ŀ						

BORING NO. 0528 (MW-7)

** METHOD OF ADVANCING AND CLEANING BORING

								os Pi	surer Plant	BORING	ANO. 0534 (MW-8)
ELEVATI	ON			. GW	L 0	HRS	19.8'			PROJE	CT NO. COYO 384.40.
DATE	7-	11-	02		48	HHS CLAS	23.8' SIFIED BY	TR	Gouit	PAGE	of
	7				-					-	
									DESCRIPTION		
DEPTH (FT.)	BLOWS PER SIX INCHES	CORE RECOVERY/RUN	SAMPLE NO., TYPE &	% ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2			3	4	5	6	7	8	9	10
								Red	Silly Clay		Start 11:00 AM
			-)(-		<u> </u>	6,0		4		<u> </u>	moist
					<u> </u>			Red	Decomposed Claystone	<u> </u>	Dri/
					\vdash	9,0		Catuld	V Lala Libra		
						23.0		Granit	Sandy shall / sandstone Med Grain.		TOR 10.0
	+			_		23.0		Red	Claystone		10:30 an Rotany. Slight Hammering
	-					26,0		NC G			Slight Fammering
						28.0		BR	Sandstone/sand, shale		
							Hard	Gray	Sandstone		
]		BR	C 34		
						37.0	- V	1	¥		
								Red	Claystone		Moist@top 6"
					<u> </u>	41.0		+			Moist autings back
					<u> </u>	-	Hard	Gray	Sandstone / Sandy shale	<u> </u>	× 1/2 afaid' Run
									· · · · · · · · · · · · · · · · · · ·	<u> · · · · · · · · · · · · · · · · · · ·</u>	
						60.5					End 12:35PM
	+		<u> </u>						Bottom @ 60.5'		ENGICISSIN
									DOTION C GUIS		
						1			Installation		Materia
						1			60.5 to 60.0'Sand	<u> </u>	20' Screen, Zeaps
]			3" cap a bottom 20' Screen		
									Screen 60.0 to 40.0;		5 Bags Sand 1/4 Bucket Rellets
									Sand 60,0 to 20.0',		3 Bags Volclay
	_								Bentonite Pellets to 27.0'		IL BAGS Concrete Mix
						-			Volclay Growt to 3.0"		G"x5" Stel Casing
					-				Concrete 3.0 to 0.0', & \$ Pad		
									2' stick up of NC		
			L		L	L	L	L	2.5' Stick up of steel Casing 1.0', 4 O Air Rotary to 60,		l

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0534 (mw-8

N 544221.98

933.39 Top of PVC Riser El. 935.39

LEVATI	ION	otor (GWL	0 HRS	47.4'		······		GNO. <u>0530 (MW-</u> CTNO. <u>CO40384.4</u> 0
ATE	6-30	-05	ፖር	I HRS	47.4 30.2 SIFIED BY	TR	Gower	PAGE	of
	1	1						-	
					1	1	DESCRIPTION	-	
DEPTH (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	- MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	. 2	3	4	5	6	7	8	9	10
				1		Red	Silty Clay.		Start 11:10 AM
	<u> </u>			2.0					Moist
			_	1		Red	Decomposed Claystone		Dry, Augen to 5.0
				5.0			- V		Air Rotary 11:30
				-		Red	Claystone / clayshale		Hanmerinclayston
				15.0		trace grav	·		Less @ 12'
				-	11 1	BR	Fine grain Sandston-e		
· · · · · · · · · · · · · · · · · · ·				29,0	Hard	Grai/	18 to 20'		
			_	0,15		BR	Sandy shale		
				35.0		KT G	Claystone / clayshale		
			+	100.0		Come	Sillistone w/sandstone		
	<u> </u>			-		Gray trace red	seams / silt shale		
				440		160	Water Encountred Q42		Water Enroundered 42
						Red	Claystone		
				51.0					
					Fard	Gray	Sandstone		End Duilling 12:409
				42.5			¥	·	<i>0</i>
							Battom @ 62.5'		Let sit 15min blow
			_						out water = 30 Sec
		ļ		4			Installation		then dry, ismin
				-			62.5 to 62.0' Sand		on 15 sec of water
			—	-			20'Screen 62.0'to 42.0'		Add pottable water to
	<u> </u>			-			Sand 62.0'to 37.0'		clem hole sogets
			_	-			Bentonile Pellets 37.0'-34.5'		Materia 1
							Volcay growt to 3.0;		5 Bags Sand
							Concrete 3.0-0.0 6 Diametr		20' Screen 14 bucket fellets
				1		· ·	Pod 2' stickup PVC		
	1						21/2 stick up 6t & steel Casine 2.5' stickup		Volclay, 9 Dags Concre

, Doug Novotny: Driller, Jerra Testing REMARKS .. 25 ft N345 W from Survey PL, 307

Track Rig Simco 4000-Ta

* POCKET PENETROMETER READINGS

BORING NO. 0530 (MW-9)

** METHOD OF ADVANCING AND CLEANING BORING

N 544019.11

PROJECT	Area	2/3 3	5 ohr	E	Amos t	OWER	station	BORING	ANO. 0531 (MW-10)
ELEVATIO	DN NC	G	WL	HRS	Dry .				CT NO. CO 40 384, 40.01
			24	HRS	102		Gower	PAGE	of
DATE	6-30.	05		CLAS	SIFIED BY	T.R.	Gower	·	
	1						DESCRIPTION		
DEPTH (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR	% ROCK RECOVERY ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR POCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
				3.0		BR	Clavey Silt Decomposed Claystone Weathered claystone		Start 4:00.
						Red	Decomposed Claystone		Dry
				0.11			weathered claystone	ļ	Auger to 10.0'
			_	_		LT BR	Silty shale / siltstone		
				20,0		¥ .	· · · · · · · · · · · · · · · · · · ·		
		ļ		_ ·		BR	Sandstone		
				2.0				140	
100		<u> </u>		_		Lt Gray	Siltstone - Red @ 29.0		
				34.0			Gray @ 31.0		
				36.0	:	Red	Claystone		
				40:5	Hard	Gray	Fine grain Sandstone		
				- 10,0		Red			
				-	<u> </u>	Gray	Claystone		
				46.0			Siltstone		stup sioo @ sz
				58,0		Gray		· .	5150 5100 € 32
				(Red	Claystone Siltstone / V. Fine Grain	1	
					J	Groy	Sandstone, shaley	1	-
		+		- 71 ~	Hard	Gray			
			+			I I			
	-		+		Soft	Red	Siltstone / Claystone		
				810		1 t	V		
					Hard	Gray	Sondstone		
				-		Gray	Siltstone		•
				84.0		ŢŢ,			
					Hard	Gray	Sandstone/w/6" seams		
						ľ	of softersiltstone		Stop @112' 11:05 AM
				125.0		1			
				-		Red	Claystone		
				138.1					

REMARKS ... 4/4 ID Hollow Stem Angers to 10.0', 4" Air Rotary w/hammer 10.0' to 157.0

Simco 4000-T2 Track Rig, Doug Novotny Driller, Terra Testing.

* POCKET PENETROMETER READINGS

BORING NO. 0531 (mw-w)

** METHOD OF ADVANCING AND CLEANING BORING

						s Po			ANO. 0531 (MW -10)
ELEVATIO	ом ис	GW	L O	HRS	pry			PROJE	CT NO. 040384,40,0
DATE	7-1-0		24	HRS	102	T.R.	Gower	PAGE	2 of
	1						DESCRIPTION		
ОЕРТН (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERV/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) OR TORVANE	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	. 10
				149,0		Gray	Sultatione		Dry
				152,0		, i	ł		
				153.9		Red	Claystone		
				154.0		DKGroy	Sondstone w/mica grains		
						Gray	Silfstone		
				157.0	1				End 12:05 PM
			 .				Bottom @ 157.0'		
				1			Installation		Material
				4			Hole measured @ 154.0		11 bags sand
				$\left\{ \right.$			Sand to 153.0', 20' Screen 153.0' to 133.0', Sand		14 bucket pellets 4/2 bear volclar.
]			153,0 to 85.0', bentonite		10 Bags Concrete MIX
]			pellets to 81.0', Volclay		6 or x5 steel
			<u> </u>	-		<u> </u>	153.0 to 85.0', bentonite pellets to 81.0', Volelay to 3.5', Concrete 3.5 to 0.0' 6" \$ x 5' steel Casing, 6'		Casing
			+	-			6 0 x 5 steel casing, 6		
		<u> </u>		\mathbf{I}			diameter Pad 2' Stick up PVC 2.5' Stick up Steel Casing		
		+		1			2.5 Shok up shed Casing		
	-	<u> </u>	1	1					
				4					
				-	· · · · · · · · · · · · · · · · · · ·				· ·
·				-					
				-			<u> </u>		+
L		.1		-J	-L,	<u> </u>	I		

REMARKS ** _

* POCKET PENETROMETER READINGS

** METHOD OF ADVANCING AND CLEANING BORING

BORING NO. 0531 (MW-10)

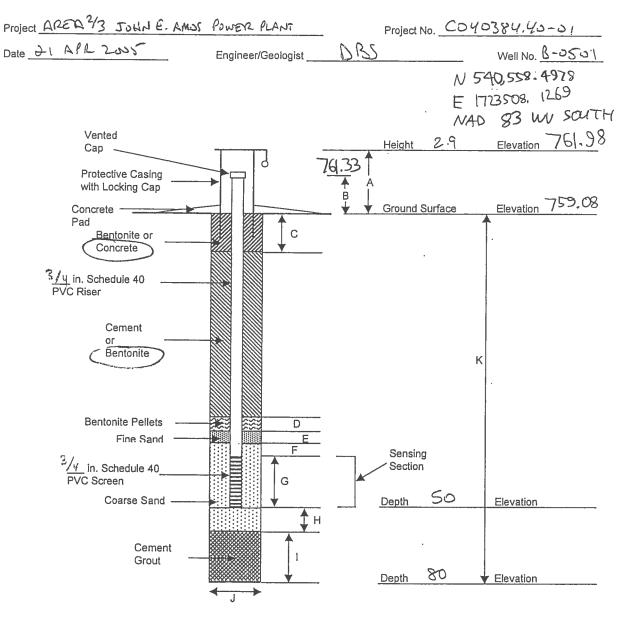
.

Definition of Terms

Used to Describe Subsurface Materials

DENSITY OF GRAN		301L8
	ULAR SOILS BASED ON ST	TANDARD PENETRATION RESISTANCE STANDARD PENETRATION
	DESIGNATION	RESISTANCE (BLOWS/FOOT)
	VERYLOOSE	0-4
	LOOSE MEDIUM DENSE	5 - 10 11 - 30
	DENSE	31 - 50
	VERY DENSE	OVER 50
CONSISTENCY OF	COHESIVE SOILS IS BASEI UNC COMPRESSIVE STR.	D ON FIELD AND/OR LABORATORY TESTS
CONSISTENCY	(TONS PER SQUARE FOOT)	FIELD IDENTIFICATION
VERY SOFT	LESS THAN 0.25	EASILY PENETRATED SEVERAL INCHES BY FIST
MEDIUM STIFF	0.25 TO 0.50 0.50 TO 1.0	EASILY PENETRATED SEVERAL INCHES BY THUMB CAN BE PENETRATED SEVERAL INCHES BY THUMB WITH MODERATE EFFORT
STIFF	1.0 TO 2.0	READILY INDENTED BY THUMB BUT PENETRATED ONLY WITH GREAT EFFORT
VERY STIFF HARD	2.0 TO 4.0 MORE THAN 4.0	READILY INDENTED BY THUMBNAIL INDENTED WITH DIFFICULT BY THUMBNAIL
	IS USED IN THE DESCRIPT	
ΝÐ	THE MATERIALS OCCUR IN THIN S	JAL AMOUNTS OF MATERIALS, SUCH AS A SAND AND GRAVEL MIXTURE. IF SEPARATE BEAMS, IT IS NOTED IN THE DETAILED WORD CLASSIFICATION.
SOME	THE THICKNESS IS GIVEN WHERE INDICATES A SIGNIFICANT AMOUNT	E POSSIBLE. INT OF THE ACCESSORY MATERIAL
59405	EXAMPLE: MEDIUM DENSE SI	SILTY SAND - SOME GRAVEL
TRACE	INDICATES A MINOR AMOUNT OF EXAMPLE: LOOSE SILTY SAN	
INTERBEDDED	USED TO DESCRIBE THIN ALTERN	NATING SEAMS. THICKNESS IS GIVEN WHERE POSSIBLE
	EXAMPLE: HARD INTERBEDO	DED SILT AND CLAY (APPROXIMATELY 1/16" THICK)
*F611		ROCK
TERM	THIN (12 INCHES OR LESS) PROB	DEFINITION BABLY CONTINUOUS LAYER
SOME	INDICATES SIGNIFICANT (15 TO 40	0 PERCENT) AMOUNTS OF THE ACCESSORY MATERIAL
	EXAMPLE: ROCK COMPOSED	OF SANDSTONE (70%) AND SEAMS OF SHALE (30%) WOULD BE: SANDSTONE -
-EW	SOME SHALE SEAMS INDICATES: MINOR (0-15 PERCEN	NT) AMOUNTS OF THE ACCESSORY MATERIAL
	EXAMPLE: ROCK COMPOSED	D OF SANDSTONE (90%) AND SEAMS OF SHALE (10%) WOULD BE:
NTERBEDDED	SANDSTONE - FEW SHALE SE	AMS IY THIN ALTERNATING SEAMS OF MATERIAL OCCURRING IN APPROXIMATELY
MILROLUDLU	EQUAL AMOUNTS	THIN ACTERIALING SEAMS OF MATCHIAL OCCURRING IN APPROXIMATELY
	EXAMPLE: ROCK COMPOSED	OF SANDSTONE (50%) AND SHALE (50%) SEAMS WOULD BE INTERBEDDED
	SANDSTONE AND SHALE. THE DEGREE OF BROKENNESS	IS OF THE ROCK IS DESCRIBED BY ONE OF THE FOLLOWING TERMS:
	DESCRIPTIVE TERMS	ABBREVIATION SPACING
	VERYBROKEN	(V. BR.) LESS THAN 2 INCHES
	BROKEN BLOCKY	(BR.) 2 INCHES - 1 FOOT (BL) 1 FOOT - 3 FEET
	MASSIVE	(M.) 3 FEET - 10 FEET
	ROD-ROCK QUALITY DESIGNATIO	ON IS CUMULATIVE LENGTH OF PIECES OF CORE EQUAL TO OR GREATER THAN FOUR INCHES AL LENGTH OF CORE RUN, EXPRESSED AS A PERCENTAGE.
		D TO SEDIMENTARY ROCK
ROCK TYPE		
SANDSTONE	MADE UP PREDOMINANTLY OF G	, IRANULAR MATERIALS RANGING BETWEEN 1/16 AND 2MM IN DIAMETER IALS LESS THAN 1/16 MM IN DIAMETER. FRACTURES IRREGULARI Y, MEDILIN THICK TO THICK REDDO
SANDSTONE	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERIA VERY FINE GRAINED ROCK MADE	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS
SANDSTONE SILTSTONE CLAYSTONE	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERIA VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING (IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES.
SANDSTONE SILTSTONE CLAYSTONE SHALE LIMESTONE	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERIU VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING O A FISSILE VERY FINE GRAINED RO ROCK MADE UP PREDOMINANTLY	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES (LA COS) BEDDING PLANES Y OF CALCITES (LA COS) BEFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID
SANDSTONE SILTSTONE CLAYSTONE SHALE LIMESTONE	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERI VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING O A FISSILE VERY FINE GRAINED RO	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES (LONG BEDDING PLANES Y OF CALCITES (CA CC3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS
SANDSTONE SILTSTONE CLAYSTONE SHALE IMESTONE COAL	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERIU VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING O A FISSILE VERY FINE GRAINED RO ROCK MADE UP PREDOMINANTLY	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES Y OF CALCIETS (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND
SANDSTONE SILTSTONE CLAYSTONE SHALE LIMESTONE	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERIU VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING O A FISSILE VERY FINE GRAINED RO ROCK MADE UP PREDOMINANTLY	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES (LONG BEDDING PLANES Y OF CALCITES (CA CC3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS
SANDSTONE SILTSTONE CLAYSTONE SHALE LIMESTONE COAL	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERI VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING O A FISSILE VERY FINE GRAINED R ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF O	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES Y OF CALCIETES (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND
SANDSTONE SILTSTONE CLAYSTONE SHALE LIMESTONE COAL	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERI VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING C A FISSILE VERY FINE GRAINED R ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF OF CLAYSTONE	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES YOF CALCIETS (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND O 2" O.D. SPLIT BARREL SAMPLE
SANDSTONE SILTSTONE CLAYSTONE SHALE JIMESTONE COAL RESIDUAL SOIL	MADE UP PREDOMINANTLY OF GI MADE UP OF GRANULAR MATERIN VERY FINE GRAINED PROCK MADE IRREGULARLY SPACED PITTING C A FISSILE VERY FINE GRAINED RC ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF OF CLAYSTONE	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE EUP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES Y OF CALCITES (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND O 2* 0.D. SPLIT BARREL SAMPLE O CASING SAMPLE
SANDSTONE SILTSTONE CLAYSTONE SHALE COAL RESIDUAL SOIL GRAVEL SAND OR ALLUVIL	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERI VERY FINE GRAINED ROCK MADE IRREGULARLY SPACED PITTING C A FISSILE VERY FINE GRAINED R ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF OF CLAYSTONE	IALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDEE EUP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES Y OF CALCITES (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND O 2* 0.D. SPLIT BARREL SAMPLE Image: Casing Sample Casing Sample LENGTH OF CORE RECOVERED LENGTH OF CORE RECOVERED LENGTH OF CORE RECOVERED
SANDSTONE SILTSTONE CLAYSTONE SHALE COAL RESIDUAL SOIL GRAVEL SAND OR ALLUVIL	MADE UP PREDOMINANTLY OF GI MADE UP OF GRANULAR MATERIN VERY FINE GRAINED PROCK MADE IRREGULARLY SPACED PITTING C A FISSILE VERY FINE GRAINED RC ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF OF CLAYSTONE	ALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES YOF CALCIENTS (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND
SANDSTONE SILTSTONE CLAYSTONE SHALE COAL RESIDUAL SOIL GRAVEL SAND OR ALLUVIL	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERI VERY FINE GRAINED PROCK MADE IRREGULARLY SPACED PITTING C A FISSILE VERY FINE GRAINED R ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF OF CLAYSTONE LIMESTONE LIMESTONE JM SANDSTONE SANDSTONE SHALE	ALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE E UP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES Y OF CALCIERS (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND O 2* 0.0. SPLIT BARREL SAMPLE Image: Casing Sample Image: Casing Sample Image: Structure St
SANDSTONE SILTSTONE CLAYSTONE SHALE LIMESTONE COAL RESIDUAL SOIL GRAVEL SAND OR ALLUVIL SILT CLAY	MADE UP PREDOMINANTLY OF G MADE UP OF GRANULAR MATERI VERY FINE GRAINED PROCK MADE IRREGULARLY SPACED PITTING C A FISSILE VERY FINE GRAINED R ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF OF CLAYSTONE LIMESTONE LIMESTONE JM SANDSTONE SANDSTONE SHALE	ALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDE EUP OF CLAY MATERIALS. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID INDEALE O 2* 0.D. SPLIT BARREL SAMPLE O 2* 0.D. SPLIT BARREL SAMPLE O 2* 0.D. SPLIT BARREL SAMPLE INDEALE INDEALE 1.5.0 LENGTH OF CORE RECOVERED LENGTH OF CORE RECOVERED INDICATES 60 BLOWS REQUIRED FOR SPLIT BARREL
ANDSTONE SILTSTONE SLAYSTONE SHALE COAL RESIDUAL SOIL GRAVEL SAND OR ALLUVIL SILT CLAY ORGANIC MATER	MADE UP PREDOMINANTLY OF GI MADE UP OF GRANULAR MATERI VERY FINE GRAINED PROCK MADE IRREGULARLY SPACED PITTING C A FISSILE VERY FINE GRAINED R ROCK MADE UP PREDOMINANTLY ROCK CONSISTING MAINLY OF OI CLAYSTONE LIMESTONE LIMESTONE SANDSTONE SANDSTONE SANDSTONE SHALE IAL	ALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, MEDIUM THICK TO THICK BEDDI ALS LESS THAN 1/18 MM IN DIAMETER. FRACTURES IRREGULARLY, VERY SMOOTH TO TOUCH. GENERALLY HAS ON SURFACE OF DRILLED CORES. OCK. FRACTURES ALONG BEDDING PLANES Y OF CALCITES (CA CO3) EFFERVESCES UPON THE APPLICATION OF HYDROCHLORIC ACID IRGANIC REMAINS LEGEND O 2* 0.D. SPLIT BARREL SAMPLE Image: Casing Sample Casing Sample String Sample LENGTH OF CORE RECOVERED Jailobe Jailobe Superiod of Deal Recovered LENGTH OF CORE RECOVERED LENGTH OF DEAL RUN Jailobe Image: String GROUND WATER LEVEL AND DATE OF OBSERVATION Image: String GROUND WATER LEVEL AND DATE OF OBSERVATION Source of Deal RECOVERED FOR SPLIT BARREL TO PENETRATE 0.3 FEET

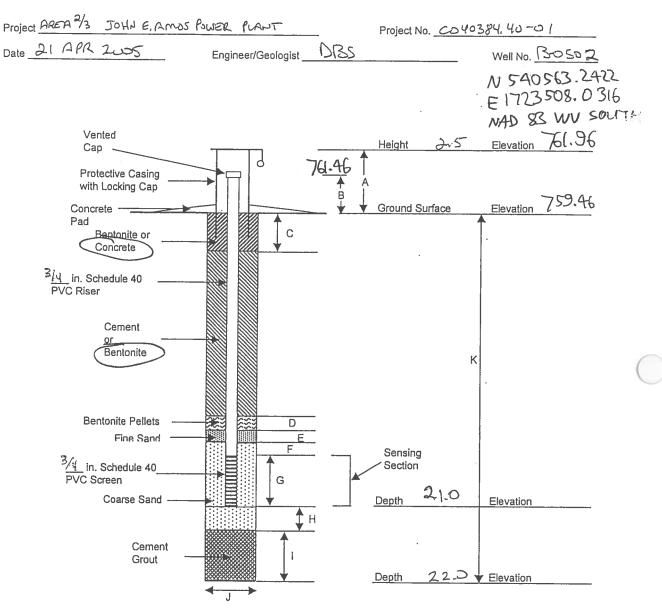
. .



GAI Consultants, Inc. 2006

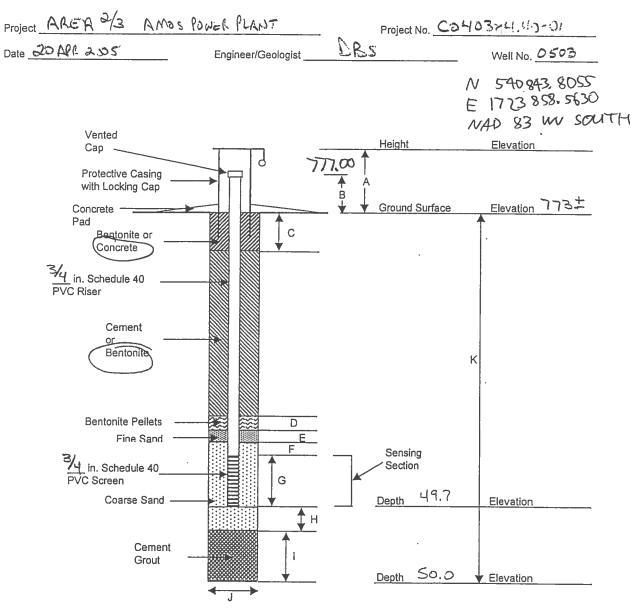
Well Construction Diagrams

B-0501 to B-0515, B-0517, B-0519 to B-0525 & MW-1 to MW-10


gai consultants

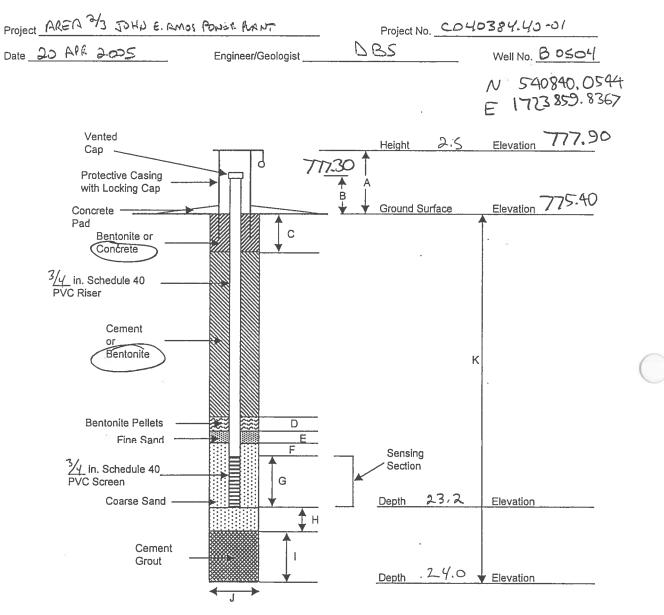
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMEN	ISIONS (Feet))	
A	В	С	D	E	F
2.9	2.25	35	0	. 0	5
G	Н	1	J	К	
10	3	30	0.25	80.0	


gal consultants

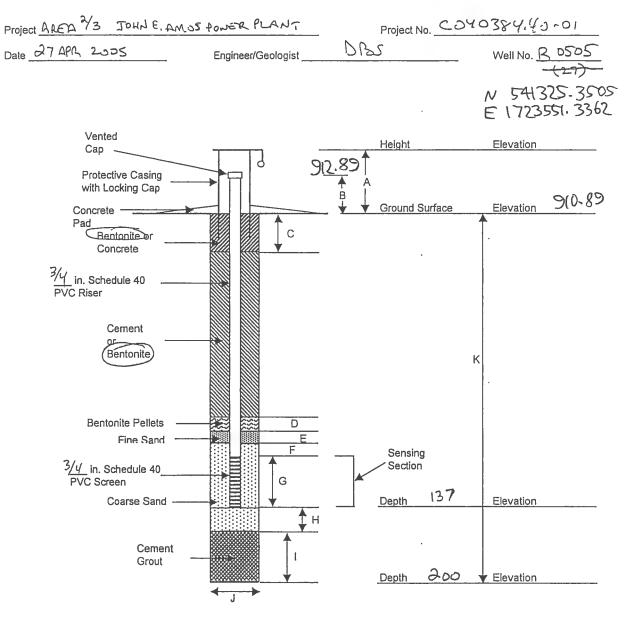
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	SIONS (Feet))	
A	В	С	D	E	F
2.5	2.0	7.0	0	0	4
G	Н	1	J	К	
10	1	0	0.25	22.0	


gal consultants

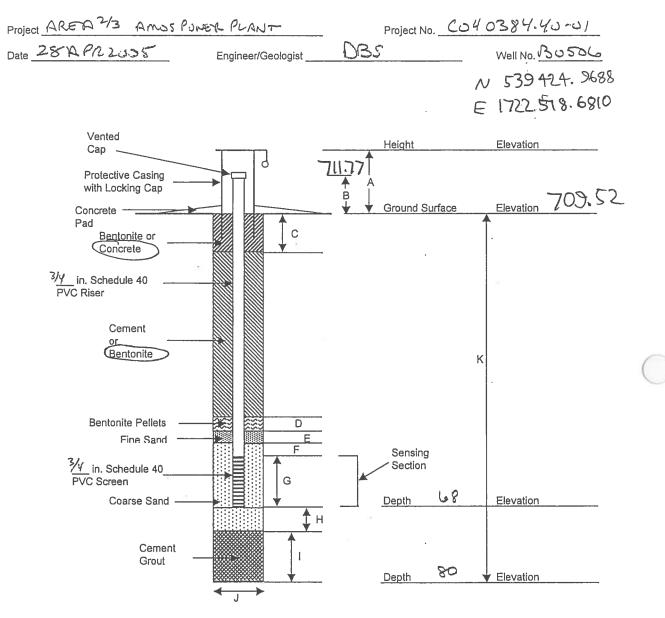
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	SIONS (Feet)		
A	В	C	D	E	F
2.6	2.0	34.7	0	0	5
G	Н		J	К	
10	0.3	0	0.25	50,0	



STANDPIPE PIEZOMETER INSTALLATION SKETCH

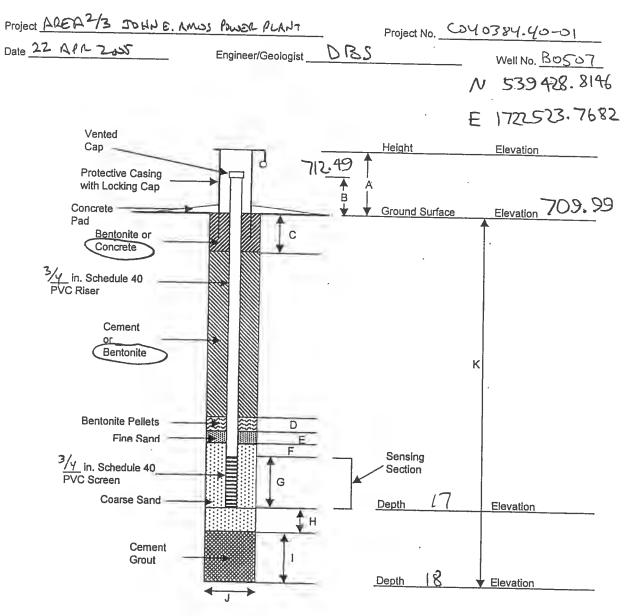
	DIMENSIONS (Feet)									
A	В	C	D	E	F					
2.5	1.9	8.2	ð	ð	5.					
G	Н	1	J	К						
10	0.8	0	0.25	240						



STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	SIONS (Feet)		
A	В	С	D	E	F
2.5	2.0	0	0	0	107
G	H		J	К	
20	3	60	0.25	200	

gal consultants



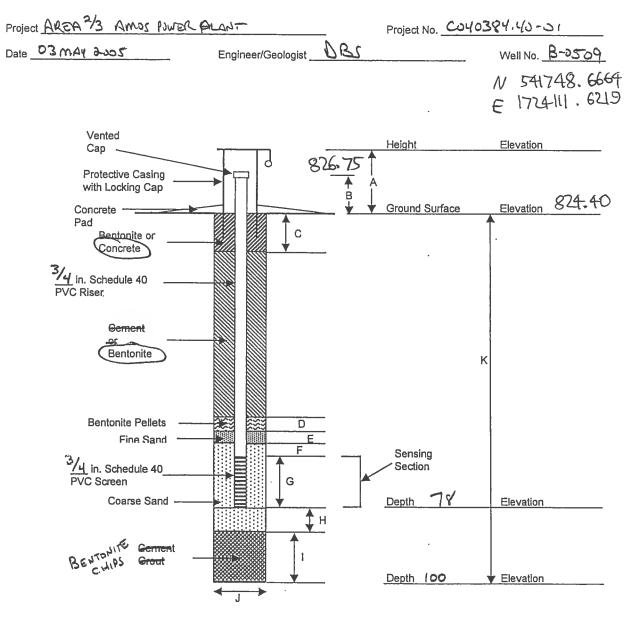
STANDPIPE PIEZOMETER INSTALLATION SKETCH

	DIMENSIONS (Feet)									
A	В	С	D	E	F					
2.55	2.25	20	0	0	38					
G	Н	1	J	K						
10	2	10	0.25	80						

Remarks ____

STANDPIPE PIEZOMETER INSTALLATION SKETCH

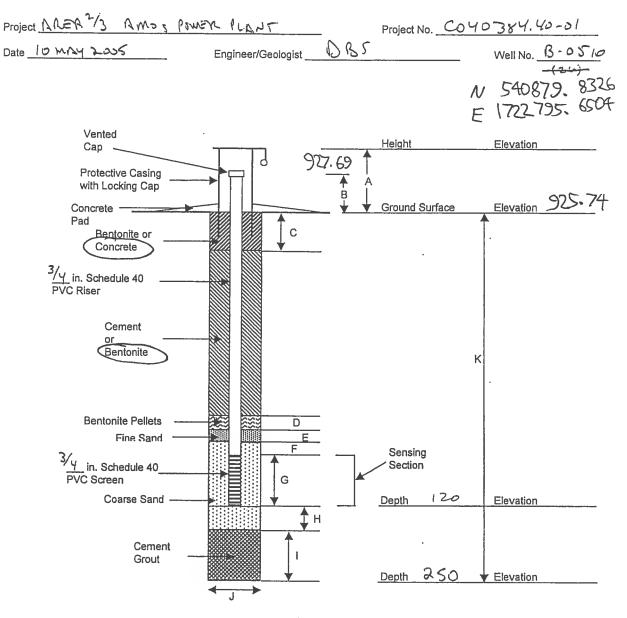
		DIMEN	SIONS (Feet)		
A	В	С	D	Ē	F
2.72	2.50	4	ଚ	0	3
G	<u> </u>		J	K	
10	1	0	0.25	18	


MONITORING WELL CONSTRUCTION DIAGRAM (Not to Scale) Project AREA 2/3 A MOS POWER PLANT Project No. <u>C340384.43-01</u> Well No. <u>B-0508</u> N 541 996. 9754 Date D3 mAY 2005 DBS Engineer/Geologist E1723377.3436 Vented Height Elevation Cap . 980.97 d Protective Casing **▲** B with Locking Cap 979.22 <u>Elevation</u> Concrete Ground Surface Pad С Bentonite or Concrete 3/4_ in. Schedule 40 PVC Riser Cement or Bentonite Κ **Bentonite Pellets** D Fine Sand F F Sensing 3/4 in. Schedule 40 PVC Screen Section G MJ Coarse Sand Depth Elevation ŧн BENTONITE Coment 2009 Depth Elevation J

gal consultants

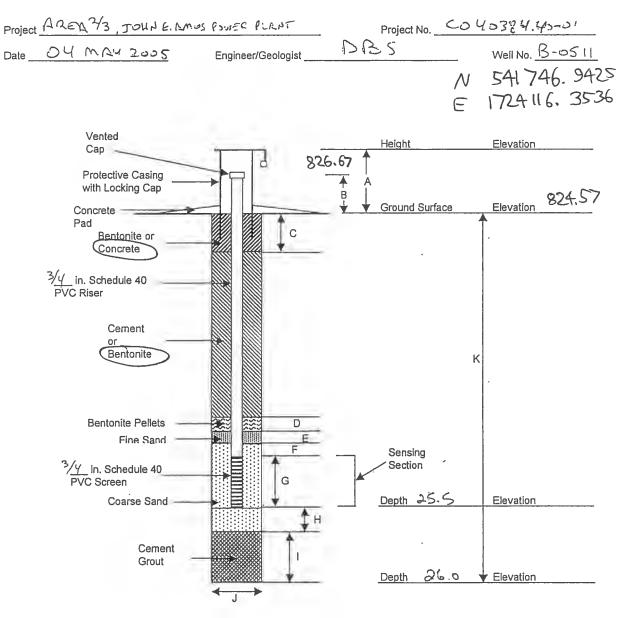
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	SIONS (Feet)	
<u>A</u> .	В	С	D	E	F ·
2.5	1.75	77			50.
G	н	1	J	К	
20	3	50,9	0.25	200,9	



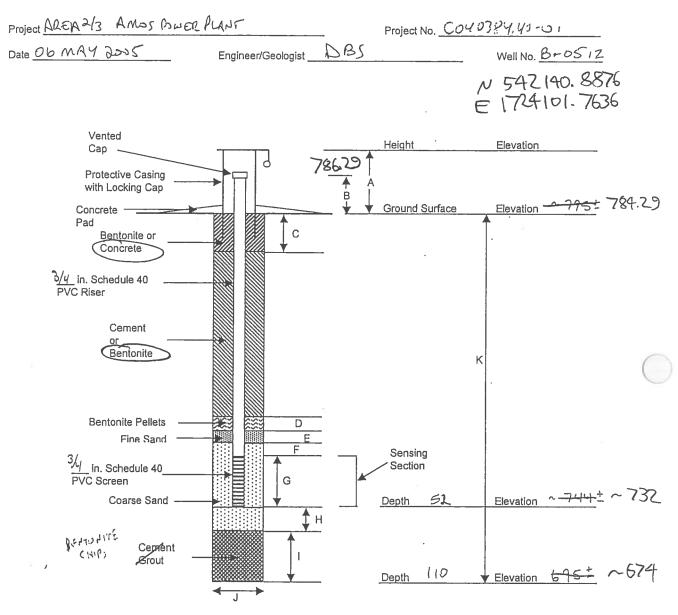
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMEN	SIONS (Feet).	
A	В	C	D	E	F
2-6	2.35	20		-	48.
G	Н	l	J ·	К	
10	2.0	20	0.25	130	


gal consultants

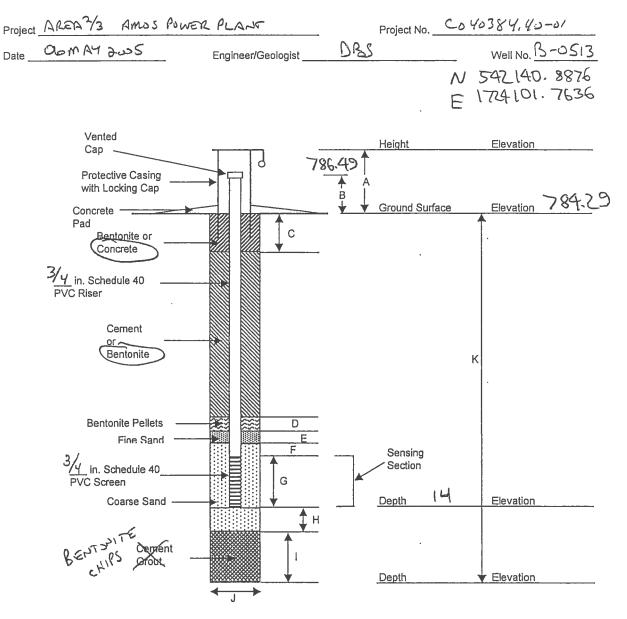
STANDPIPE PIEZOMETER INSTALLATION SKETCH

DIMENSIONS (Feet)									
A	В	С	D	E	F				
2.6	195	30	-		70 .				
G	Н	1	J	К					
20	2	1287	0.25	250,7					



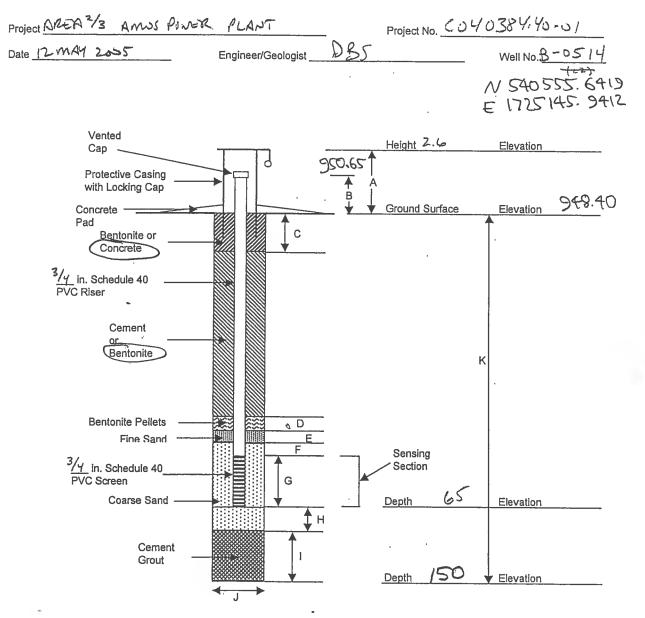
STANDPIPE PIEZOMETER INSTALLATION SKETCH

DIMENSIONS (Feet)									
A	В	С	D	E	F				
2.45	2.1	3,5	-		12.0				
G	Н		J	K					
10	D.5	_	0.25	26.0					


gal consultants 0

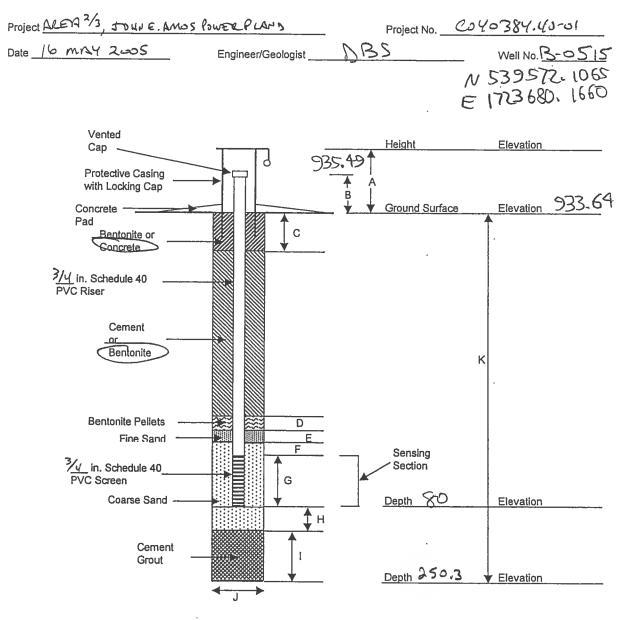
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	SIONS (Feet))	
A	В	С	D	E	F
2.6	2.0	20.0	•		22.0
G	Н	<u> </u>	J	К	
10	2	56	0.25	110	
Remarks	PIEZO	METE	r B-c	513 1	NITALLEI
in SA	IME B.	SRE 14	NE (TI	PAT IL	(FT)



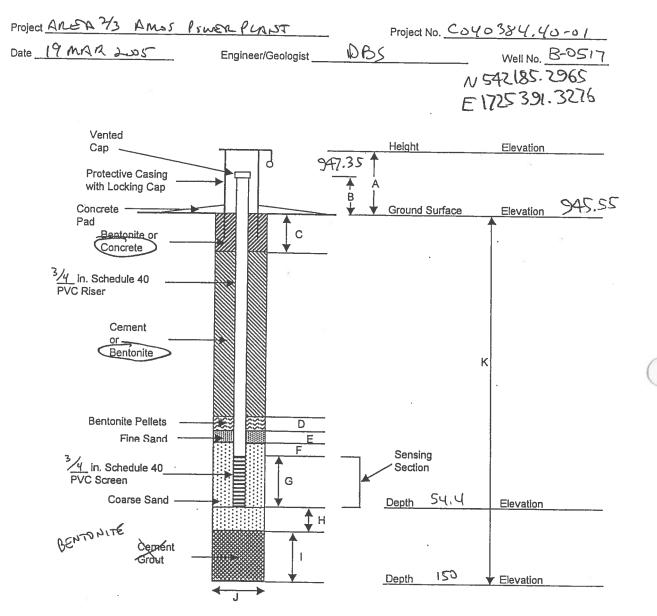
STANDPIPE PIEZOMETER INSTALLATION SKETCH

~		DIMENS	SIONS (Feet)			
A	B	С	D	E	F	
2.6	2.2	3		-	1.5.	
G	Н	1	J	ĸ		
10	2	<u> </u>	0.25			
Remarks _	NOTE :	PIEZ	METEN	r JNS	MLED	
IN SA	ime Bo	RE HOL	EAS	B-051	2_	
** 2 F	T SEAL	- BETWEE	N SANO	IACK FOR	B-0512	AN
SAND	PACK F	sa Bo	513			


gal consultants

STANDPIPE PIEZOMETER INSTALLATION SKETCH

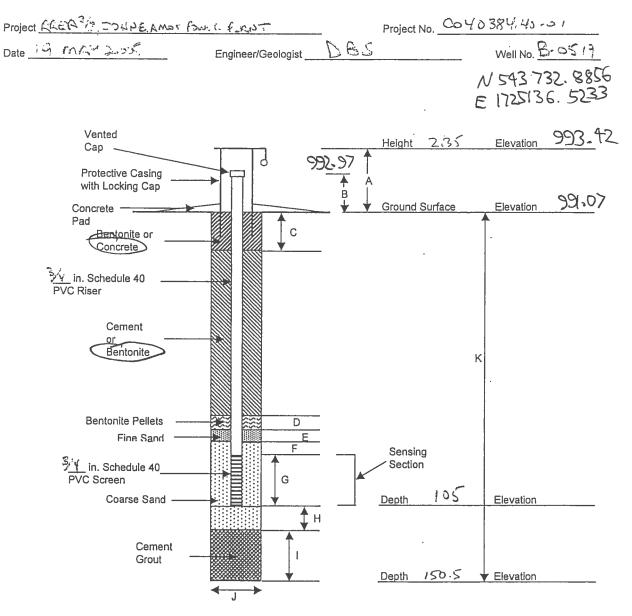
		DIMENS	SIONS (Feet))	
A	B	С	D	E	F
2.0	2.25	17	-	-	38 .
G	Н	<u> </u>	J	К	
10	2	83-	0.25	150	-



STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	SIONS (Feet)		
A	В	С	D	E	F
2.1	1.85	20.0	-		50
G	Н	I	J	К	
то	2	1683	0.25	250,3	

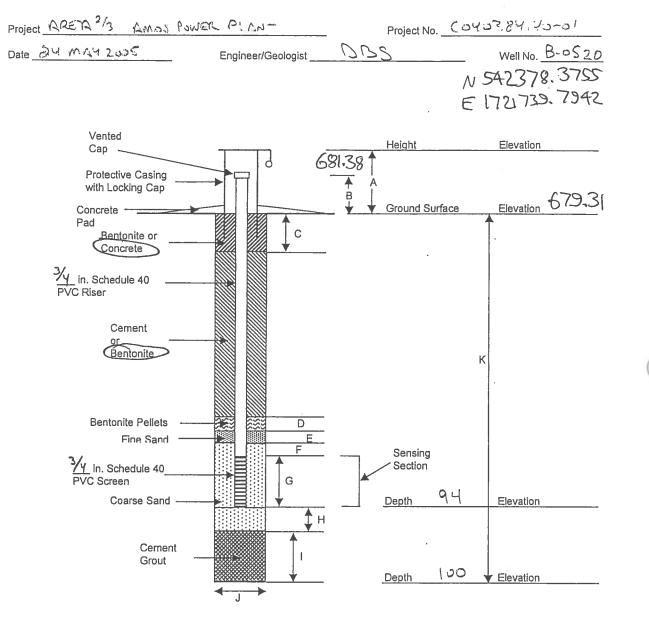
gal consultants


STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMEN	ISIONS (Feet))	
A	В	Ċ	D	É	F
2.3	1.8	14	\square		30.4
G	Н		J	К	
10	:2	93.6	0.25	150	

Remarks PACKER ASSEMBLY STUCK IN HOLE. SALVAGED

MOR PACKER AND ALMP. PLATED REMAINDER DOWN HOLE.



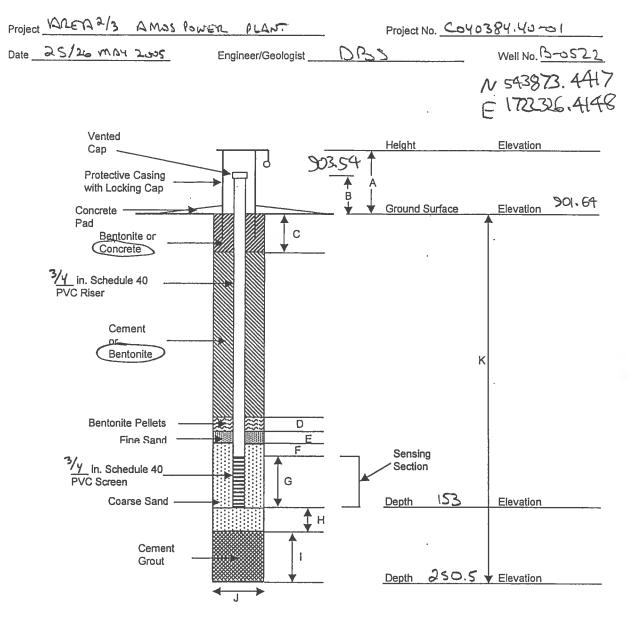
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	IONS (Feet)		
A	В	C	D	E	F
2.35	14	15	-		80
G	<u> </u>		J	К	
10.	3	42,5	0.25	150,5	

gai consultants

STANDPIPE PIEZOMETER INSTALLATION SKETCH

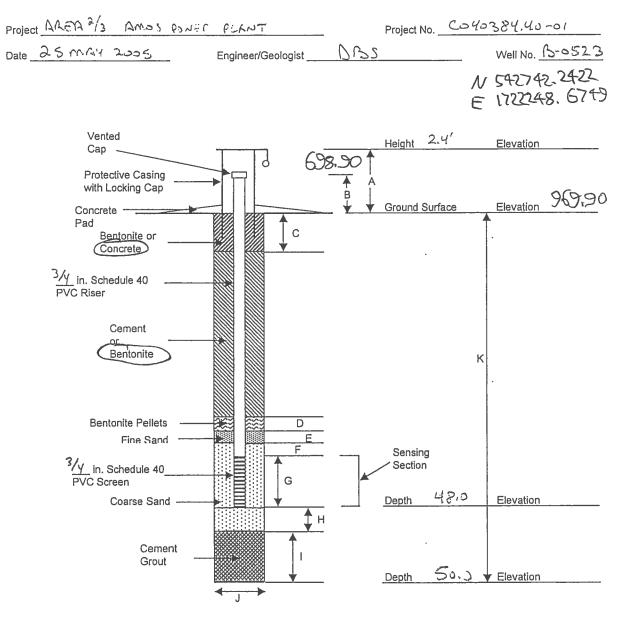
		DIMENS	SIONS (Feet)		
A	B	С	D	E	F
2.4	2.07	34		pression.	50.
G	Н	1	J	К	
10	2	4	0:25	00	


MONITORING WELL CONSTRUCTION DIAGRAM (Not to Scale) Project AREA = /3 A MOS POWER PLANT Project No. 040384.40-01 OBS Well No. B-0521 Date 23 MAY 2005 Engineer/Geologist N 544-199.5521 E 1724054.5791 Vented Height Elevation Cap 1006.48 9 **Protective Casing** ¥ with Locking Cap Elevation 1004,35 B Ground Surface Concrete Pad С Bentonite or Concrete 3/4_ in. Schedule 40 PVC Riser Cement Bentonite Κ **Bentonite Pellets** D Fine Sand E F Sensing 3/4 in. Schedule 40 Section PVC Screen G 70.4 Coarse Sand Depth Elevation Îн Cement Grout 70.4 Elevation Depth J

gal consultants

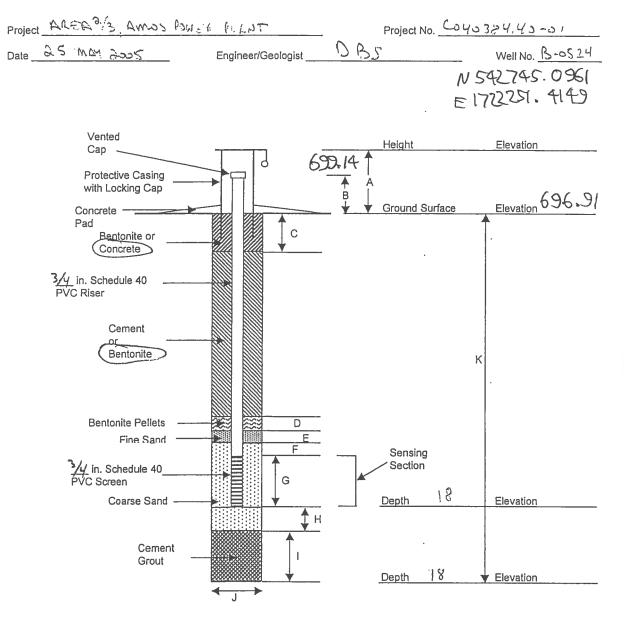
STANDPIPE PIEZOMETER INSTALLATION SKETCH

		DIMENS	SIONS (Feet)		
A	В	С	D	E	F
2,58	2.13	12.4		_	48.
G	Н	1	J	К	
10			0.25	70,4	


gai consultants

STANDPIPE PIEZOMETER INSTALLATION SKETCH

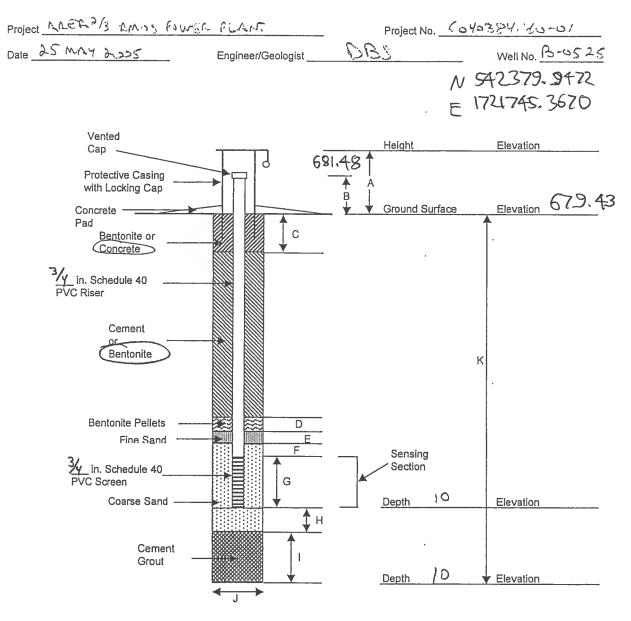
	DIMENSIONS (Feet)									
A	B	С	D	E	F					
2.18	1.9	35		-	98					
G	н	1	J	К						
20	2	95,5	0,25	250,5						



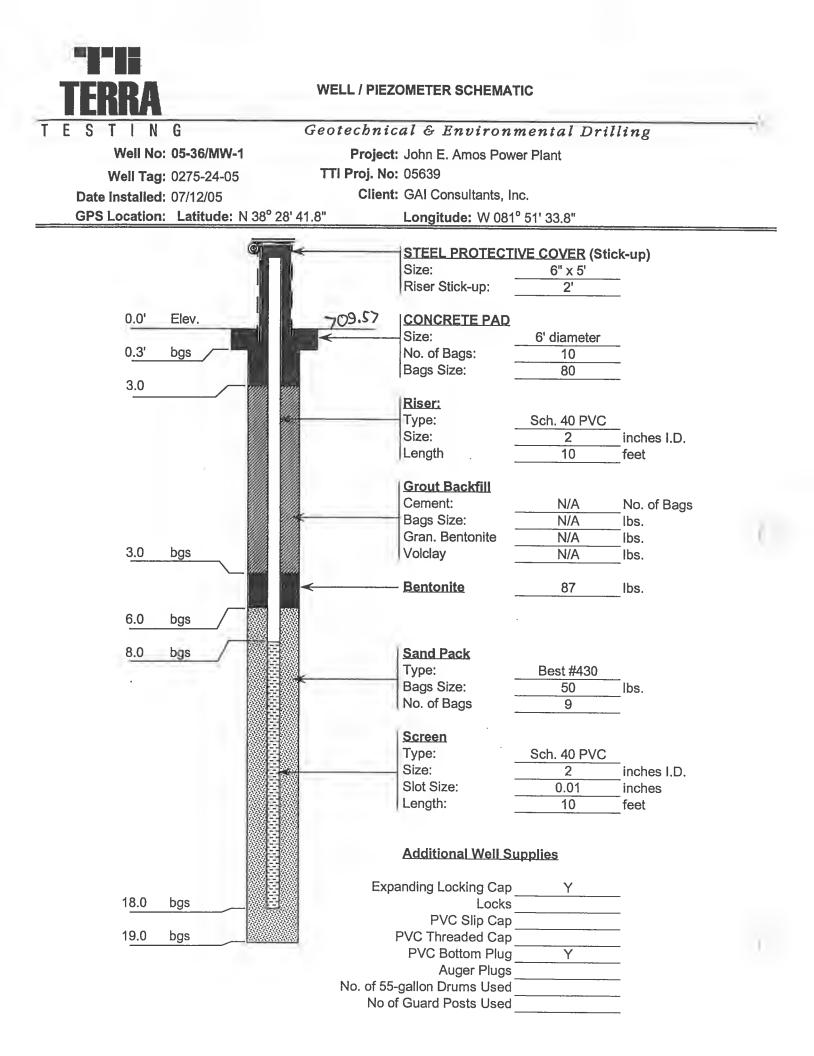
STANDPIPE PIEZOMETER INSTALLATION SKETCH

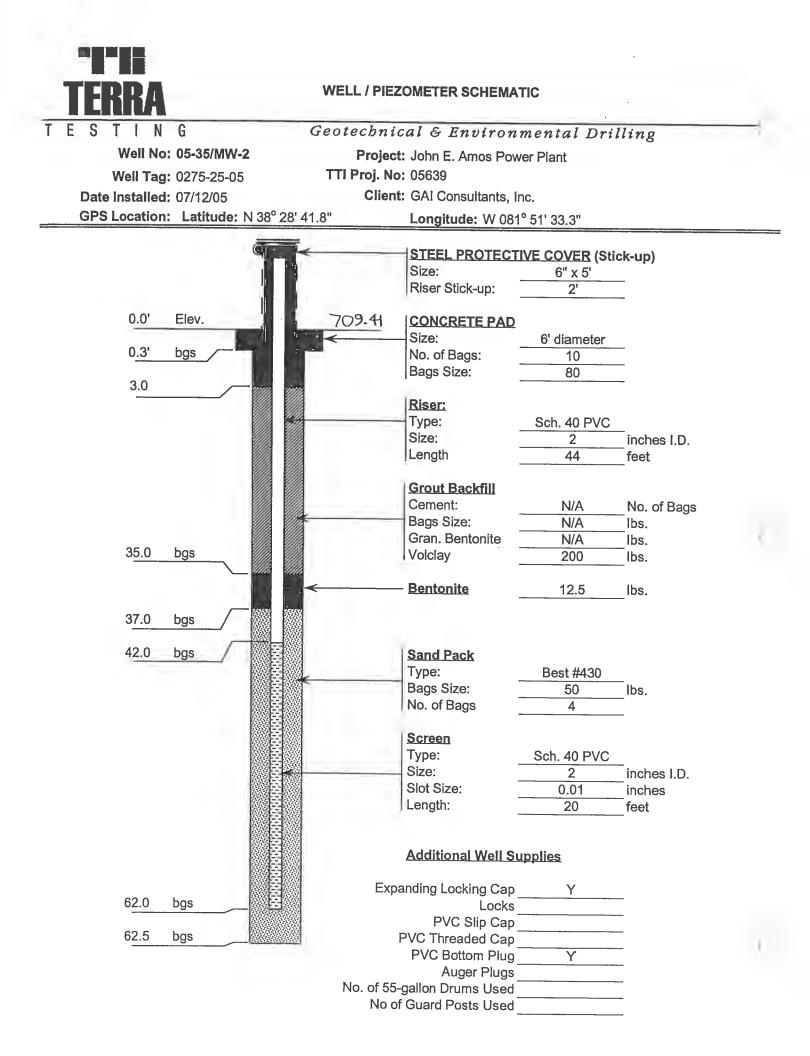
		DIMEN	SIONS (Feet)		
А	В	С	D	E	F
2.4	2.0	24		-	14
G	Н		J	К	
10	2	-	0.25	50.0	

gal consultants transforming kiese into reality


MONITORING WELL CONSTRUCTION DIAGRAM (Not to Scale)

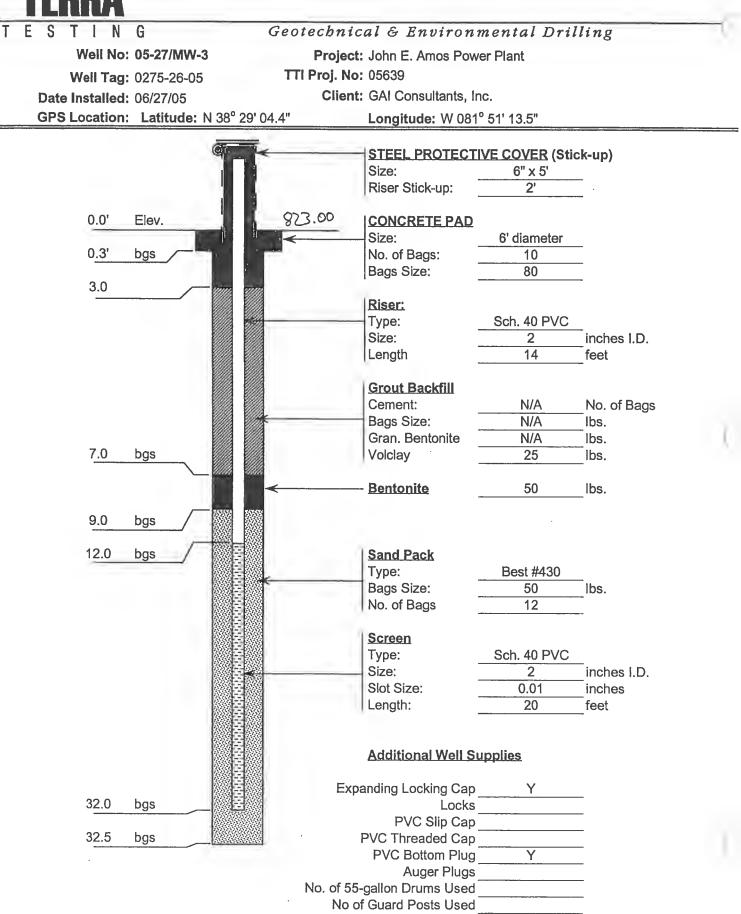
STANDPIPE PIEZOMETER INSTALLATION SKETCH


DIMENSIONS (Feet)						
A	В	С	D	E	F	
2.55	2.23	3	<u> </u>	-	5	
G	H		J	К		
10	-	-	0.25	18		



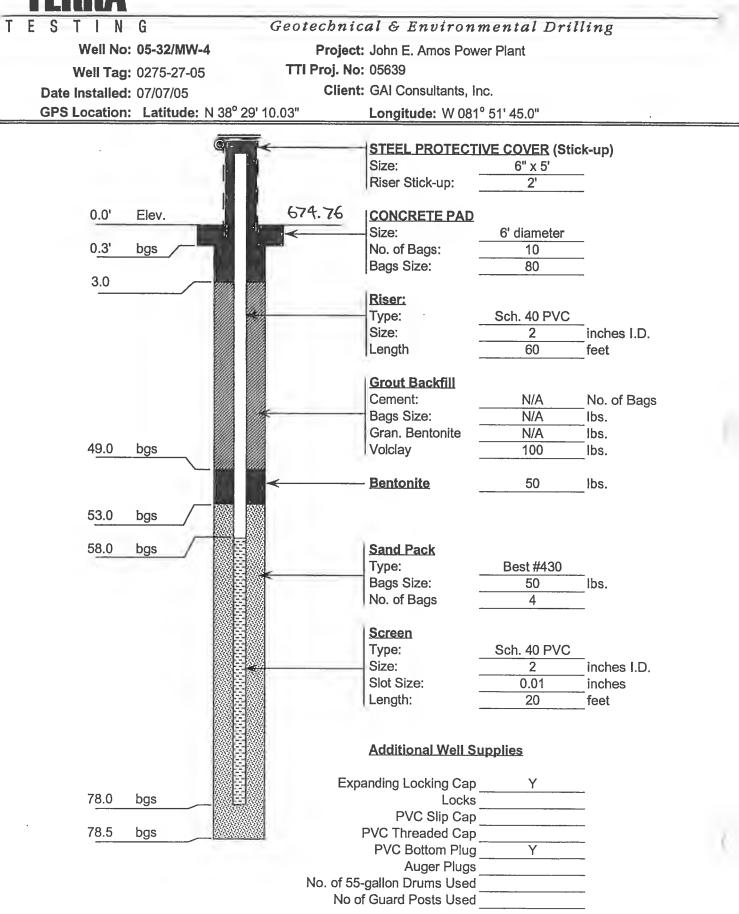
STANDPIPE PIEZOMETER INSTALLATION SKETCH

	DIMENSIONS (Feet)						
A	В	С	D	E	F		
2.3	2.05	2	_	-	(ri) ·		
G	H	<u> </u>	J	К			
5	0	-	0.25	10			

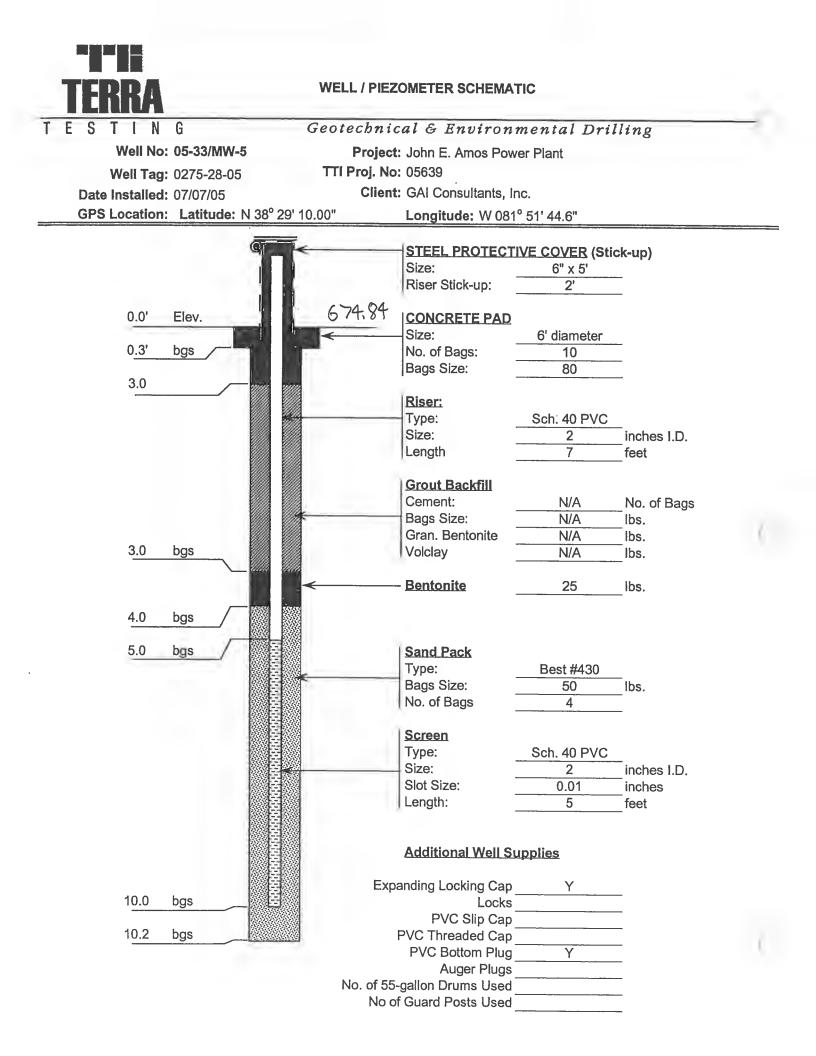

State of West Virginia				g Well Construction
Department of Environme	Well Num	ber: WV00275-0024-05		
Bite Name/Physical Address: We Site: Proposed Landfill Gr Line 1: Area 2/3 a. Line 2: Blue Lick Road b. City: Windfield c.		. WV00275-0024-05 38 28 418 81 51 338 GPS	5	Purpose of Monitoring Well: Monitor Groundwater
County:Putnam05Vell Owner (Name, Firm, Address):InstDwner:Tom CarrollInstLine 1:John E. Amos Power PlantLinLine 2:1530 Winfield RoadLinCity:WindfieldCityState:WVState:Zip:25213-ZipPhone:304-759-3156Phote	te: PA 15301- one: 724-746-910	irm, Address): Dougias Novotny , Inc. lands Boulevard		Date Well Installed: 07/12/2005 Driller's WV Cert No. WV00275
Section B: (all number fields must be in decimal format).			
1.Cap and Lock: 2.Protective Cover:		Protectiv	YES e Cover Pipe	
3.Monitoring Well Reference Point:			0 ft.	
4.Borehole Diameter:			4 inches.	
5.Ground Surface Seal: a.Material: concrete			π	Internet State Sta
b.Installation Procedure: Hand Mixed				1.
3.Surface Seal Bottom/Annular Space Top:			3 ft.	
7.Well Riser: a.OD Well Riser: 2.38 inches. b.ID Well c.Material: PVC d.Installation Procedure: Thru Augers & Open Bedroc				
B.Annular Space Seal:	K HOIE			
a.Material: not applicable -				
b.Installation Procedure: pour				
9.Well Development Procedure: other - By Client				
10. Drilling Method Used: percussion -				
11.Annular Space Seal Bottom/Filter Seal Top:			3 ft.	
12.Drilling Fluid Used: Yes Source: Air				
13.Filter Pack Seal: a.Material: bentonite pellet				
b.Installation Procedure: Gravity Fed				2
c.Volume Added: 87 pounds				
14.Bottom of Bentonite Seal/Filter Pack Top:			6 ft.	
15.Depth to Top of Screen:			8 ft.	
16.Screen:				and the second sec
a.Material: PVC				
b.Installation Procedure: Thru Augers & Open Bedroc	k Hole			
c.Slot Size: .01 inches. d.Screen Length: 10 ft.				
17.Filter Pack: a.Material: medium sand				
a.material: medium sand b.Installation Procedure: Gravity Fed				
•				
18.Well Depth: 19.Bottom of Filter Pack;			18 ft.	
20.Bottom of Borehole;			19 ft. 19 ft.	
21.Backfill Material (below filter pack): Sand			1911.	过 了是不是非常能有
22.Decontamination Procedures: None				31
23.Special Circumstances and Exceptions: Yes Variance	e Number: MW-0	7-05		
24.WV Contractor License No. WV002350				

State of Weet Virginia		Monitoring Well Construction
State of West Virginia		Well Number: WV00275-0025-05
Department of Environm	iental Protection	
Site Name/Physical Address: Site: Proposed Landfill	Well Registration No. WV00275-0025-05 Grid Location:	Purpose of Monitoring Well:
Line 1: Area 2/3	a. Latitude: 38 28 418	Monitor Groundwater
Line 2: Blue Lick Road City: Windfield	b. Longitude: 81 51 333 c. Method Used: GPS	
State: WV Zip: 25213-	Company/Project Well No.:	
County: Putnam	05639/05-35-MW-2	
Well Owner (Name, Firm, Address): Owner: Tom Carroll	Installed By (Name, Firm, Address): Installer: Vern Curtis / Douglas Novotny	Date Well Installed: 07/12/2005
Line 1: John E. Amos Power Plant	Line 1: Terra Testing, Inc.	
Line 2: 1530 Winfield Road City: Windfield	Line 2: 260 Meadowlands Boulevard City: Washington	Driller's WV Cert No. WV00275
State: WV Zip: 25213-	State: PA Zip: 15301-	
Phone: 304-759-3156	Phone: 724-746-9100	
Section B: (all number fields must be in decimal for	mat)	
1.Cap and Lock:		YES
2.Protective Cover:	Protective	Cover Pipe
3.Monitoring Well Reference Point:		oft.
4.Borehole Diameter:		4 inches.
5.Ground Surface Seal:		Tudence of strength
a.Material: concrete		
b.Installation Procedure: Hand Mixed		
6.Surface Seal Bottom/Annular Space Top:		3 ft
7.Well Riser: a.OD Well Riser: 2.38 inches. b.ID V c.Material: PVC	Vell Riser: 2 inches.	
d.Installation Procedure: Thru Augers & Open Ber	drock Hole	
8.Annular Space Seal: a.Material: high solids grout -		
b.Installation Procedure: pour		
9.Well Development Procedure: other - By Client		
10.Drilling Method Used: percussion -		たった 操作機
11.Annular Space Seal Bottom/Filter Seal Top:		35 ft.
12.Drilling Fluid Used: Yes Source: Air		
13.Filter Pack Seal:		
a.Material: bentonite pellet		(1) · · · · · · · · · · · · · · · · · · ·
b.Installation Procedure: Gravity Fed		
c.Volume Added: 12.5 pounds		
14.Bottom of Bentonite Seal/Filter Pack Top:		37 ft.
15.Depth to Top of Screen:		42 ft.
16.Screen:		
a.Material: PVC		
b.Installation Procedure: Thru Augers & Open Bed	drock Hole	
c.Slot Size: .01 inches. d.Screen Length: 20 ft.		
17.Filter Pack:		
a.Material: medium sand		
b.Installation Procedure: Gravty Fed		
18.Well Depth:		62 ft.
19.Bottom of Filter Pack:		62.5 ft.
20.Bottom of Borehole:		62.5 ft.
21.Backfill Material (below filter pack): sand		
22.Decontamination Procedures: None	Sanaa Number: MM/07.05	· · · · · · · · · · · · · · · · · · ·
23.Special Circumstances and Exceptions: Yes Va 24.WV Contractor License No. WV002350	nance Number: MVV-07-05	
•		

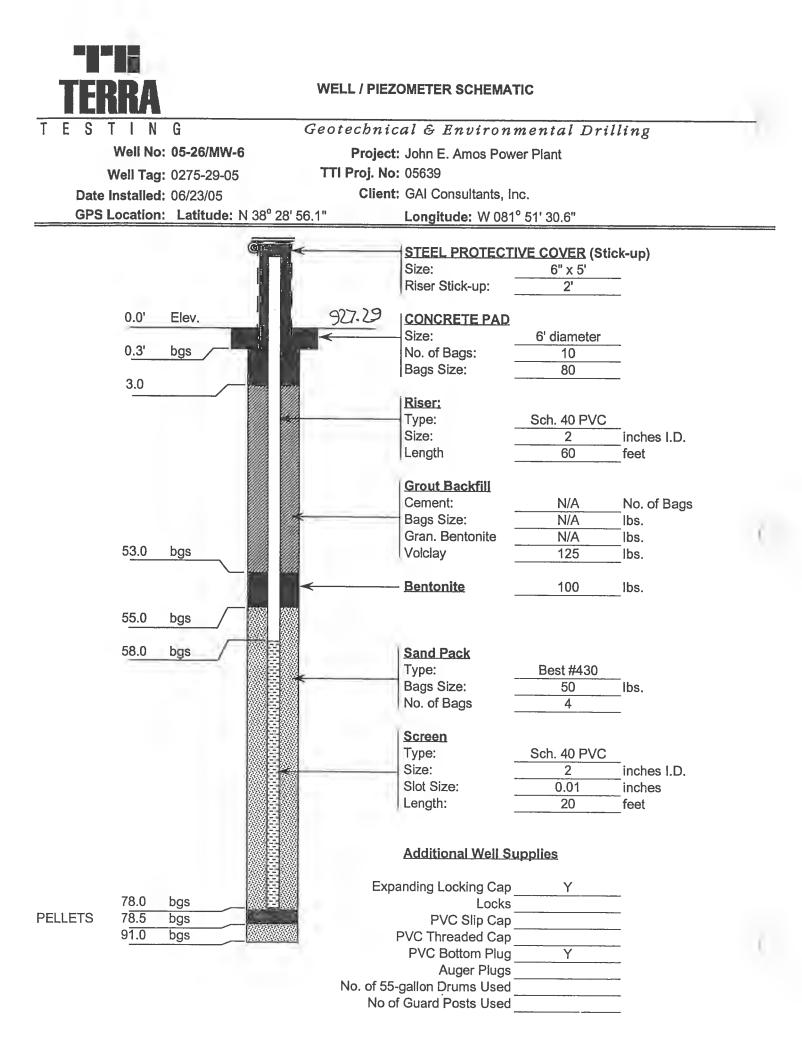
WELL / PIEZOMETER SCHEMATIC

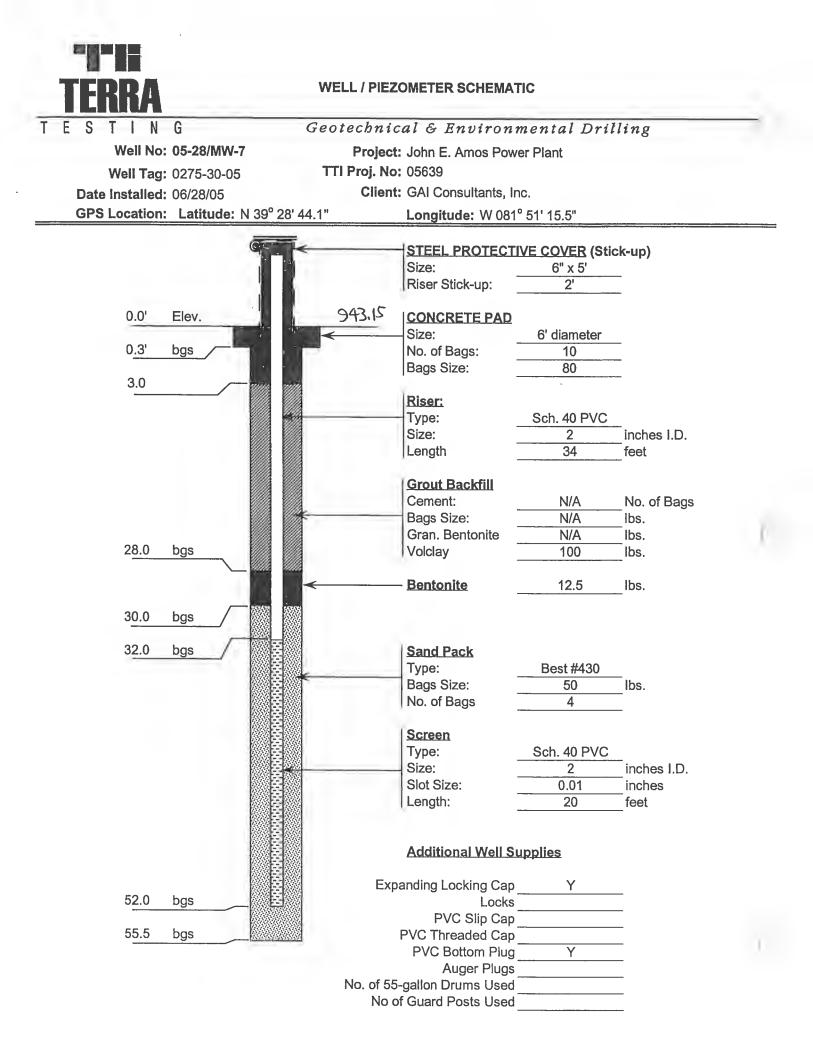


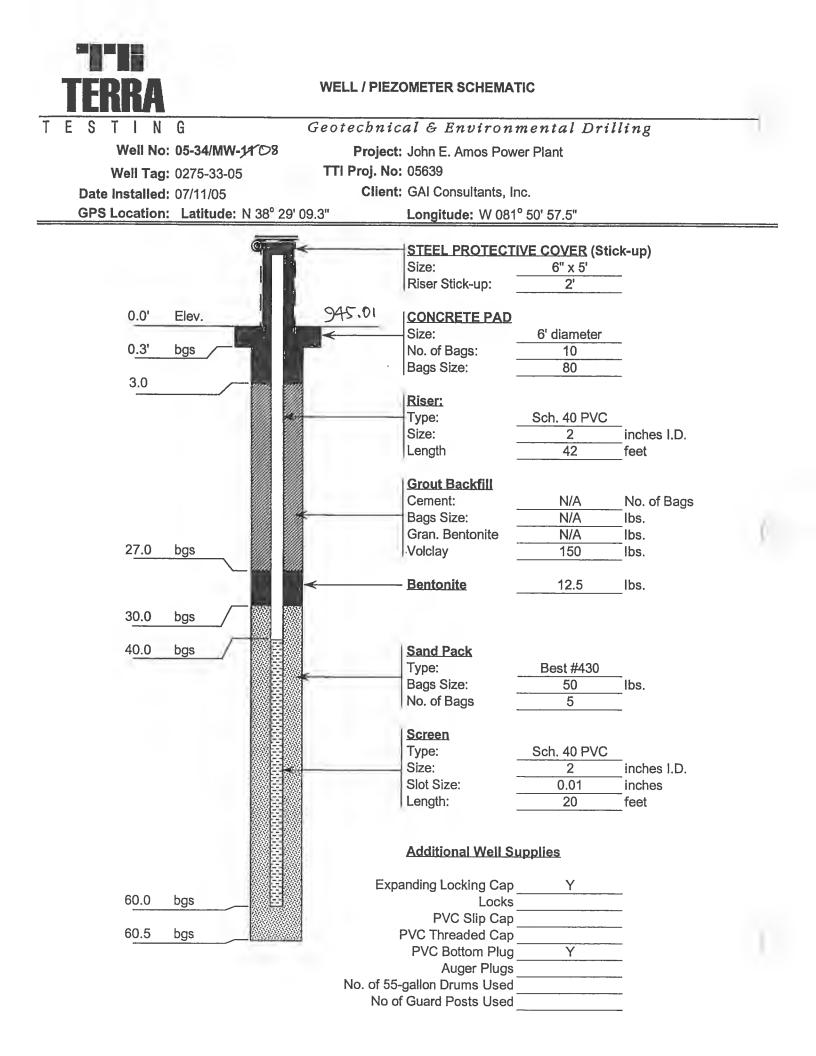
0


State of West Virginia				g Well Construction	05
Department of Environn	nental Prote	ction	Well Num	ber: WV00275-0026	5-05
te Name/Physical Address:	Well Registration No.			Purpose of Monitoring V	/ell:
ite: Proposed Landfill Ine 1: Area 2/3 Ine 2: Blue Lick Road Ity: Windfield	Grid Location: a. Latitude: b. Longitude: c. Method Used:	38 29 44 81 51 135 GPS		Monitor Groundwater	
tate: WV ip: 25213- county: Putnam ell Owner (Name, Firm, Address): wner: Tom Carroll ine 1: John E. Amos Power Plant ine 2: 1530 Winfield Road ity: Windfield tate: WV ip: 25213- hone: 304-759-3156	Company/Project We 05639/05-27-MW-3 Installed By (Name, Fi Installer: Vem Curtis / I Line 1: Terra Testing Line 2: 260 Meadowi City: Washington State: PA Zip: 15301- Phone: 724-746-9100	i rm, Address): Douglas Novotny , Inc. ands Boulevard		Date Well Installed: 06/27/2005 Driller's WV Cert No. WV00275	
Section B: (all number fields must be in decimal for	ormat)				
Cap and Lock:			YES	pDimit	
Protective Cover:		Protective	Cover Pipe		L. The A
B.Monitoring Well Reference Point:			0 ft.		12
I.Borehole Diameter:			4 inches.		
i.Ground Surface Seal: a.Material: concrete				INTERPORT REAL	AND DUMPERSON
b.Installation Procedure: Hand Mixed				· · · · · ·	
b.Surface Seal Bottom/Annular Space Top: '.Well Riser: a.OD Well Riser: 2.38 inches. b.ID c.Material: PVC	Well Riser: 2 inches.		3 ft.		
d.Installation Procedure: Thru Augers & Open Be	drock Hole				
Annular Space Seal:					
a.Material: high solids grout -				112	
b.Installation Procedure: pour					
.Well Development Procedure: other - By Client					nepe -
0.Drilling Method Used: percussion -					
1.Annular Space Seal Bottom/Filter Seal Top:			7 ft.	「「」	
2.Drilling Fluid Used: Yes Source: Air				5 1	
3.Filter Pack Seal:					
a.Material: bentonite pellet					
b.Installation Procedure: Gravity Fed					er gi
c.Volume Added: 50 pounds					- 14 B
4.Bottom of Bentonite Seal/Filter Pack Top:			9 ft.	an an an an an an an an an an an an an a	P 44.70
5.Depth to Top of Screen:			12 ft.		5+0 x2
6.Screen:				1. we we	
a.Material: PVC					
b.Installation Procedure: Thru Augers & Open Be	arock Hole			the start of the s	
c.Slot Size: .01 inches. d.Screen Length: 20 ft.					
7.Filter Pack: a.Material: medium sand					
b.Installation Procedure: Gravity fed					
·					
8.Well Depth:			32 ft.		· · · · ·
9.Bottom of Filter Pack: 0.Bottom of Borehole:			32.5 ft.		
u.Bottom of Borenole: 1.Backfill Material (below filter pack): sand			32.5 ft.		na ana ana ana ana ana ana ana ana ana
2.Decontamination Procedures: None					Engler La la M
	Ninne Munt Mitter				
23.Special Circumstances and Exceptions: Yes Vi		-0.0			

WELL / PIEZOMETER SCHEMATIC

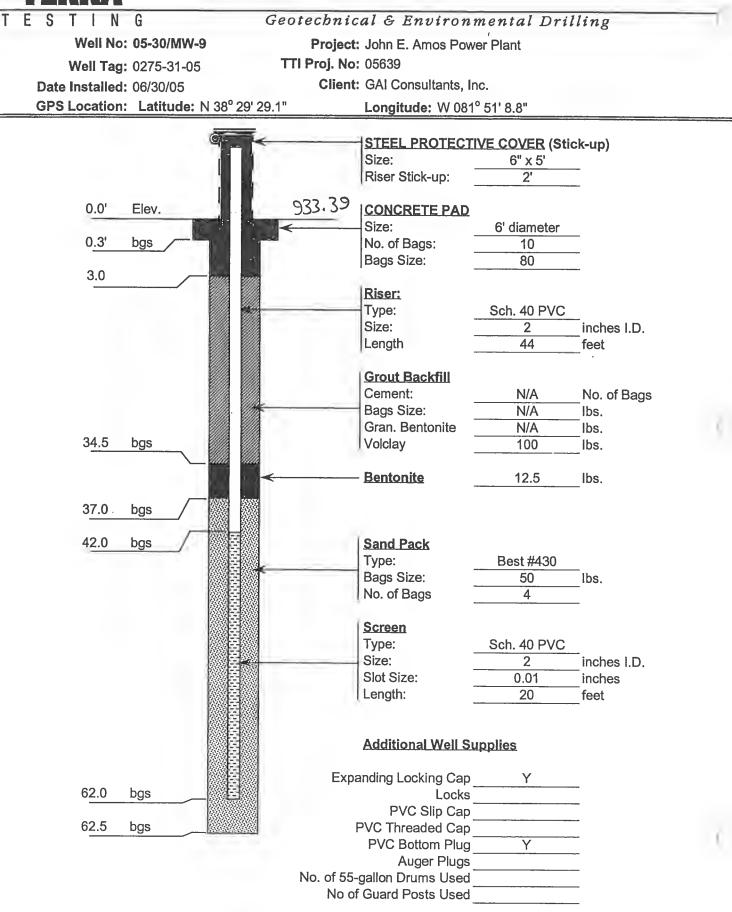


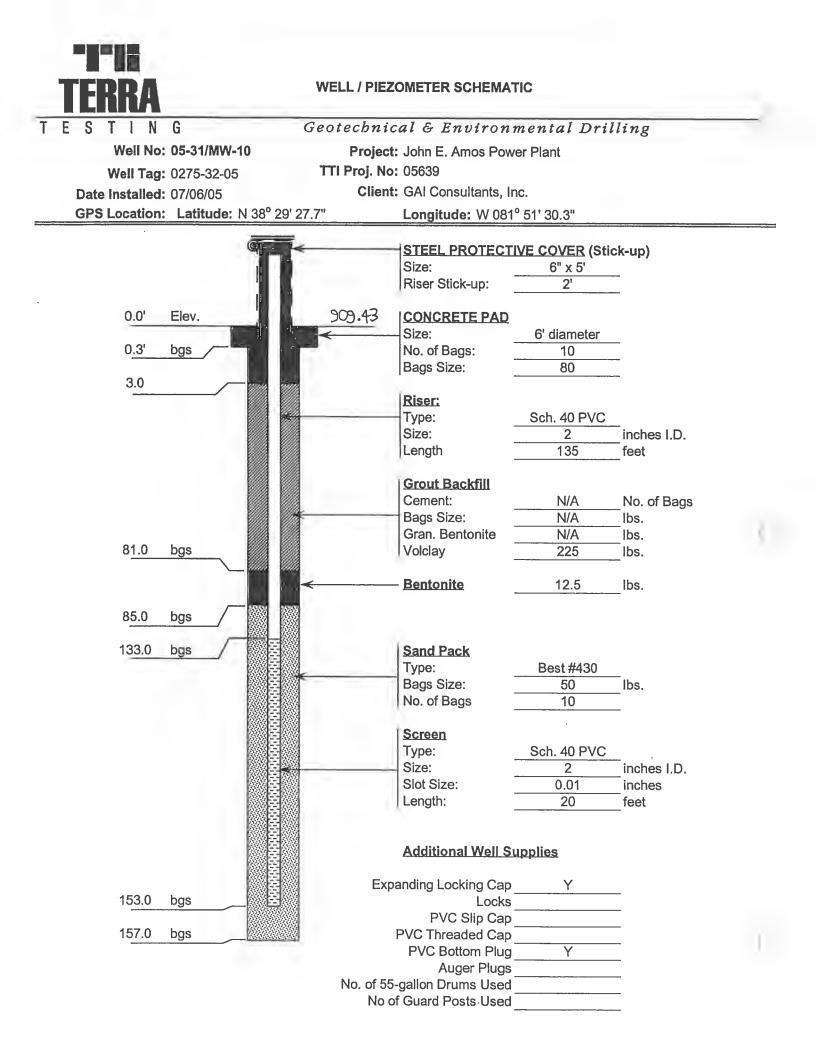

State of West Virginia		Monitoring Well Construction
Department of Environm	nental Protection	Well Number: WV00275-0027-05
Site Name/Physical Address:	Well Registration No. WV00275-0027-05	5 Purpose of Monitoring Well:
Site: Proposed Landfill	Grid Location: a. Latitude: 38 29 1003	Monitor Groundwater
Line 2: Blue Lick Road	b. Longitude: 81 51 45 .	
City: Windfield State: WV	c. Method Used: GPS	
Zip: 25213-	Company/Project Well No.:	
County: Putnam Well Owner (Name, Firm, Address):	05639/05-32-MW-4 Installed By (Name, Firm, Address):	Date Well Installed:
Owner: Tom Carroll	Installer: Vern Curtis / Douglas Novotny	07/07/2005
Line 1: John E. Amos Power Plant Line 2: 1530 Winfield Road	Line 1: Terra Testing, Inc. Line 2: 260 Meadowlands Boulevard	Driller's WV Cert No.
City: Windfield State: WV	City: Washington	WV00275
Zip: 25213-	State: PA Zip: 15301-	
Phone: 304-759-3156	Phone: 724-746-9100	
Section B: (all number fields must be in decima) for	omat)	
1.Cap and Lock: 2.Protective Cover:	Bratadia	YES
	FIDIECUV	
3.Monitoring Well Reference Point:		Oft.
4.Borehole Diameter:		4 inches.
5.Ground Surface Seal: a.Material; concrete		TURNETITY AN INTER AND A STATE OF ANTRONOMIST
b.Installation Procedure: Hand Mixed		
6.Surface Seal Bottom/Annular Space Top:		3 ft.
7.Well Riser: a.OD Well Riser: 2.38 inches. b.ID c.Material: PVC	Well Riser: 2 inches.	
d.Installation Procedure: Thru Augers & Open Be	edrock Hole	14 A A A A A A A A A A A A A A A A A A A
8.Annular Space Seal:		
a.Materiai: high solids grout -		
b.Installation Procedure: pour		
9.Well Development Procedure: other - By Client		
10.Drilling Method Used: percussion -		
11.Annular Space Seal Bottom/Filter Seal Top:		49 ft.
12.Drilling Fluid Used: Yes Source: Air		\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim
13.Filter Pack Seal:		
a.Material: bentonite pellet		
b.Installation Procedure: Gravity Fed		
c.Volume Added: 50 pounds		
14.Bottom of Bentonite Seal/Filter Pack Top:		53 ft.
15.Depth to Top of Screen:		58 ft.
16.Screen:		整 成是 影响
a.Material: PVC		
b.Installation Procedure: Thru Augers & Open Be	edrock Hole	
c.Slot Size: .01 inches. d.Screen Length: 20 ft.		
17.Filter Pack:		
a.Material: medium sand		
b.Installation Procedure: Gravity Fed		
18.Well Depth:		78 ft.
19.Bottom of Filter Pack:		78.5 ft.
20.Bottom of Borehole:		78.5 ft.
21.Backfill Material (below filter pack): sand		ing the second s
22.Decontamination Procedures: None		
23.Special Circumstances and Exceptions: Yes Va 24.WV Contractor License No. WV002350	anance Number: MW-07-05	



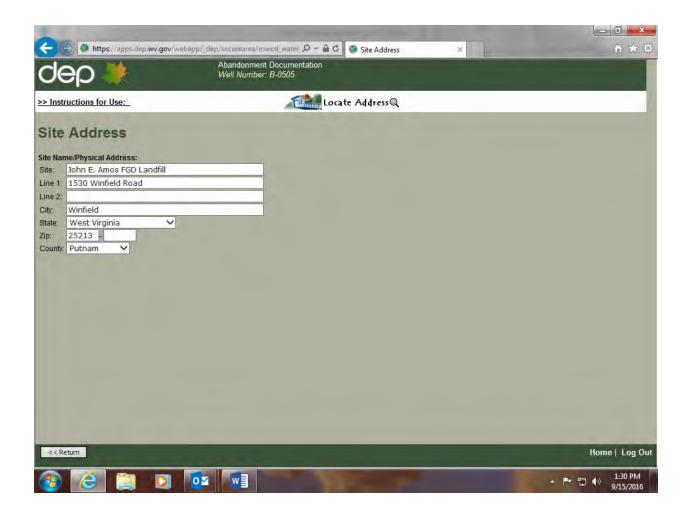
(

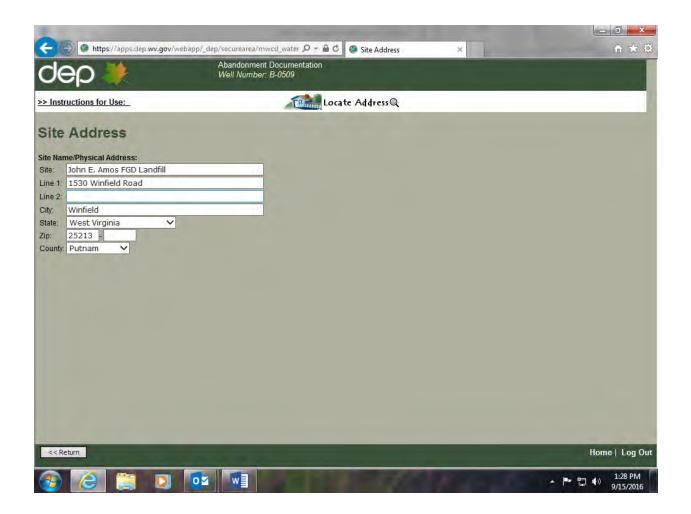
State of West Virginia			ring Well Construction	
Department of Environn	nental Drotes	Molt N	umber: WV00275-0028-05	
Ite Name/Physical Address:	Well Registration No. W		Purpose of Monitoring Well:	
Site: Proposed Landfill ine 1: Area 2/3 ine 2: Blue Lick Road Sity: Windfield State: WV	Grid Location: a. Latitude: 3 b. Longitude: 8	8 29 10 . 1 51 446 ;PS	Monitor Groundwater	
Zip: 25213- County: Putnam Vell Owner (Name, Firm, Address): Downer: Dwner: Tom Carroll Line 1: John E. Amos Power Plant Line 2: 1530 Winfield Road City: Windfield State: WW Zip: 25213- Phone: 304-759-3156	Company/Project Well N 05639/05-33-MW-5 Installed By (Name, Firm Installer: Vern Curtis / Do Line 1: Terra Testing, In Line 2: 260 Meadowlan City: Washington State: PA Zip: 15301- Phone: 724-746-9100	n , Address): uglas Novotny ac.	Date Well Installed: 07/07/2005 Driller's WV Cert No. WV00275	
Section B: (all number fields must be in decimal for	ormat)			
1.Cap and Lock: 2.Protective Cover:		YE Protective Cover Pip	provide succession of the local division of	
3. Monitoring Well Reference Point:		0 f		S
4.Borehole Diameter:		4 inches		
5.Ground Surface Seal:			THE ALL BEAR DE LEVEL	Mannananan
a.Material: concrete b.Installation Procedure: Hand Mixed				
6.Surface Seal Bottom/Annular Space Top:		3 f		
7.Well Riser: a.OD Well Riser: 2.38 inches. b.ID c.Material: PVC d.Installation Procedure: Thru Augers & Open Be		51		
8.Annular Space Seal: a.Material: high solids grout -				
b.Installation Procedure: pour				
9.Well Development Procedure: other - By Client 10.Drilling Method Used: percussion -			$(r, s) \rightarrow (r, s)$	
11.Annular Space Seal Bottom/Filter Seal Top:		31	a. K. K. S.	
12.Drilling Fluid Used: Yes Source: Air				
13.Filter Pack Seal:				
a.Material: bentonite pellet				
b.Installation Procedure: Gravity Fed c.Volume Added: 25 pounds				
14.Bottom of Bentonite Seal/Filter Pack Top:		4 1		
15.Depth to Top of Screen:		51	201-100 State	
16.Screen:				
a.Material: PVC				
b.Installation Procedure: Thru Augers & Open Be	edrock Hole			
c.Slot Size: .01 inches. d.Screen Length: 5 ft. 17.Filter Pack:				
a.Material: medium sand	•			
b.installation Procedure: Gravity Fed			i ste ja	
18.Well Depth:		10 1	ft.	
19.Bottom of Filter Pack:		10.2 t		
20.Bottom of Borehole:		10.2	t.	
21.Backfill Material (below filter pack): sand				
22.Decontamination Procedures: None 23.Special Circumstances and Exceptions: Yes V	ariance Number: MW-07-0	95		

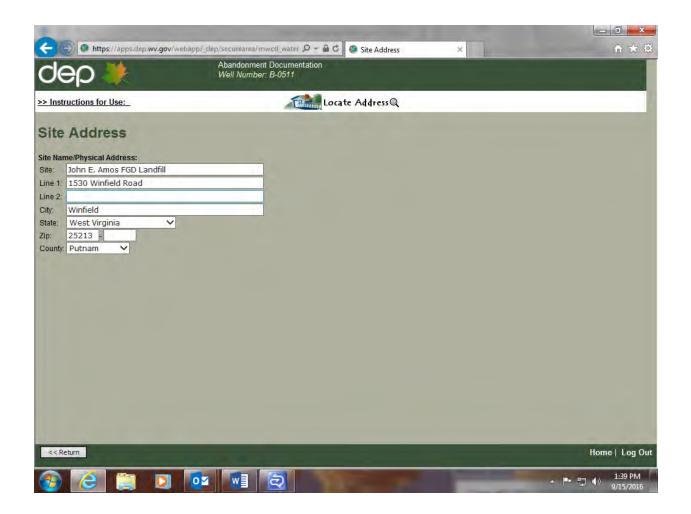


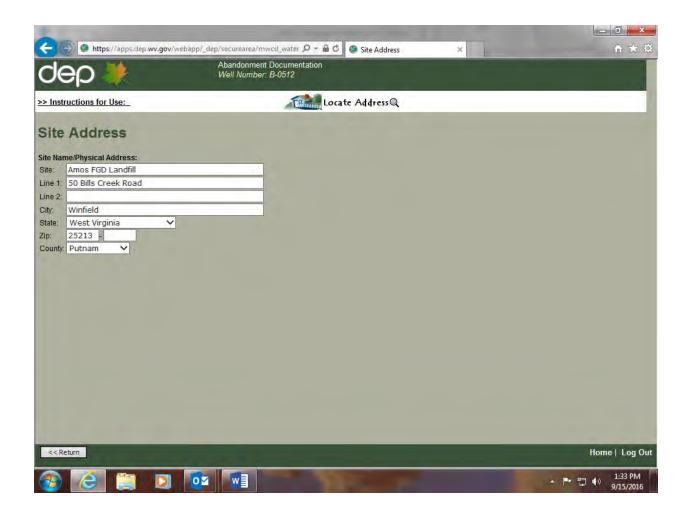

State of West Virginia		Monitoring	y Well Construction ber: WV00275-0033-05
Department of Environme	tal Protectio	n	Del. 44400273-0033-03
ite Name/Physical Address: We	Registration No. WV002	275-0033-05	Purpose of Monitoring Well:
Line 1: Area 2/3 a. Line 2: Blue Lick Road b.		93 573	Monitor Groundwater
State: WV Zip: 25213- Co County: Putnam 05 Vell Owner (Name, Firm, Address): Inst Owner: Tom Carroll Inst Line 1: John E. Amos Power Plant Lin Line 2: 1530 Winfield Road Lin City: Windfield Cit State: WV State Zip: 25213- Zip Phone: 304-759-3156 Ph	e: PA 15301- one: 724-746-9100	s Novotny	Date Well Installed: 07/11/2005 Driller's WV Cert No. WV00275
Section B: (all number fields must be in decimal forma)	100	
1.Cap and Lock:		YES Protective Cover Pipe	Land and the land of the land
2.Protective Cover:		0 ft.	
3.Monitoring Well Reference Point:		4 inches.	
4.Borehole Diameter: 5.Ground Surface Seal:			
5. Ground Surface Seal: a. Material: concrete b. Installation Procedure: Hand Mixed		,	
		3 ft.	
 6.Surface Seal Bottom/Annular Space Top: 7.Well Riser: a.OD Well Riser: 2.38 inches. b.ID Well c.Material: PVC 	Riser: 2 inches.	3 IL	
d.Installation Procedure: Thru Augers & Open Bedro	k Hole		1 A
8.Annular Space Seal:			
a.Material: high solids grout -			
b.Installation Procedure: pour			
9.Well Development Procedure: other - By Client			
10.Drilling Method Used: percussion -			
11.Annular Space Seal Bottom/Filter Seal Top:		27 ft.	See.
12.Drilling Fluid Used: Yes Source: Air			
13.Filter Pack Seal:			
a.Material: bentonite pellet			
b.Installation Procedure: Gravity Fed			
c.Volume Added: 12.5 pounds		30 ft.	-
14.Bottom of Bentonite Seal/Filter Pack Top:		30 ft. 40 ft.	
15.Depth to Top of Screen:		40 IL	
16.Screen: a.Material: PVC			and the second second
b.Installation Procedure: Thru Augers & Open Bedro	ck Hole		
c.Slot Size: .01 inches. d.Screen Length: 20 ft.			
17.Filter Pack: a.Material: medium sand			
b.Installation Procedure: Gravity Fed			
18.Well Depth:		60 ft.	
19.Bottom of Filter Pack:		60.5 ft.	and the second
20.Bottom of Borehole:		60,5 ft.	the second second second second second second second second second second second second second second second s
21.Backfill Material (below filter pack): sand			4 2.
22.Decontamination Procedures: None			Contraction of the second
23.Special Circumstances and Exceptions: Yes Varia 24.WV Contractor License No. WV002350	nce Number: MW-07-05		

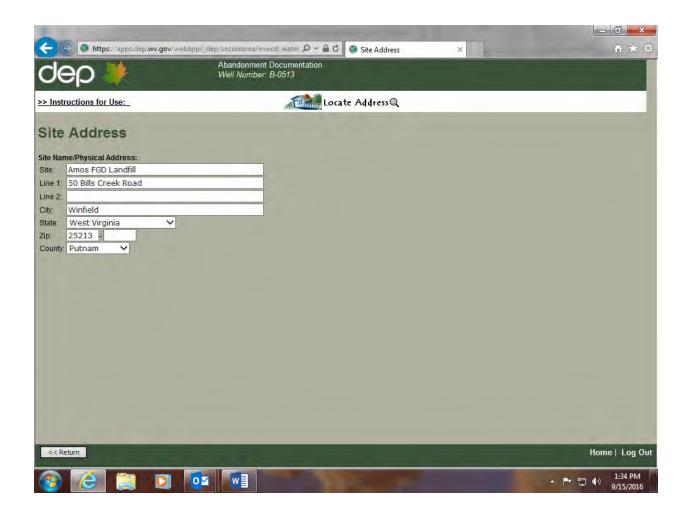
WELL / PIEZOMETER SCHEMATIC

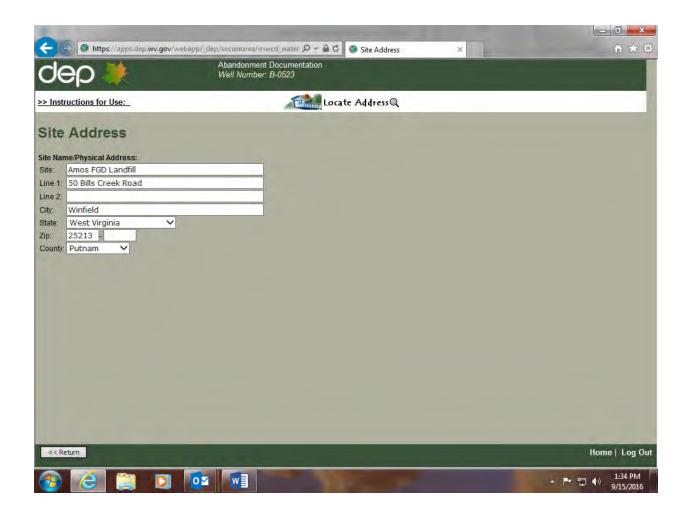

State of West Virginia	ontal Protoction	Monitoring Well Construction Well Number: WV00275-0031-05
Department of Environm		
	Well Registration No. WV00275-0031-05 Grid Location: a. Latitude: 38 29 291 b. Longitude: 81 51 88 c. Method Used: GPS	Purpose of Monitoring Well: Monitor Groundwater
Zip: 25213- County: Putnam Well Owner (Name, Firm, Address): In Owner: Tom Carroll Line 1: John E. Amos Power Plant Line 2: 1530 Winfield Road City: Windfield State: WV Zip: 25213-	Company/Project Well No.: 05639/05-30-MW-9 Installed By (Name, Firm, Address): Installer: Vern Curtis / Douglas Novotny Line 1: Terra Testing, Inc. Line 2: 260 Meadowlands Boulevard City: Washington State: PA Zip: 15301- Phone: 724-746-9100	Date Well Installed: 06/30/2005 Driller's WV Cert No. WV00275
Section B: (all number fields must be in decimal for	nat)	
1.Cap and Lock: 2.Protective Cover:	Protective	YES Cover Pipe
3.Monitoring Well Reference Point:		0 ft.
4.Borehole Diameter:		4 inches.
5.Ground Surface Seal:		THERETARD FILTER AND AND AND AND AND AND AND AND AND AND
a.Material: concrete		
b.Installation Procedure: Hand Mixed		3 ft.
6.Surface Seal Bottom/Annular Space Top: 7.Well Riser: a.OD Well Riser: 2.38 inches. b.ID W c.Material: PVC	/ell Riser: 2 inches.	
d.Installation Procedure: Thru Augers & Open Bec	Irock Hole	
8.Annular Space Seal: a.Material: high solids grout -		
b.Installation Procedure: pour		the state of the state
9.Well Development Procedure: other - By Client		
10.Drilling Method Used: percussion -		
11.Annular Space Seal Bottom/Filter Seal Top:		34.5 ft.
12.Drilling Fluid Used: Yes Source: Air		
13.Filter Pack Seal: a.Material: bentonite pellet		
b.Installation Procedure: Gravity Fed		5 - C
c.Volume Added: 12.5 pounds		
14.Bottom of Bentonite Seal/Filter Pack Top:		37 ft.
15.Depth to Top of Screen:		42 ft.
16.Screen;		
a.Material: PVC		
b.Installation Procedure: Thru Augers & Open Ber c.Slot Size: .01 inches. d.Screen Length: 20 ft.	drock Hole	rep 2
17.Filter Pack: a.Material: medium sand b.Installation Procedure: Gravity Fed		
18.Well Depth:		62 ft.
19.Bottom of Filter Pack:		62.5 ft.
20.Bottom of Borehole:		62.5 ft.
21.Backfill Material (below filter pack): sand		
22.Decontamination Procedures: None		No. of Concession, Name
23.Special Circumstances and Exceptions: Yes Va 24.WV Contractor License No. WV002350	ariance Number: MW-07-05	

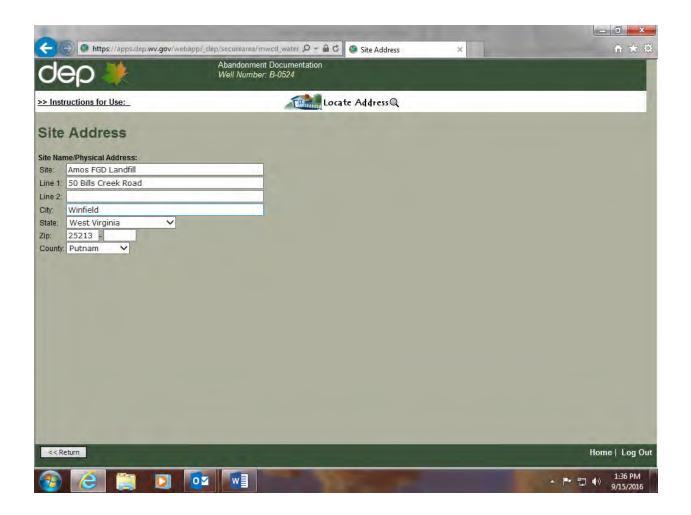

	te of West Virginia partment of Environ	mental Prote	۱۸	onitoring Well Construction /ell Number: WV00275-003	
	me/Physical Address: Proposed Landfill Area 2/3	Well Registration No. Grid Location: a. Latitude: b. Longitude: c. Method Used:		Purpose of Monitoring Monitor Groundwater	Well:
Zip: County Well Ov Owner: Line 1: Line 2: City: State: Zip:	25213- : Putnam vner (Name, Firm, Address): : Tom Carroll John E. Amos Power Plant 1530 Winfield Road Windfield	Company/Project We 05639/05-31-MW-10 Installed By (Name, F Installer: Vem Curtis / Line 1: Terra Testing Line 2: 260 Meadow City: Washington State: PA Zip: 15301- Phone: 724-746-910	irm, Address): Douglas Novotny J, Inc. lands Boulevard	Date Well Installed: 07/06/2005 Driller's WV Cert No. WV00275	
Sectio	on B: (all number fields must be in decima	format)			
· · ·	and Lock: ective Cover:		Protective Co	YES	-
			T TOLECUTE O		A DEC
	itoring Well Reference Point:			0 ft. 4 inches.	
	hole Diameter: und Surface Seal:				
	terial: concrete			TIMPETTY PAGED SOL	A certification
b.Ins	tallation Procedure: Hand Mixed				1.15/
6.Surf	ace Seal Bottom/Annular Space Top:			3 ft.	
c.Ma	Riser: a.OD Well Riser: 2.38 inches. b.l terial: PVC tallation Procedure: Thru Augers & Open			4 T	
		Dedrock Hole			11
	ular Space Seal: iterial: high solids grout -			(2 <u>4</u> /0)	1.
	tallation Procedure: pour				1 1
9.Wel	Development Procedure: other - By Clie	nt		5 1	
	Iling Method Used: percussion -			$\frac{1}{2} = 0$	
11.An	nular Space Seal Bottom/Filter Seal Top:			81 ft.	6 4
12.Dri	illing Fluid Used: Yes Source: Air				· - {
	ter Pack Seal:				1 × 1
1	aterial: bentonite pellet			$\lambda_{1} \geq 1$	6
	stallation Procedure: Gravity Fed				
	lume Added: 12.5 pounds			5.4	1 : 3
	ttom of Bentonite Seal/Filter Pack Top:			85 ft.	11
	epth to Top of Screen:	,		133 ft.	2^{2} 1
16.Sc a Ma	reen: aterial: PVC			11100-0	187.44
	stallation Procedure: Thru Augers & Open	Bedrock Hole			
	ot Size: .01 inches. d.Screen Length: 20			all a second	1 Star
17.Fil	ter Pack:			12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	一位生
a.Ma	aterial: medium sand				
b.Ins	stallation Procedure: Gravity Fed			14 M	
18.W	ell Depth:			153 ft.	
19.Bc	ottom of Filter Pack:			157 ft.	
20.Bo	ottom of Borehole:			157 ft.	576-57-57-01
21.Ba	ackfill Material (below filter pack): sand			· •	. · · · ·
	econtamination Procedures: None				
	becial Circumstances and Exceptions: Yes	Variance Number: MW-	07-05		
24.W	V Contractor License No. WV002350				

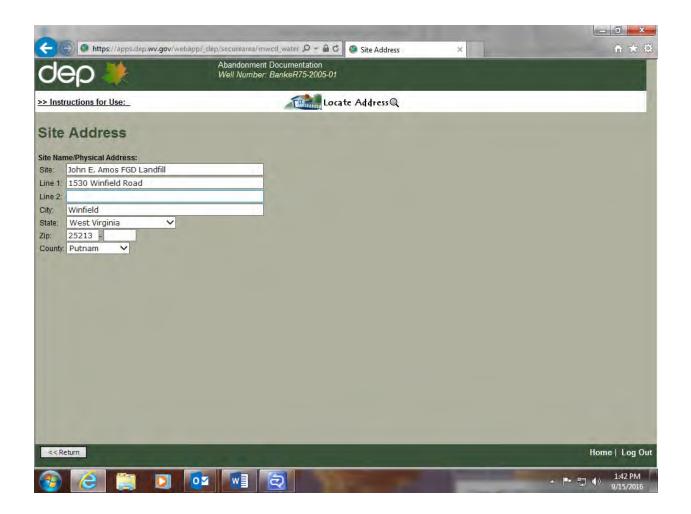

WVDEP Monitoring Well & Piezometer Closure Information

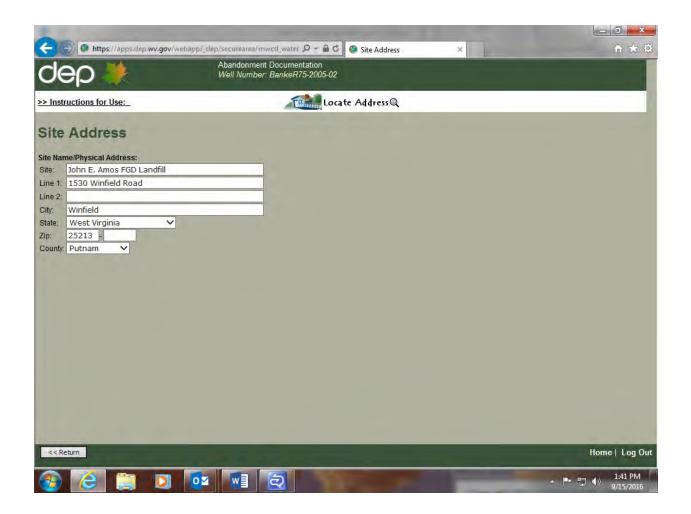

E The second second		
(-) (-) https://apps.d	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🛩 🚔 🖒 🔕 Abandonment Information 🛛 🐇	Ĥ★ \$\$
dep 渊	Abandonment Documentation Well Number: B-0505	
>> Instructions for Use:		
Abandonment Abandonment Type: Borehole: O Monitoring Well: •		
Condition of Well: Reason for Abandonment Abandonment Date:	Good V Landfill Expansion	
	Impermeable V None	
<< Return		Home Log Out
🚱 🥝 🚞		▲ 💌 🛱 🐠 1:31 PM 9/15/2016

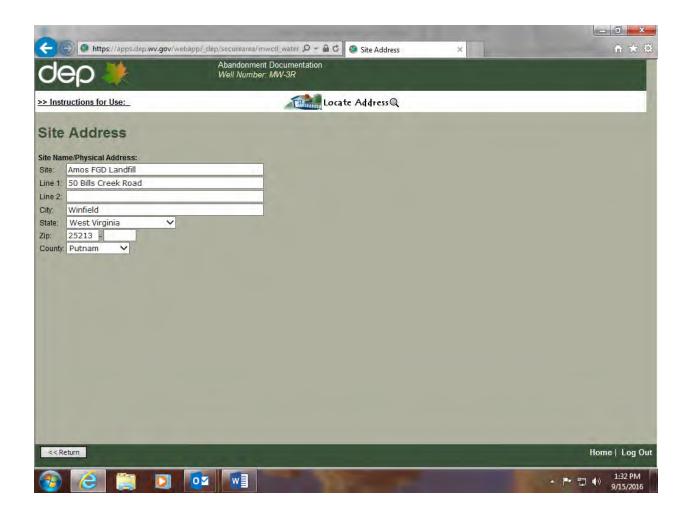

E T 7 1 1		
(-) 🕘 https://apps.o	dép.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🖛 🖨 🖒 🧶 Abandonment Information 🛛 🗶	ft ★ Ø
dep 🗰	Abandonment Documentation Well Number: B-0509	
>> Instructions for Use:		
Abandonment Abandonment Type: Borehole: O Monitoring Well: •		
Condition of Well Reason for Abandonment Abandonment Date	t Landfill Expansion	
A second se	a: Impermeable 🗸	
<< Return		Home Log Out
🙆 🦲 🚞		▲ 🕨 🛱 🕩 1:28 PM

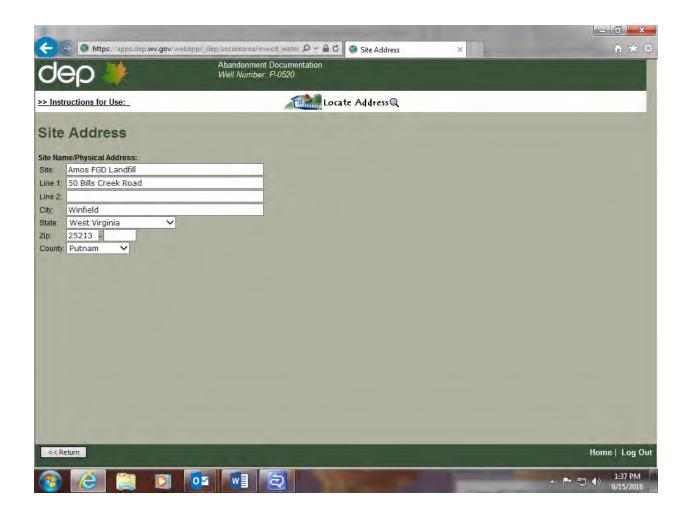

1		
(🔶) 🕥 https://apps.d	dep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🛩 🖨 🔊 🧶 Abandonment Information 🛛 🗶	n 🛧 🛱
dep 🔆	Abandonment Documentation Well Number: B-0511	
>> Instructions for Use:		
Abandonment Abandonment Type: Borehole: Monitoring Well:		
Condition of Well Reason for Abandonment Abandonment Date	t Landfill Expansion	
Procedure Used Total Well Depth	Impermeable V None	
<< Return		Home Log Out
🐵 🧵 🚞		▲ 📭 🖏 1:39 PM 9/15/2016

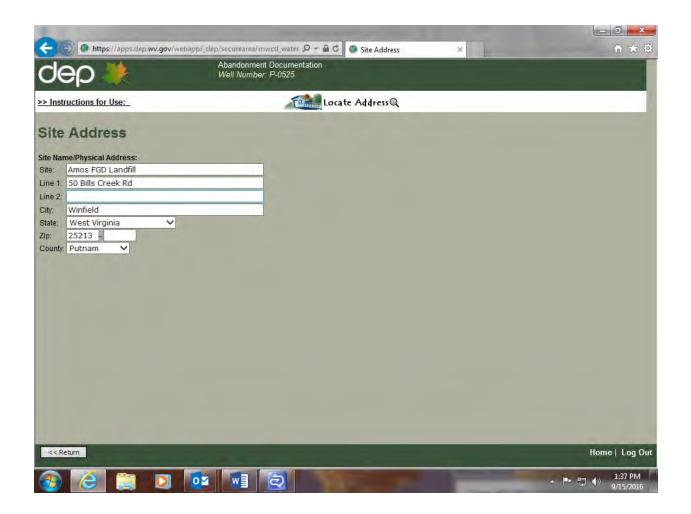

🔶 (🔿 🔮 https://apps.de	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🕆 🔒 🖒 🔯 Abandonment Information 🛛 🗶	A ★ Ø
dep 👯	Abandonment Documentation Well Number: B-0512	
>> Instructions for Use:		
Abandonment	Information	
Abandonment Type: Borehole: O Monitoring Well: •	B-0512	
Condition of Well: Reason for Abandonment: Abandonment Date:	No longer in use,	
	Impermeable V Liquid Nox	
< <return< td=""><td></td><td>Home Log Out • 🕞 👘 1:33 PM 9/15/2016</td></return<>		Home Log Out • 🕞 👘 1:33 PM 9/15/2016


the second second second second second second second second second second second second second second second se		
(-) (-) Mttps://apps./	dep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 = 🖨 🖒 🔯 Abandonment Information 🛛 🗶	↑★ 幕
dep 🗰	Abandonment Documentation Well Number: B-0513	
>> Instructions for Use:		
Abandonment Abandonment Type: Borehole: O Monitoring Well: •		
Condition of Well Reason for Abandonment Abandonment Date	t 1" piezometer is no longer in use.	
Procedure Used Total Well Depth	2: Impermeable V 2: Liquid Nox	
<< Return		Home Log Out
🚱 逡 🚞		▲ 📮 🎲 1:34 PM 9/15/2016


E		
< (I) 🖉 https://apps.de	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 👻 🖨 🖒 🔮 Abandonment Information 🛛 🗶	n 🛧 🛱
dep 👯	Abandonment Documentation Well Number: B-0523	
>> Instructions for Use:		
Abandonment	Information	
Abandonment Type:		
Borehole: O Monitoring Well: ●	B-0523	
Condition of Well:	Good V	
	1" piezometer is no longer in use.	
Abandonment Date:	4/16/2013 iii (mm/dd/yyyy)	
Abandonment Procedure:		
	3/8" Coated Pellets / 15 lbs.	
	Gravity / Pulled protector / Dug 3' / Placed clay cap	
Total Well Depth:		
Annular Space Type: Decontamination Procedure:		
Special Circumstances:		
<< Return		Home Log Out
8 8		▲ 🕨 🛱 🌵 1:35 PM 9/15/2016


the second second second second second second second second second second second second second second second se		
(-) (https://apps.d	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🛩 🔒 🖒 🧐 Abandonment Information 🛛 🗶	♠ ★ 袋
dep 🗰	Abandonment Documentation Well Number: B-0524	
>> Instructions for Use:		
Abandonment Abandonment Type: Borehole: • Monitoring Well: •		
Condition of Well: Reason for Abandonment Abandonment Date:	No Longer in use.	
	Impermeable 🗸 Liquid Nox	
< <return< td=""><td>and the second second second second second second second second second second second second second second second</td><td>Home Log Out</td></return<>	and the second second second second second second second second second second second second second second second	Home Log Out
🚱 🥝 🚞		▲ 🔽 🌒 1:36 PM 9/15/2016


E		
🧲 🦪 💿 https://apps.d/	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🗝 🖨 🙋 🥥 Abandonment Information 🗶	ት 🛧 🛱
dep 🗰	Abandonment Documentation Well Number: BankeR75-2005-01	
>> Instructions for Use:		
Abandonment	Information	
Abandonment Type: Borehole: O Monitoring Well: ●	BankeR75-2005-01	
Condition of Well: Reason for Abandonment Abandonment Date:	No longer in use	
Procedure Used: Total Well Depth: Annular Space Type: Decontamination Procedure:	Impermeable V	
<< Return		Home Log Out
🚱 🩆 🚞		▲ 🕨 🛱 🐠 1:42 PM 9/15/2016


1			
⇐) 🗇 https://apps.d/	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🛩 🔒	🖉 🥯 Abandonment Information 🛛 🗶	A ★ A
dep 👯	Abandonment Documentation Well Number: BankeR75-2005-0	2	
>> Instructions for Use:			
Abandonment	Information		
Abandonment Type: Borehole: O Monitoring Well: ●	BankeR75-2005-02		
Condition of Well: Reason for Abandonment: Abandonment Date:	No longer in use		
Abandonment Procedure: Material Used: Procedure Used: Total Well Depth: Annular Space Type: Decontamination Procedure: Special Circumstances:	21.2 ft. Height of Standing Water in Well: 5.83 Impermeable V None	tr. (if dry put 0)	
<< Return			Home Log Out
🚱 (Ĉ) 🚞			▲ 🕨 🛱 🕪 1:41 PM 9/15/2016

A S N	
(Matthe String Stri	6 🕁 🕸
Abandonment Documentation	
>> Instructions for Use:	
Abandonment Information	
Abandonment Type: Borehole:	
Monitoring Well: MW-3R	
Condition of Well: Good V	
Reason for Abandonment No longer in use, Abandonment Date: 4/16/2013 C (mm/dd/yyyy)	
Abanubininen Date. 4/10/2013 (mm/dd/yyyy)	
Abandonment Procedure:	
Material Used: 3/8" Coated Pellets - 8 lbs.	
Procedure Used: Pulled pump / Gravity pellets / Pulled protector / Du	
Total Well Depth: 50 ft. Height of Standing Water in Well: 12 ft. (if dry put 0) Annular Space Type: Impermeable V	
Decontamination Procedure: Liquid Nox	
Special Circumstances: No V Number:	
<< Return	Home Log Out
	▲ 📑 🖏 🗤 1:32 PM 9/15/2016

E			
(-) (-) Mttps://apps.d	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🛩 🔒	🖒 🧼 Abandonment Information 🛛 🗙	↑ ★ Ø
dep 🔆	Abandonment Documentation Well Number: P-0520		
>> Instructions for Use:			
Abandonment Abandonment Type: Borehole: Monitoring Well: •			
Condition of Well Reason for Abandonment Abandonment Date	No longer in use		
	Impermeable 🗸 None	ft. (íf dry put 0)	
<< Return			Home Log Out
🛞 🥝 🚞	D 🔯 🚺 🔁		▲ 🕨 👘 1:37 PM 9/15/2016

E			
(-) (-) Mttps://apps.d	ep.wv.gov/webapp/_dep/securearea/mwcd_water 🔎 🗝 🔒	🖒 🧶 Abandonment Information 🛛 🗙	∩ ★ Ø
dep 🔆	Abandonment Documentation Well Number: P-0525		
>> Instructions for Use:			
Abandonment Abandonment Type: Borehole: Monitoring Well:			
Condition of Well Reason for Abandonment Abandonment Date	No longer in use		
	Impermeable 🗸 None	Tr. (if dry put 0)	
<< Return			Home Log Out
🐵 🙆 🚞	o 🚺 🚺		▲ 🕨 👘 1:37 PM 9/15/2016

WVDEP Monitoring Well & Piezometer Pending Closure Information

Facility	Reg #	Туре	City	County	Well #	Latit	ude	Lo	ngitı	ude	Method	Owner	Phone #	Date of Finish	Abandon Date	Reason for Install	Driller First Name	Driller Last Name	Certificate #
Proposed Landfill - Amos Power Plant	NA	AMW	Winfield	Putnam	B-0508	38 29	7.1	81	51 2	22.9	GPS	Amos Power Plant	304-759-3156	5/3/2005	8/22/2006	NA	Marvin	Roush	00015
Proposed Landfill - Amos Power Plant	NA	AMW	Winfield	Putnam	05639/05-28 MW 7	38 28	44.1	81	51 1	15.5	GPS	Amos Power Plant	304-759-3156	6/28/2005	8/22/2006	NA	Marvin	Roush	00015

Notes:

Information provided by West Virginia Department of Environmental Protection as pending database upload. NA - Not Applicable GPS - Global Positioning System

WVDEP Oil & Gas Well Closure Information

WVDEP Office of Oil and Gas - Well Search

Disclaimer: Per §22-6-6. Permit required for all well work; permit fee; application; soil erosion control plan.

(a) It is unlawful for any person to commence any well work, including site preparation work, which involves any disturbance of land, without first securing a well work permit from the director of the WVDEP Office of Oil and Gas.

The appearance of an API number on the web page does not signify that a permit has been issued. The API number is used as a tracking mechanism until the permit has been issued. Under no circumstances should well work be commenced without a signed permit.

Well API	Operator	Surface Owner	Well Number	Well Status	Well Type	Last Permit Issue Date
4707900611	MEADOWS Jr, S. L. PRODUCTION Inc.	APPALACHIAN POWER COMPANY	616	Plugged	Vertical	09/21/2007

The operator listed above is the CURRENT operator of the well.

This operator may or may not have recorded production for this well for the years listed below.

The production listed below spans this well's 5 last years, regardless of the operator who originally recorded a particular year's production numbers.

Well Lifetime Gas Production

No Production Reported

Well Lifetime Oil Production

No Production Reported

Well Lifetime NGL Production

No Production Reported

The West Virginia Department of Environmental Protection (WVDEP) makes oil and gas well information and production data available to the general public through this internet service free of charge.

The oil and gas related data originate from the information reported to the Office of Oil and Gas at WVDEP by West Virginia oil and gas operators. The WVDEP does not guarantee their accuracy, precision, or completeness.

Neither the West Virginia Department of Environmental Protection nor its staff members are liable or responsible for any damage or loss resulting from the use of these data or from inaccuracies contained in the data.

We encourage you to report any problems, inconsistencies, or errors noted in using this data to the Office of Oil and Gas so that we can correct them and provide better service.

Office of Oil and Gas Department of Environmental Protection 601 57th St Charleston, West Virginia 25304 Phone: (304) 926-0499 Fax: (304) 926-0452

WVDEP Office of Oil and Gas - Well Search

Disclaimer: Per §22-6-6. Permit required for all well work; permit fee; application; soil erosion control plan.

(a) It is unlawful for any person to commence any well work, including site preparation work, which involves any disturbance of land, without first securing a well work permit from the director of the WVDEP Office of Oil and Gas.

The appearance of an API number on the web page does not signify that a permit has been issued. The API number is used as a tracking mechanism until the permit has been issued. Under no circumstances should well work be commenced without a signed permit.

Well API	Operator	Surface Owner	Well Number	Well Status	Well Type	Last Permit Issue Date
4707900660	MEADOWS Jr, S. L. PRODUCTION Inc.	AMERICAN ELECTRIC POWER	2	Plugged	Vertical	09/08/2006

The operator listed above is the CURRENT operator of the well.

This operator may or may not have recorded production for this well for the years listed below.

The production listed below spans this well's 5 last years, regardless of the operator who originally recorded a particular year's production numbers.

Well Lifetime Gas Production

No Production Reported

Well Lifetime Oil Production

No Production Reported

Well Lifetime NGL Production

No Production Reported

The West Virginia Department of Environmental Protection (WVDEP) makes oil and gas well information and production data available to the general public through this internet service free of charge.

The oil and gas related data originate from the information reported to the Office of Oil and Gas at WVDEP by West Virginia oil and gas operators. The WVDEP does not guarantee their accuracy, precision, or completeness.

Neither the West Virginia Department of Environmental Protection nor its staff members are liable or responsible for any damage or loss resulting from the use of these data or from inaccuracies contained in the data.

We encourage you to report any problems, inconsistencies, or errors noted in using this data to the Office of Oil and Gas so that we can correct them and provide better service.

Office of Oil and Gas Department of Environmental Protection 601 57th St Charleston, West Virginia 25304 Phone: (304) 926-0499 Fax: (304) 926-0452

WVDEP Office of Oil and Gas - Well Search

Disclaimer: Per §22-6-6. Permit required for all well work; permit fee; application; soil erosion control plan.

(a) It is unlawful for any person to commence any well work, including site preparation work, which involves any disturbance of land, without first securing a well work permit from the director of the WVDEP Office of Oil and Gas.

The appearance of an API number on the web page does not signify that a permit has been issued. The API number is used as a tracking mechanism until the permit has been issued. Under no circumstances should well work be commenced without a signed permit.

Well API	Operator	Surface Owner	Well Number	Well Status	Well Type	Last Permit Issue Date
4707900722	MEADOWS Jr, S. L. PRODUCTION Inc.	AMERICAN ELECTRIC POWER	3	Plugged	Vertical	09/08/2006

The operator listed above is the CURRENT operator of the well.

This operator may or may not have recorded production for this well for the years listed below.

The production listed below spans this well's 5 last years, regardless of the operator who originally recorded a particular year's production numbers.

Well Lifetime Gas Production

No Production Reported

Well Lifetime Oil Production

No Production Reported

Well Lifetime NGL Production

No Production Reported

The West Virginia Department of Environmental Protection (WVDEP) makes oil and gas well information and production data available to the general public through this internet service free of charge.

The oil and gas related data originate from the information reported to the Office of Oil and Gas at WVDEP by West Virginia oil and gas operators. The WVDEP does not guarantee their accuracy, precision, or completeness.

Neither the West Virginia Department of Environmental Protection nor its staff members are liable or responsible for any damage or loss resulting from the use of these data or from inaccuracies contained in the data.

We encourage you to report any problems, inconsistencies, or errors noted in using this data to the Office of Oil and Gas so that we can correct them and provide better service.

Office of Oil and Gas Department of Environmental Protection 601 57th St Charleston, West Virginia 25304 Phone: (304) 926-0499 Fax: (304) 926-0452

Arcadis, Inc. 2018

Boring and Well Construction Logs

MW-1801 and MW-1802

JOB NUMBER	WV0159/6.0	005		
COMPANY An	nerican Electi	ric Power		BORING NO. MW-1
PROJECT Am	os - FGD Lan	dfill		BORING START
COORDINATES	N 38.5 E 81	1.6		PIEZOMETER TYPE
GROUND ELEVA	TION 735.6	SYSTEM N	AVD88	HGT. RISER ABOVE
Water Level, ft	⊻ 21.0	▼	$ar{oldsymbol{\Lambda}}$	DEPTH TO TOP OF
TIME				WELL DEVELOPME
DATE	8/15/2018			FIELD PARTY Za

MANO4 E070 000E

EET 1 OF 5	SHE	DATE 5/3/19	-1801	BORING NO. MW
8/8/18	G FINISH	BORI	8/7/18	BORING START
OW	LL TYPE	W	PE PVC	PIEZOMETER TYP
2"	DIA	2.8	E GROUNE	HGT. RISER ABOV
114.4	BOTTOM	REEN 50.4	F WELL SCI	DEPTH TO TOP O
Bentonite Grout	ACKFILL	rge/Purge	IENT <u>Su</u>	WELL DEVELOPM
Direct Circulation -	RIG	Racer (AEP)	achary R	FIELD PARTY Z
Wireline Core				

OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON

RECORDER A. Gillespie

SAMPLE STANDARD SAMPLE NUMBER RQD ΗĽ DEPTH SAMPLE **GRAPHIC** S DEPTH PENETRATION LENGTH RECOVER SOIL / ROCK WELL DRILLER'S LOG C IN Ś IN FEET RESISTANCE % **IDENTIFICATION** NOTES ⊃ FEET FROM BLOWS / 6" TO CL 0-5': SILTY CLAY; 2.5YR 5/6 (red); moist; backfill 0-49': Riser ML material. 5 5-6': SANDSTONE. 5.0 6.5 50/4 3.6 6-6.3': SHALE; GLEY1 5/N (gray); dry; thin <u>1111</u> CL bedded; hard. 6.5 8.0 48-23-15 3.6 ML 6.3-6.5': SILTY CLAY; red; moist; hard ML 6.5-8': SILT; 10YR 6/2 (tan); with sandstone and 8.0 9.5 11-3-5 7.2 MH \shale fragments; compacted fill material. 8-9.5': CLAYEY SILT; 5YR 4/2 (brown); firm; moist; fill material. 9.5-11': SILTY CLAY; 10YR 6/3 (brown) to brown 9.5 11.0 4-4-7 10.8 CL 10 ML clayey silt; dry; crumbly; fill material. 11-12.5': SILTY CLAY; 5YR 4/2 (brown); moist; 11.0 12.5 4-8-50/3 10.8 CL ML firm Note: Sandstone at 12-12.3'. 12.5 14.0 50/3 ML 12.5-14': SILT, compacted; 10YR 7/4 (tan); very hard; dry; fill material. 14.0 15.5 50/4 14-14.5': SILTY SHALE material, weathered; mottled tan and dark brown; dry; very hard. 15 14.9 19.9 51 14.5-14.9': SANDSTONE; strong field strength; 2.5Y 6/2; fine-grained texture; massive structure; slightly to moderately decomposed; moderately disintegrated with Fe staining; fracture at 14.3-14.5'. 14.9-19.9': SHALE; moderate field strength; GLEY1 5/GY; fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintegrated along bedding planes and fracture; vertical fracture with Fe staining at 15.5-16.5'. **TYPE OF CASING USED** Continued Next Page NQ-2 ROCK CORE Х PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE NA 6" x 3.25 HSA SLOTTED SCREEN, G = GEONOR, P = PNEUMATIC

5/3/19 11:49 - S\KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEERVEP MOUNTAINEER. GP. AEP.GDT

NA NA

NA

NA

NA

AEP

9" x 6.25 HSA

NW CASING

SW CASING

AIR HAMMER

HW CASING ADVANCER

4"

3"

6"

8"

WELL TYPE:

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>2</u> OF <u>5</u>

BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM	PTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		19.9	24.9	8-7-6	55					19.9-24.9': SHALE; moderate field strength; GLEY1 5/GY; fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintegrated; moderately to intensely fractured.	¥	
							-			Transition to strong field strength, 2.5YR 4/4; fine-grained texture; massive structure to thinly bedded; slightly decomposed; slightly disintegrated; slightly to moderately fractured.		
UNTAINEER.GPJ		24.9	34.9	4-4-13	72		25 -	-		24.9-25.2': SHALE; strong field strength; fine-grained structure; massive structure to thinly bedded; slightly decomposed; slightly disintegrated; slightly to moderately fractured. 25.2-30.7': CLAYSTONE/MUDSTONE, highly weathered; very weak field strength; 10YR 5/3; very fine-grained texture with sandstone fragments; massive structure; highly decomposed; intensely disintegrated; unfractured.		
EDIT FILESIGINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ							30 -			30.7-32.5': SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed; slightly to moderately disintegrated; slightly to moderately fractured. 32.5-34.9': CLAYSTONE/MUDSTONE; moderate field strength; GLEY1 4/104; fine-grained texture; massive structure; moderately decomposed; moderately disintegrated; moderately to intensely		
		34.9	38.3	4-5-8	36		35 -			fractured. 34.9-38.3': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; moderately to highly decomposed; intensely disintegrated, mottling tan and gray; moderately to intensely fractured.	-	
- AEP.GDT - 5/3/19 11:49 - S::KNOXVILLE-TNFOR NICOLE AEP LOG		38.3	44.9	5-7-13-9-6-6	70		40	-		38.3-44.9': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; highly decomposed; intensely disintegrated; intensely fractured.		
EP.GDT - 5/3/19		44.9	50.0	4-4-7-8	50		45			44.9-50': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with		
AEP - AE				1						Continued Next Page		1

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>3</u> OF <u>5</u>

PROJECT Amos - FGD Landfill BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM	PTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION		DRILLER'S NOTES
		44.9	50.0	4-4-7-8	50		-	-		tan, black, and gray; fine-grained texture; massive structure; highly decomposed; intensely disintegrated; intensely fractured.		49-52': Bentonite
leer.gpJ		50.0	55.0	4-4-5-4	50		50 -	-		50-56.7': CLAYSTONE/MUDSTONE; moderate field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; moderately to highly decomposed, becomes less weathered at 50.3'; highly disintegrated, highly mottled; moderately to intensely fractured.		Pellets 52-53': Secondary Filter Pack 53-75': Primary Filter Pack
EDIT FILESIGINT LOGS OUTPUTAEP MOUNTANEERAEP MOUNTAINEER GPJ		55.0	59.8	5-7-5-36	52		55 -			56.7-58': SANDSTONE, interbedded; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture; moderately fractured at 56.7' and 57.1-57.5'. 58-58.8': SHALE, interbedded; strong field		55-75': Screen
P LOG EDIT FILES/GINT LOGS OUTPUT		59.8	64.8	8-5-4-4-7-5-5-4	60		60 - - - -			strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture. 58.8-59.2': SANDSTONE, interbedded; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture. 59.2-59.8': SHALE, interbedded; strong field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture.		
- AEP.GDT - 5/3/19 11:49 - S:\KNOXVILLE-TNIFOR NICOLE AEP LOG		64.8	74.8	4-5-4-6	76		65 - - - - - - - - - - - - - - - - - - -			 59.8-60.7': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated; unfractured. 60.7-63.9': SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintigrated with silt filled fractures; moderately fractured. 63.9-64.3': SANDSTONE; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated; unfractured. 64.3-64.8': SHALE; moderate field strength; 2.5YR 4/4 (red); fine grained texture; thinly 		
										104.3-04.8: SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed; moderately Continued Next Page		

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

 PROJECT
 Amos - FGD Landfill
 BORING START
 8/7/18
 BORING FINISH
 8/8/18

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>4</u> OF <u>5</u>

SAMPLE NUMBER	SAMPLE	SAM DEF IN FI FROM	νTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	%	DEPTH IN FEET	GRAPHIC LOG	U S C S	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		64.8	74.8	4-5-4-6	76		75 -			disintigrated; moderately fractured. 64.8-74.8': SHALE, highly weathered at base; moderate to weak field strength along some bedding planes; 2.5YR 3/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately disintigrated, becomes more limestone fragments last 1 ft, 3-5 cm; moderately to intensely fractured. 74.8-85': SHALE, highly weathered; weak field strength; 2.5YR 4/4 (red) with tan and gray mottling; fine-grained texture; massive structure; highly decomposed; highly disintigrated, mottled; intensely fractured.		75-105': Bentonite
							80 -					
		85.0	95.0	5-4-4	120		85 -			85-92.7': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated, calcite in light colored beds/thin; slightly fractured.		
							90 -			92.7-94.6': SHALE; moderate field strength; fine-grained texture; massive structure; slightly decomposed; slightly disintigrated, some mottling;		
		95.0	105.0	7-4-4	120		95 -			moderately fractured. 94.6-95': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated, calcite in light colored beds/thin; slightly fractured at 94.6-95'. 95-100.1': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated; slightly fractured at 95-95.2'.		

Continued Next Page

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>5</u> OF <u>5</u> BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM		STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		95.0	105.0	7-4-4	120		100 -			100.1-101.5': SHALE and sandstone interbedded; moderate field strength; fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated; slightly fractured at 100.2-100.5'.		
2							105 -			101.5-105': SHALE; moderate to weak field strength; fine-grained texture; massive structure; highly decomposed; moderately to highly disintigrated mottling with silt filled fractures; highly fractured.		
raep mountaineervaep mountaineer. Gi							- - - - - -	-				
LE AEP LOG EDIT FILES/GINT LOGS OUTPU							- 115 -	-				
- 5/3/19 11:49 - S:\KNOXVILLE-TNFOR NICOL							- 120 – -	-				
AEP - AEP.GDT - 5/3/19 11:49 - S:/KNOX/ILLE-TN/FOR NICOLE AEP LOG EDIT FILES/GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ							120 -	-				

JOB NUMBER	WV015976.0	005		LOG OF
COMPANY Ar	nerican Electi	ric Power		BOR
PROJECT Am	ios - FGD Lan	dfill		BOR
COORDINATES	N 38.5 E 81	1.9		PIEZ
GROUND ELEVA	TION 709.8	SYSTEM	AVD88	HGT
Water Level, ft	⊻ 35.0	▼	Ā	DEP'
TIME				WEL
DATE	8/21/2019			FIEL

BORING NO. <u>MW-1802</u>	DATE 5/3/19	
BORING START 8/20	BORING F	FINISH 8/21/18
PIEZOMETER TYPE NA	WELL	TYPE OW
HGT. RISER ABOVE GROU	IND 2.91	DIA 2 "
DEPTH TO TOP OF WELL	SCREEN <u>50</u> BO	оттом 114.4
WELL DEVELOPMENT	Surge/Purge BAC	KFILL Bentonite Grout
FIELD PARTY Zachary	/ Racer (AEP)	RIG Direct Circulation -
		Wireline Core

Wireline Core

	-			I								Vireline Core
шα	: ш	SAM	IPLE	STANDARD	₋≿	RQD	DEPTH	<u>∪</u>	S			
SAMPLE	SAMPLE	DEF	PTH	PENETRATION	可近す			GRAPHIC LOG	ő	SOIL / ROCK	WELL	DRILLER'S
		IN F	EET	RESISTANCE	626	%	IN	RAPH	S	IDENTIFICATION	N N	NOTES
S ⊒	S I				TOTAL LENGTI RECOVE	/0	FEET	LD LD		IDENTIFICATION	-	NOILS
		FROM	TO	BLOWS / 6"	2							
									GW	0-3.5': GRAVEL backfill; large rip-rap and smaller		0-41': Bentonite Grout
								50		compacted gravels.		
												4
												2
											KK	1
												1
								• • •				1
								₹• 6'				4
									CL	3.5-4.5': SILTY CLAY; brown; moist; soft; backfill		}
								-\///		material.		4
												}
L L L		4.5	6.0	6-4-5	0		5 -			4.5-6': NO RECOVERY, due to gravel blocking	KK	1
R.							5 -			cutting shoe.		}
Щ												}
	-	6.0	7.5	4-3-4	3.6			1///	CL	6-17': SILTY CLAY; 7.5YR 4/3 (brown); moist;	14 14	{
Ξ	1	0.0	1.5	4-0-4	5.0			X////				1
<u></u>	1									firm; compacted backfill material; becomes wet at	\aleph	1
										12.5'.		}
ζΆΕ		7.5	9.0	3-4-5	7.2			<i>\///</i>			K	} I
Щ.								-////				}
Ž											KK	
					10			-\///				1
		9.0	10.5	4-4-6	18							1
Ž							10					{
							10 -	V////				
5		10.5	12.0	5-4-5	13.2							
IP		10.0	12.0	0 4 0	10.2			-\////				
00											KK	1
ა ე												1
2		12.0	13.5	3-4-6	15.6]
Z												4
S/G								<i>\////</i>				4
ü⊢		13.5	15.0	3-5-8	14.4							1
⊥ ⊢		15.5	15.0	0-0-0	14.4			-\////				}
												}
<u>ღ</u>							15 -					
2		15.0	16.5	4-7-9	15.6		15					1
AE												1
Щ								-\////				}
<u>8</u> —		16.5	18.0	6-25-8	16.8							{
z		10.5	10.0	0-20-0	10.0			<u> </u>				
Ë.										17-17.5': SANDSTONE, weathered; GLEY1 7/N	\mathbb{N}	1
ź								\$////	CL	\(gray); dry.		}
ц́		18.0	19.5	7-23-15	14.4					17.5-19.5': SILTY CLAY; GLEY1 6/N (gray)	K K	}
										mottled with brown, red, tan; moist; soft; crumbles		}
ŏ	1							-\////		easily.	KK	1
ž	+	10.5	01.0	00 > 50/4	10.0			\\\\	0	•	88]
vi	1	19.5	21.0	20->50/4	10.8	ļ		V////	CL			1
AEP-AEP.GDT-5/31911:49-S.KNOXVILLE-INFORINCOLE AEP.LOG EDITFILESIGINI LOGS OUTPUTAEP MOUNTAINEER.GFJ Z Z Z Z Z Z X		TYPE	OFC	ASING USED						Continued Next Page		
N X		NQ-2 RC	оск со	RE			PIEZOM		TVD	E PT = OPEN TUBE POROUS TIP, SS		
NA		6" x 3.25								CREEN, G = GEONOR, P = PNEUMATIC		
		9" x 6.25					SL		03	CREEN, G - GEUNOR, P - PINEUMATIC	,	
0. NA				VANCER	4"		WELL T		O_{1}	V = OPEN TUBE SLOTTED SCREEN, G	M = C	FOMON
		NW CAS			3"		VVELL I	IFC.		V - OF LIN TODE SLOTTED SOREEN, G	w - C	
		SW CAS			6"					RECORDER A. Gillespie		
		AIR HAN			8"							

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>2</u> OF <u>5</u>

	SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM	ΡTΗ	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION → DRILLER'S NOTES
			19.5	21.0	20->50/4	10.8					19.5-22.5': SILTY CLAY; GLEY1 6/N (gray) mottled with brown, tan; dry; soft; crumbles easily.
			21.0	22.5	27-50/5	9.6		-			
			22.5	24.4	4	23		-	× × × × × × × × × × × × × × × × × × ×		22.5-24': SILTSTONE; moderate to weak field strength; GLEY1 6/N; fine-grained texture; massive structure; highly decomposed; moderately to highly disintegrated with tan/brown
AINEER.GPJ			24.4	29.4		22		25	*****		mottling; moderately to intensely fractured. 24-24.4': SILTSTONE; weak field strength; 10R 4/4 (red) mottled; fine-grained texture; massive structure; highly decomposed; moderately to intensely fractured. 24.4-29.4': SILTSTONE; weak field strength; 10R 4/4 (red) mottled with tan, gray, and black; fine-grained texture; massive structure; highly decomposed; highly disintegrated, highly mottled; moderately fractured.
MOUNTAINEERVAEP MOUNT 1			29.4	33.7	5-11-6	40		30			29.4-32.8': SHALE, weathered; moderate field strength; 10YR 4/4 (red) mottled; fine-grained texture; massive structure; moderately decomposed; moderately to intensely disintegrated; moderately fractured.
LE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEERAEP MOUNTAINEER.GPJ			33.7	39.4	5-4-4-7-5	59		- 35			5/4 (tan) mottled; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; moderately to intensely fractured. 33.7-39.4': SHALE; moderate field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; intensely fractured.
AEP - AEP.GDT - 5/3/19 11:49 - S:\KNOXVILLE-TNFOR NICOLE AEP LOG			39.4	44.4	4-6-4-4	57		40			39.4-44.4': SHALE; moderate field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; intensely fractured. 41-44': Bentonite Pellets
EP.GDT - 5/3/15			44.4	54.4	7-8-7-5-5-24-5	120		45			44.4-47.8': SHALE, highly weathered; weak field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; 45-71': Primary Filter Pack
AEP - A											Continued Next Page

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>3</u> OF <u>5</u>

SAMPLE	DEF IN F FROM		STANDARD PENETRATION RESISTANCE BLOWS / 6"	LENGTH RECOVER	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
	44.4	54.4	7-8-7-5-5-24-5	120					highly decomposed; intensely disintegrated; intensely fractured.		
									47.8-49.9': SHALE, less weathered; moderate field strength; 10R 3/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately disintegrated; moderately fractured.		
						50 -			49.9-50.8': SHALE, interbedded with sandstone; moderate field strength; GLEY1 4/N; fine-grained texture; thinly bedded; moderately decomposed; slightly disintegrated; moderately fractured.		50-70': Screen
									50.8-52.8': SHALE; moderate to strong field strength; 10R 4/3 (red); fine-grained texture; massive structure; slightly decomposed; moderately disintegrated; slightly fractured.		
	54.4	64.4	8-12-5-6-7-4-4-4	114		55 -			52.8-53.1': SHALE, interbedded with sandstone; strong field strength; GLEY1 4/5GY; fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; unfractured.		
									53.1-54.4': SHALE; moderate field strength; 10R 4/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately disintegrated; moderately fractured.		
									54.4-55.4': SANDSTONE, interbedded with shale; moderate field strength; 10R 4/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately		
						60 -			disintegrated; slightly to moderately fractured. 55.4-57.1': SHALE, interbedded with sandstone; moderate field strength; GLEY1 4/3, 10R 4/3; fine-grained texture; thinly bedded; slightly decomposed; olightly disintegrated; moderately		
									decomposed; slightly disintegrated; moderately fractured. 57.1-64.4': SHALE, weathered; moderate to weak field strength; 10R 4/3 (red); fine-grained texture; magnine structure; mederately to highly.		
	64.4	74.4	4-6-8-6-4-5-4-4-5	117		65 -			massive structure; moderately to highly decomposed; moderately to intensely disintegrated with intense gray mottling; intensely fractured. 64.4-70.5': SHALE, highly weathered; moderate to		
									weak field strength; 10R 4/3 (red); fine-grained texture; massive structure; moderately to intensely disintegrated with gray mottling; intensely fractured.		
						70 -			70.5-74.4': SHALE, interbedded with sandstone;		- - - -
									vith GLEY1 4/N (gray-green); fine-grained	<u> ····</u>	-

JOB NUMBER **WV015976.0005**

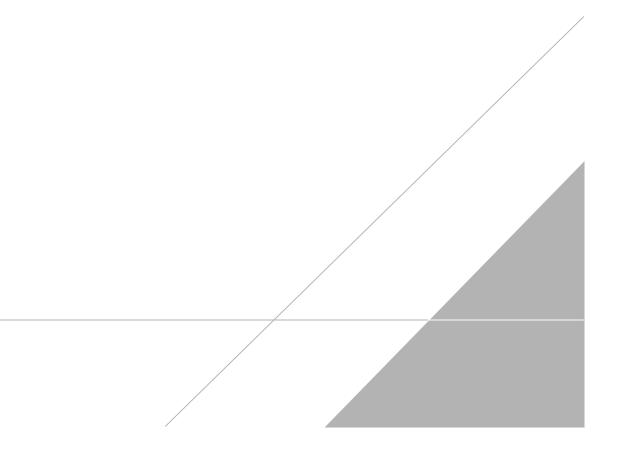
COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>4</u> OF <u>5</u>

SAMPLE NUMBER	SAMPLE	SAM DEF IN F	ΡTΗ	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		64.4	74.4	4-6-8-6-4-5-4-4-5			-			texture; thinly bedded; slightly to moderately decomposed along some bedding planes; moderately disintegrated with silt filled fractures; moderately fractured.		
		74.4	84.4	8-7-5-5-14-8-7- 22-12	120		75 -			74.4-77.1': SHALE, with some interbedded sandstone lenses; moderate field strength; 10R 4/3 (red); fine-grained texture; thinly bedded; slightly to moderately decomposed at some bedding planes; slightly disintegrated; moderately fractured.		
P MOUNTAINEER.GPJ							- 80			77.1-82.7': SANDSTONE, with some red shale lenses; strong field strength; GLEY1 4/N; fine-grained texture; thinly bedded; fresh; moderately disintegrated, calcite reacts to HCl in light colored bands within 0.5' of surrounding contact lines, no HCl/calcite in fractures, no Fe staining; moderately fractured.		
S OUTPUTAEP MOUNTAINEERAE		84.4	94.4	10-11-6-7-7-8-9- 8-7-6-6-7-10	120		85 -			82.7-84.4': SHALE, with some interbedded sandstone lenses; moderate field strength; 10R 4/3 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured. 84.4-86.7': SHALE, with sandstone lenses; moderate field strength; 10R 4/2 (red) with GLEY1 4/N lenses; fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured.	-	
- AEP.GDT - 5/3/19 11:49 - S.\KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEER.AEP MOUNTAINEER.GPJ							90			86.7-89.2': SANDSTONE, with shale lenses; moderate field strength; GLEY1 4/N with 10R 4/2 lenses; fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured. 89.2-94.4': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded, micaceous; fresh; slightly disintegrated, some calcite in light bands, no staining, no calcite in fractures; slightly to moderately fractured along bedding planes; fracture at 92.8'.		
P.GDT - 5/3/19 11:49 - S:\KNOXVIL		94.4	104.4	7-4-5-4-9-9-8-5- 11-5-6-10-19	120		95 -			94.4-104.4': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded, micaceous, cross-bedding at 94.4-94.8; fresh; slightly disintegrated, calcite in some light bedded planes, no calcite or Fe staining noted in fractures; slightly to moderately fractured along bedding planes.	-	
AEP - AEP										Continued Next Page		

JOB NUMBER WV015976.0005


COMPANY American Electric Power

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>5</u> OF <u>5</u> PROJECT Amos - FGD Landfill BORING START 8/20/18 BORING FINISH 8/21/18

		SAM	IPLE	STANDARD	_≿	RQD	DEPTH	O				
SAMPLE	SAMPLE	DEF	PTH	PENETRATION	GTH VER		DEPTH IN FEET	UHU HU	C S	SOIL / ROCK	WELL	DRILLER'S
SAN	SAN	IN F		RESISTANCE	TOTAL LENGTH RECOVEF	%	FEET	GRA	N S	IDENTIFICATION	WE	NOTES
		FROM	TO					ļ				
		94.4	104.4	7-4-5-4-9-9-8-5- 11-5-6-10-19	120		- 100 – -					
NTAINEER.GPJ		104.4	114.4	15-6-21-6-4-4-8- 8-6-4-13-5-7	120		105			104.4-108': SANDSTONE; strong field strength; GLEY1 6/N; fine to medium-grained texture; thinly bedded, micaceous, shale fragments; fresh; moderately disintegrated, calcite along entire sandstone void and shale fragments at base, calcite in void; slightly fractured.	-	
AEP.GDT - 5/3/19 11:49 - S.\KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEER.AEP MOUNTAINEER.GPJ							- 110 -			108-108.9': SHALE, with interbedded sandstone; moderate field strength; GLEY1 4/N, 10R 4/3 bands; thinly bedded; moderately decomposed between bedding planes; moderately disintegrated along bedding planes; moderately fractured. 108.9-114.4': SHALE; moderate field strength; 10R 4/3 (red) with GLEY1 4/N mottling; fine-grained texture; massive structure; moderately decomposed; moderately to intensely disintegrated, mottling; moderately fractured.		
-TNFOR NICOLE AEP LOG EDIT FILES(115	-				
AEP.GDT - 5/3/19 11:49 - S.\KNOXVILLE-							120 -	-				

APPENDIX C

Well Survey

Prepared for:

ARCADIS U.S., INC.-Columbus 630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129

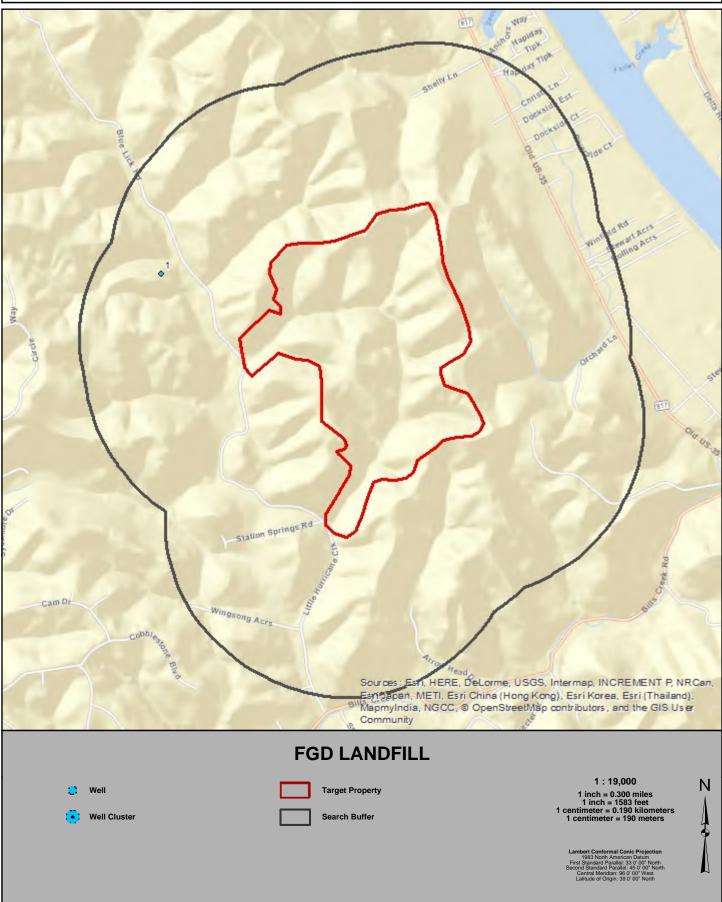
 Water Well
 FGD LANDFILL

 WV
 PO #: WV015976.0004

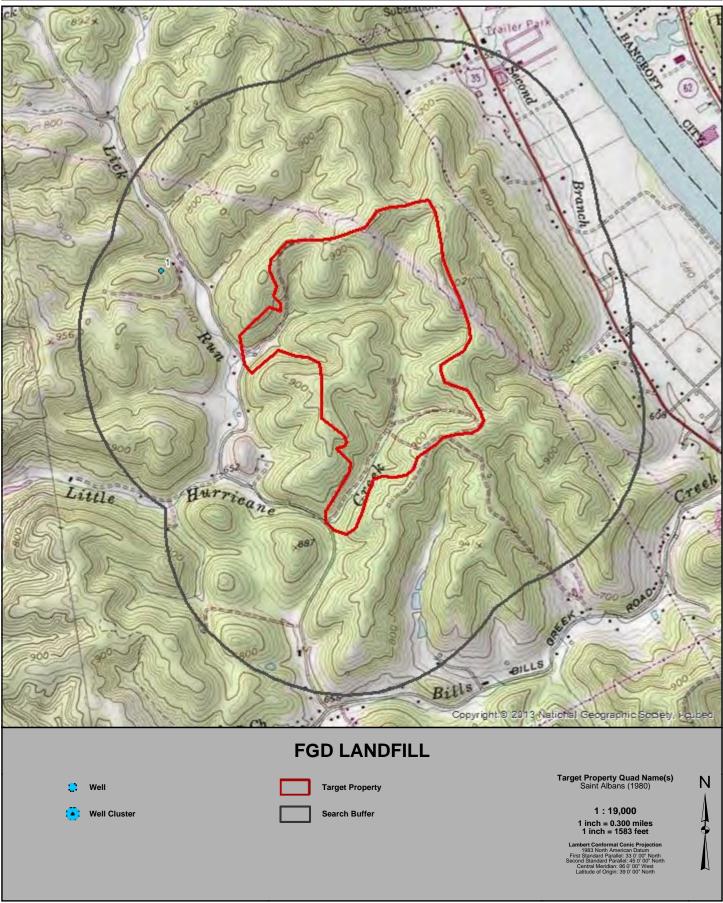
 ES-124909
 Thursday, July 20, 2017

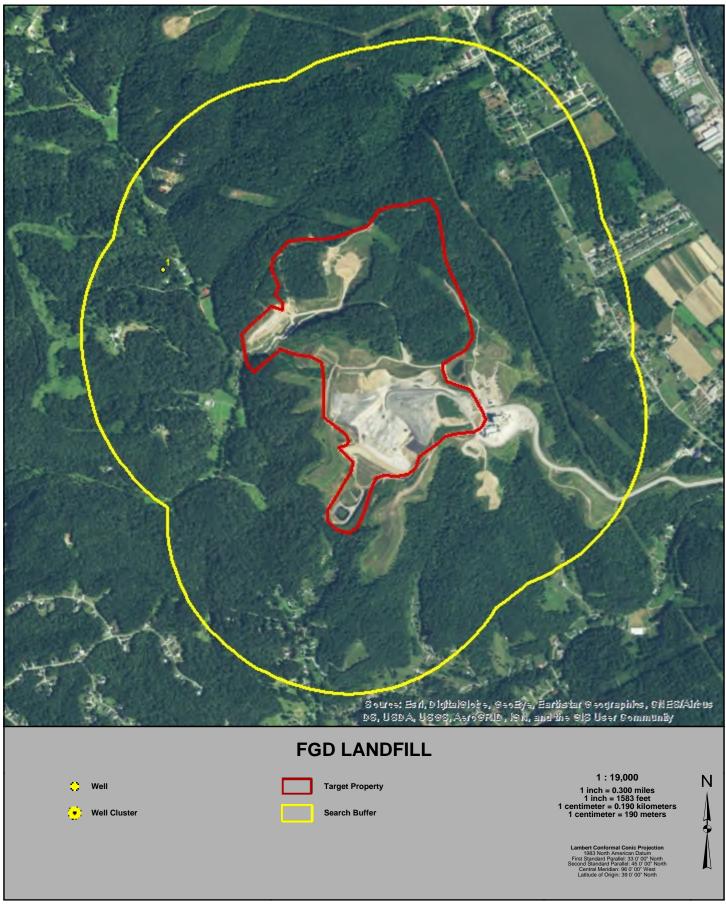
Table of Contents	BANKS ENVIRONMENTAL DATA ADVISION OF THE BANKS GROUP
Geographic Summary	3
Maps	
Summary Map - 0.5 Mile Buffer	4
Topographic Overlay Map - 0.5 Mile Buffer	5
Current Imagery Overlay Map - 0.5 Mile Buffer	6
Water Well Details	7
Database Definitions and Sources	8
Disclaimer	9

Location


Geographic Summary

WV	
Target location is 0.405 square miles and has	a 3.4 mile perimeter
Coordinates	
Longitude & Latitude in Degrees Minutes S	Seconds NA
Longitude & Latitude in Decimal Degrees	NA
X and Y in UTM	NA
Elevation	
NA	
Zip Codes Searched	
Zip Codes Searched Search Distance	Zip Codes (historical zip codes included)
	Zip Codes (historical zip codes included) 25213, 25070, 25109, 25124, 25560
Search Distance	
Search Distance Target Property	25213, 25070, 25109, 25124, 25560
Search Distance Target Property 0.5 miles	25213, 25070, 25109, 25124, 25560
Search Distance Target Property 0.5 miles Topos Searched	25213, 25070, 25109, 25124, 25560 25213, 25070, 25109, 25124, 25560


Summary Map - 0.5 Mile Buffer


Topographic Overlay Map - 0.5 Mile Buffer

Current Imagery Overlay Map - 0.5 Mile Buffer

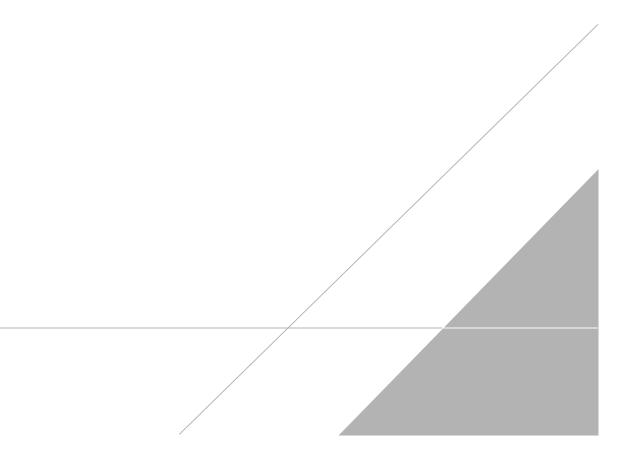
Water Well Details

Map ID	Source ID	Dataset	Owner of Well	Type of Well	Depth Drilled	Completion Date	Longitude	Latitude	Elevation	Driller's Logs
1	USGS- 382926081 520101	WW USGS	USGS	Not Reported	91	01/01/1953	-81.8668	38.490646	763 ft	N/A

Well Summary

Water Well Dataset	# of Wells
WW USGS	1
Total Count	1

Dataset	Source	Dataset Description	Update Schedule	Data Requested	Data Obtained	Data Updated	Source Updated
WV WW - West Virginia Water Wells	West Virginia Department of Health and Human Resources	This dataset contains groundwater well information provided by West Virginia Department of Health and Human Resources.	As requested	N/A	N/A	N/A	N/A
WW USGS - USGS Water Wells	U.S. Geological Survey	This dataset contains groundwater well records from the U.S. Geological Survey.	Semi- annually	04/18/2017	04/18/2017	05/07/2017	04/18/2017


Disclaimer

The Banks Environmental Data Water Well Report was prepared from existing state water well databases and/or additional file data/records research conducted at the state agency and the U.S. Geological Survey. Banks Environmental Data has performed a thorough and diligent search of all groundwater well information provided and recorded. All mapped locations are based on information obtained from the source. Although Banks performs quality assurance and quality control on all research projects, we recognize that any inaccuracies of the records and mapped well locations could possibly be traced to the appropriate regulatory authority or the actual driller. It may be possible that some water well schedules and logs have never been submitted to the regulatory authority by the water driller and, thus, may explain the possible unaccountability of privately drilled wells. It is uncertain if the above listing provides 100% of the existing wells within the area of review. Therefore, Banks Environmental Data cannot fully guarantee the accuracy of the data or well location(s) of those maps and records maintained by the regulatory authorities.

APPENDIX D

Hydrographs and Hydraulic Testing Results

Well Development Field Logs

WELL DEVELOPMENT LOG

Site/Well	l No.	MW-1801											
Project		AEP Amos I	Plant - F	GD Land	fill Project N	o. W	V015976	Page	1	of 1			
Site Loca	ation	Winfield, W	/V		-			Date	8/	/17/2018			
Weather		NR			Developn	nent Time I	Begin	9:45		End	1:45		
	i a m D a d	_					_						
Evacuati	ion Dat	ta					Sample	Pump					
Measurin	ng Point	t			TOC		Intake S	Setting (ft b	omp)		NR		
MP Eleva	ation (ft	.)			NA		Pumpin	g Rate (gp	om)		Average		
Land Sur	rface El	levation (ft)			NA		Evacuat	tion Metho	bd		Submersible F	Pump	
Sounded	l Well D	Depth (ft bm	p)		78.50		Volume	s Purged			6		
Depth to	Water	(ft bmp)			29.15			-					
		evation (ft)			NA		Field Pa	arameters	5				
		n Well (ft)			49.35		Color				Red		
Casing D					2" PVC		Odor				NR		
Gallons in		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			7.90								
Galions II					7.90		Appearance			Cloudy			
Time	Min Elapsed	Total Gallons Removed	Depth To Water (ft btoc)	Rate (mL/min)	Conductivity (mS/cm or umhos/cm)	Turbidity (NTU)	Temperature (°F/°C)	рН (s.u.)	ORP (mV)	Dissolved Oxygen (g/mL)	Well Volume (Gal)	Remarks	
9:45	0	NA	34.00	1400	NR	NR	NR	NR	NR	(g/in∟) NR	NA	Dark Red	
10:00	15	6	42.00	1400	NR	NR	NR	NR	NR	NR	5.84	Dark Red	
10:15	30	8	46.70	600	NR	NR	NR	NR	NR	NR	5.09	Surge/Dark Red	
10:30	45	13	59.00	1400	NR	NR	NR	NR	NR	NR	3.12	Dark Red	
10:45	60	19	58.70	1400	NR	NR	NR	NR	NR	NR	3.17	Dark Red	
11:00	75	25	63.40	1400	NR	NR	NR	NR	NR	NR	2.42	Dark Red	
11:15	90	28	65.10	750	NR	NR	NR	NR	NR	NR	2.14	Red Cloudy	
11:30	105	31	65.10	750	NR	NR	NR	NR	NR	NR	2.14	Surge/Red Cloudy	
11:45	120	33	65.80	750	NR	NR	NR	NR	NR	NR	2.03	Red Cloudy	
12:00	135	36	66.70	750	NR	NR	NR	NR	NR	NR	1.89	Red Cloudy	
12:15	150	39	67.30	600	NR	NR	NR	NR	NR	NR	1.79	Red Cloudy	
12:30	165	40	67.30	300	NR	NR	NR	NR	NR	NR	1.79	Red Cloudy	
12:45	180	41	67.59	300	NR	NR	NR	NR	NR	NR	1.75	Surge/Red Cloudy	
1:00	195	42	68.00	300	NR	NR	NR	NR	NR	NR	1.68	Red Cloudy	
1:15	210	44	68.60	300	NR	NR	NR	NR	NR	NR	1.58	Red Cloudy	
1:30	225	45	69.65	300	NR	NR	NR	NR	NR	NR	1.42	Red Cloudy	
<u> </u>	240	N/A	70.01	NR	NR	NR	NR	NR	NR	NR	1.36	NR	

	Well Casing Volumes (gallon/feet)									
	1-1/4" = 0.06		2" = 0.16	3" = 0.37	4" = 0.65					
	1-1⁄2" = 0.09		2-1/2" = 0.26	3-1/2" = 0.50	6" = 1.47					
bmp	below measuring point	ml	mililiter	NTU	Nephelometric Turbidity Units	ORP	Oxidation-Reduction Potential			
°C	Degrees Celsius	mS/cm	Milisiemens per centimeter	PVC	Polyvinyl chloride	mV	millivolts			
ft	feet	msl	mean sea-level	s.u.	Standard units	NA	Not Available			
gpm	Gallons per minute	N/A	Not Applicable	umhos/cm	Micromhos per centimeter	NR	Not Recorded			
mg/L	Miligrams per liter	NM	Not Measured	VOC	Volatile Organic Compounds					

WELL DEVELOPMENT LOG

Site/Well No.	MW-1802					
Project	AEP Amos Plant - FGD Landfill	Project No. WV015	976 Page <u>1</u> of	2		
Site Location	Winfield, WV		Date8/23	3/2018		
Weather	Fog in AM, cool, sunny, 58-78°F	Development Time Begin	<u> </u>	nd15:47		
Evacuation D	ata		0 1 5			
Measuring Point		TOC	Sample Pump Intake Setting (ft bmp)	NR		
MP Elevation (ft)		NA	Pumping Rate (gpm)	Average		
Land Surface Elevation (ft)		NA	Evacuation Method	Submersible Bladder		
Sounded Well	Depth (ft bmp)	73.60	Volumes Purged	36		
epth to Wate	r (ft bmp)	49.07				
Vater-Level E	levation (ft)	NA	Field Parameters			
Water Column in Well (ft)		24.53	Color	NR		
Casing Diameter/Type		2" PVC	Odor	NR		
Gallons in Wel	II	3.92	Appearance	NR		

Time	Min Elapsed	Total Gallons Removed	Depth To Water (ft btoc)	Rate (mL/min)	Conductivity (mS/cm or umhos/cm)	Turbidity (NTU)	Temperature (°F/°C)	рН (s.u.)	ORP (mV)	Dissolved Oxygen (g/mL)	Well Volume (Gal)	Remarks
8:00	0	NA	49.07	1500	NR	NR	NR	NR	NR	NR	N/A	
8:15	15	3	57.30	800	NR	NR	NR	NR	NR	NR	2.61	
8:30	30	6	57.85	800	NR	>1,000	NR	NR	NR	NR	2.52	Surge
8:40	40	8	59.30	800	NR	>1,000	NR	NR	NR	NR	2.29	
8:50	50	11	60.10	800	NR	>1,000	NR	NR	NR	NR	2.16	
9:00	60	13	60.50	800	NR	>1,000	NR	NR	NR	NR	2.10	
9:15	75	16	60.91	800	NR	NR	NR	NR	NR	NR	2.03	
9:30	90	19	61.74	800	NR	>1,000	NR	NR	NR	NR	1.90	
9:35	95	20	NR	1100	NR	NR	NR	NR	NR	NR	NA	Surge
9:45	105	NA	63.18	NR	NR	>1,000	NR	NR	NR	NR	1.67	
10:00	120	28	64.01	1100	NR	NR	NR	NR	NR	NR	1.53	
10:05	125	NA	64.45	NR	NR	NR	NR	NR	NR	NR	1.46	
13:15	315	110	51.83	1600	NR	NR	NR	NR	NR	NR	3.48	Surge
13:25	325	114	57.98	1600	NR	>1,000	NR	NR	NR	NR	2.50	
13:30	330	116	59.99	1100	NR	NR	NR	NR	NR	NR	2.18	

Development Personnel: AEP Staff: Rick Baker

Notes: Water Quality Parameters collected during yield testing on 9/11/2018 by Arcadis

	Well Casing Volumes (gallon/feet)									
	1-¼" = 0.06 1-½" = 0.09		2" = 0.16 2-½" = 0.26	3" = 0.37 3-½" = 0.50						
omp	below measuring point	ml	mililiter	NTU	Nephelometric Turbidity Units	ORP	Oxidation-Reduction Potential			
С	Degrees Celsius	mS/cm	Milisiemens per centimeter	PVC	Polyvinyl chloride	mV	millivolts			
	feet	msl	mean sea-level	s.u.	Standard units	NA	Not Available			
pm	Gallons per minute	N/A	Not Applicable	umhos/cm	Micromhos per centimeter	NR	Not Recorded			
ng/L	Miligrams per liter	NM	Not Measured	VOC	Volatile Organic Compounds					

WELL DEVELOPMENT LOG

Site/Well No. MW-1802

Project	INO.	AEP Amos	Plant -	FGD La	andfill Project No. <u>WV015976</u> Page <u>2</u> of <u>2</u>								
Site Loca			Vinfield, WV Date 8/23/2018										
Weather		Fog in AM, cool, sunny, 58-78°F Development Time Begin 8:00 End 15:47											
			,								-		
Evacuat	ion Dat	ta					Sample						
Measurir	ng Poin	t			TOC		Intake S	Setting (ft	bmp)		NR		
MP Eleva	ation (ft)			NA		Pumpin	g Rate (g	pm)	Average			
Land Surface Elevation (ft) NA							Evacuat	tion Methe	bc	Submersible Bladder			
Sounded	l Well D	Depth (ft bm	p)		73.60		Volume	s Purged			36		
Depth to	Water	(ft bmp)			49.07								
•		evation (ft)			NA		Field Pa	arameter	s				
		()							-		NR		
		n Well (ft)			24.53		Color						
Casing D		r/ I ype			2" PVC	<u> </u>	Odor				NR		
Sallons i	n Well				3.92		Appeara	ance			NR		
Time	Min Elapsed	Total Gallons Removed	Depth To Water (ft btoc)	Rate (mL/min)	Conductivity (mS/cm or umhos/cm)	Turbidity (NTU)	Temperature (°F/°C)	рН (s.u.)	ORP (mV)	Dissolved Oxygen (g/mL)	Well Volume (Gal)	Remarks	
13:35	335	117	50.91	1100	NR	>1,000	NR	NR	NR	NR	3.63		
13:40	340	119	61.45	1100	NR	NR	NR	NR	NR	NR	1.94		
13:45	345	120	NR	700	NR	>1,000	NR	NR	NR	NR	NA		
13:50	350	121	61.73	700	NR	NR	NR	NR	NR	NR	1.90		
14:00	360	122	60.65	700	NR	NR	NR	NR	NR	NR	2.07		
14:10	370	NA	NR	NR	NR	NR	NR	NR	NR	NR	NA		
14:15	375	125 126	58.45	700	NR NR	NR NR	NR NR	NR NR	NR NR	NR	2.42		
14:20 14:30	380 390	126	58.95 60.50	700 700	NR	NR	NR	NR	NR	NR NR	2.34 2.10		
14:35	395	120	NR	600	NR	NR	NR	NR	NR	NR	NA	Surge	
14:40	400	130	61.49	600	NR	>1,000	NR	NR	NR	NR	1.94	e a ge	
14:50	410	131	60.80	600	NR	NR	NR	NR	NR	NR	2.05		
15:00	420	133	60.78	600	NR	>1,000	NR	NR	NR	NR	2.05		
15:10	430	134	61.24	600	NR	>1,000	NR	NR	NR	NR	1.98		
15:25	445	137	61.30	600	NR	NR	NR	NR	NR	NR	1.97		
15:27	447	137	NR	1100	NR	>1,000	NR	NR	NR	NR	NA	Surge	
15:30	450	138	61.91	1100	NR	>1,000	NR	NR	NR	NR	1.87		
15:40	460	141 N/A	63.51	1100	NR	>1,000	NR	NR	NR	NR	1.61		
•				NR aff: Rick ollected c	NR Baker luring yield testing o	NR on 9/11/2018	NR by Arcadis	NR	NR	NR	1.49		
		4 1/1 0 00			Well Casing V		•		4" -	05			
		$1 - \frac{1}{4}" = 0.06$ $1 - \frac{1}{2}" = 0.09$			2" = 0.16 2-½" = 0.26		= 0.37 1⁄2" = 0.50		4" = 0 6" = 1				
Ipm	Degrees feet	measuring point ml ees Celsius mS/cm msl ns per minute N/A			mililiter Milisiemens per centi mean sea-level Not Applicable Not Measured	NTU Nephelometric Turbidity Units ORP Oxidation							

Packer Test Logs

Boring No.	MW-1801	_	Contractor	AEP	Page	1	of 1	
Project	AEP Amos FGD Landfill We	II Install	Project No.	WV015976.0012	Arcadis Sta	f <u>l Allan Gillesp</u>	ie	
Site Location	Winfield, WV				Date	8/13/2018		
Base of Top Pac	ker (ft bgs/ft amsl)	55.00		Surface Elevation (ft am	sl)		N/A	
Top of Bottom Pa	acker (ft bgs/ft amsl)	65.00		Distance from Gauge to	Ground Surfa	ce (ft)	6.60	
Depth to Water F	Prior to Install (ft bgs/ft amsl)	<u>17.10</u>		Diameter of Boring (inch	ies)		2.98	
Depth to Water A	After Install (ft bgs/ft amsl)	17.10	us	ed reading from 8/14, no data rea	corded for 8/13			

Test 1 Constant Pressure (psi) Test 2 Constant Pressure (psi)

Elapsed Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)
0	968.0	0.0	N/A
1	969.9	1.9	N/A
2	971.9	1.9	N/A
3	974.2	2.1	N/A
4	976.5	2.1	N/A
5	979.0	2.2	N/A
10	991.3	2.3	N/A
15	1004.6	2.4	N/A
20	1018.3	2.5	N/A
25	1032.2	2.6	N/A
30			

60

Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)		
L					

Test 1			Test 2	
Q =	5.7E-03 ft^3/s		Q =	
h1 =	23.7 ft		h1 =	
h2 =	138.4 ft	Zone 3	h2 =	
H =	162.1 ft	Method 2	H =	
r =	0.1 ft	$K = \frac{Q}{C_s r H}$	r =	
A =	10.0 ft		A =	
A/r =	80.5 unitless		A/r =	
Cs =~	110 unitless		Cs =~	
K =	7.9E-05 cm/s		K =	N

ft^3/s ft ft ft ft ft unitless unitless cm/s K = N/A н

Q= flow rate

H = h1+h2 = effective head r = radius of test hole

Cs = conductivity coefficient

h1 = distance between gage and water table

h2 = applied pressure at gage A = length of test section

Reference

US Department of Interior, Ground Water Manual, 1977, Packer Test Solution

Pre-Test 1

Duration

(mins)

Duration (psi)

Pre-Test 2

Flow Totalizer Readings	Flow Rate	Borehole Water Level
(gallons)	(gpm)	(ft)

Pressure

Notes:

ft bgs- feet below ground surface gpm - gallons per minute cm/s - centimeters per second psi - pounds per square inch ft amls - feet above mean sea level NA - not available N/A - not applicable

NR - not recorded

(mins)

Pressure

(psi)

Boring No.	MW-1801	_	Contractor	AEP	Page	1	of 1
Project	AEP Amos FGD Landfill We	II Install	Project No.	WV015976.0012	Arcadis Sta	ff	Allan Gillespie
Site Location	Winfield, WV				Date	8/9/2018	
Base of Top Pac	ker (ft bgs/ft amsl)	65.0		Surface Elevation (ft ams	sl)		NA
Top of Bottom Pa	acker (ft bgs/ft amsl)	75.0		Distance from Gauge to	Ground Surfa	ce (ft)	6.6
Depth to Water F	Prior to Install (ft bgs/ft amsl)	13.0		Diameter of Boring (inche	es)		3.0
Depth to Water A	After Install (ft bgs/ft amsl)	13.0					

Test 1 Constant Pressure (psi) Test 2

Elapsed Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)
0	886.90	0	N/A
1	886.90	0.000	N/A
2	886.90	0.000	N/A
3	886.90	0.000	N/A
4	886.90	0.000	N/A
5	886.90	0.000	N/A
10	886.90	0.000	N/A
15	886.90	0.000	N/A
20			
25			
30			

Pressure

60

Constant Pres	sure (psi)	100	
Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Leve
0	887.00	0.0	N/A
1	887.00	0.0	N/A
2	887.10	0.1	N/A
3	887.20	0.1	N/A
4	887.25	0.1	N/A
5	887.40	0.1	N/A
10	887.90	0.1	N/A
15	888.60	0.1	N/A
20	889.50	0.1	N/A
25	890.80	0.2	N/A
30			

Test 1			
Q =		ft^3/s	
h1 =		ft	
h2 =		ft	Zone 3
H =		ft	Method 2
r =		ft	$K = \frac{Q}{C_s r H}$
A =		ft	C _S /H
A/r =		unitless	
Cs =~		unitless	
K =	N/A	cm/s	

Test 2		
Q =	3.4E-04	ft^3/s
h1 =	19.6	ft
h2 =	230.7	ft
H =	250.3	ft
r =	0.1	ft
A =	10.0	ft
A/r =	80.5	unitless
Cs =~	110	unitless
K =	3.02E-06	cm/s

Cs = conductivity coefficient

h1 = distance between gage and water table

h2 = applied pressure at gage

r = radius of test hole A = length of test section

H = h1+h2 = effective head

US Department of Interior, Ground Water Manual, 1977, Packer Test Solution

Pre-Test 1 Duration

Duration (psi)

Pre-Test 2

Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)	Flow Tot

Notes:

ft bgs- feet below ground surface gpm - gallons per minute cm/s - centimeters per second psi - pounds per square inch ft amls - feet above mean sea level NA - not available N/A - not applicable

(mins)

NR - not recorded

Flow Rate Borehole Water Level otalizer Readings (gallons) (gpm) (ft)

(mins)

Pressure

(psi)

K =	N/A	CI

Q= flow rate	

Reference

Boring No.	<u>MW-1802</u>	_	Contractor	AEP	Page	1	of	1
Project	AEP Amos FGD Landfill We	II Install	Project No.	WV015976.0012	Arcadis Sta	f <u>l Allan Gillesp</u>	ie	
Site Location	Winfield, WV				Date	8/21/2018		
Base of Top Pac	ker (ft bgs/ft amsl)	48.0		Surface Elevation (ft am	sl)		N/A	
Top of Bottom Pa	acker (ft bgs/ft amsl)	58.0		Distance from Gauge to	Ground Surfa	ce (ft)	8.6	
Depth to Water F	Prior to Install (ft bgs/ft amsl)	35.1		Diameter of Boring (inch	es)		3.0	
Depth to Water A	After Install (ft bgs/ft amsl)	35.1	use	d reading from 8/14, no data rec	orded for 8/13			

Test 1 Constant Pressure (psi) Test 2 Constant Pressure (psi)

Elapsed Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)
0	146.80	0	N/A
1	146.80	0.000	N/A
2	146.90	0.050	N/A
3	147.00	0.067	N/A
4	147.10	0.075	N/A
5	147.15	0.070	N/A
10	148.00	0.120	N/A
15	149.00	0.147	N/A
20	149.60	0.140	N/A
25	150.50	0.148	N/A
30			

60

	-		
Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)
0			
1			
2			
3			
4			
5			
10			
15			
20			
25			
30			

Test 1			Test 2		
Q =	3.3E-04 ft^3/s		Q =		ft^3/s
h1 =	43.7 ft		h1 =		ft
h2 =	138.4 ft	Zone 3	h2 =		ft
H =	182.1 ft	Method 2	H =		ft
r =	0.1 ft	$K = \frac{Q}{C_s r H}$	r =		ft
A =	10.0 ft	U _s rn	A =		ft
A/r =	80.5 unitless		A/r =		unitless
Cs =~	110 unitless		Cs =~		unitless
K =	4.0E-06 cm/s		K =	N/A	cm/s

Cs = conductivity coefficient

h1 = distance between gage and water table

h2 = applied pressure at gage

A = length of test section

H = h1+h2 = effective head

r = radius of test hole

Reference

US Department of Interior, Ground Water Manual, 1977, Packer Test Solution

Pre-Test 1

Duration

(mins)

Duration ____(psi)

Pre-Test 2

Flow Totalizer Readings	Flow Rate	Borehole Water Level	
(gallons)	(gpm)	(ft)	

Pressure

Notes:

ft bgs- feet below ground surface gpm - gallons per minute cm/s - centimeters per second psi - pounds per square inch ft amls - feet above mean sea level NA - not available N/A - not applicable

NR - not recorded

Flow Totalizer Readings Flow Rate Borehole Water Leve (gallons) (gpm) (ft)

(mins)

Pressure

(psi)

Q= flow rate

Boring No.	MW-1802	_	Contractor	AEP	Page	1	of	1
Project	AEP Amos FGD Landfill We	<u>II</u> Install	Project No.	WV015976.0012	Arcadis Sta	fl <u>Allan Gillesp</u>	vie	
Site Location	Winfield, WV				Date	8/21/2018		
Base of Top Pac	ker (ft bgs/ft amsl)	65.0		Surface Elevation (ft ams	si)		N/A	
Top of Bottom Pa	acker (ft bgs/ft amsl)	75.0		Distance from Gauge to	Ground Surfa	ce (ft)	6.6	
Depth to Water F	Prior to Install (ft bgs/ft amsl)	35.1		Diameter of Boring (inche	es)		3.0	
Depth to Water A	After Install (ft bgs/ft amsl)	35.1						

Test 2

Test 1 Constant Pressure (psi)

Constant Pressure (psi)

Elapsed Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Leve (ft)
0	140.05	0	
1	140.05	0.000	
2	140.05	0.000	
3	140.05	0.000	
4	140.05	0.000	
5	140.05	0.000	
10	140.05	0.000	
15	140.05	0.000	
20			
25			
30			

60

Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)
0	140.10	0	
1	140.10	0.000	
2	140.10	0.000	
3	140.10	0.000	
4	140.10	0.000	
5	140.10	0.000	
10	140.10	0.000	
15	140.10	0.000	
20			
25			
30			

100

Test 1		
Q =		ft^3/s
h1 =		ft
h2 =		ft
H =		ft
r =		ft
A =		ft
A/r =		unitless
Cs =~		unitless
K =	N/A	cm/s

Test 2		
Q =		ft^3/s
h1 =		ft
h2 =		ft
H =		ft
r =		ft
A =		ft
A/r =		unitless
Cs =~		unitless
K =	N/A	cm/s
	Q = h1 = h2 = H = r = A = A/r = Cs =~	Q = h1 = h2 = H = r = A = A/r = Cs =~

Q= flow rate

Cs = conductivity coefficient

h1 = distance between gage and water table

h2 = applied pressure at gage

r = radius of test hole A = length of test section

H = h1+h2 = effective head

Reference

US Department of Interior, Ground Water Manual, 1977, Packer Test Solution

Pre-Test 1

Duration

(psi)

Pre-Test 2

(mins)			(psi)		
Flow Totalizer Readings (gallons)	-	v Rate pm)	Borehole Water Level (ft)		

Pressure

Flow Totalizer Readings	Flow Rate	Borehole Water Level
(gallons)	(gpm)	(ft)

Pressure

(mins)

Notes:

ft bgs- feet below ground surface gpm - gallons per minute cm/s - centimeters per second psi - pounds per square inch ft amls - feet above mean sea level NA - not available N/A - not applicable

NR - not recorded

Boring No.	MW-1802	_	Contractor	AEP	Page	1	of 1
Project	AEP Amos FGD Landfill We	II Install	Project No.	WV015976.0012	Arcadis Sta	f <u>l Allan Gillesp</u>	ie
Site Location	Winfield, WV				Date	8/21/2018	
Base of Top Pac	ker (ft bgs/ft amsl)	89.0		Surface Elevation (ft ams	si)		<u>N/A</u>
Top of Bottom P	acker (ft bgs/ft amsl)	99.0		Distance from Gauge to	Ground Surfa	ce (ft)	7.6
Depth to Water F	Prior to Install (ft bgs/ft amsl)	35.1		Diameter of Boring (inche	es)		3.0
Depth to Water A	After Install (ft bgs/ft amsl)	35.1					

Test 1 Constant Pressure (psi) Test 2 Constant Pressure (psi) 100

Elapsed Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate	Borehole Water Level (ft)
(mins)	(galions)	(gpm)	(11)
0	75.90	0	
1	75.90	0.000	
2	75.90	0.000	
3	75.90	0.000	
4	75.90	0.000	
5	75.90	0.000	
10	75.90	0.000	
15	75.90	0.000	
20			
25			
30			

60

	Flow Totalizer		
Time	Readings	Flow Rate	Borehole Water Level
(mins)	(gallons)	(gpm)	(ft)
0	79.00	0.0	
1	79.50	0.5	
2	80.00	0.5	
3	80.50	0.5	
4	81.00	0.5	
5	82.00	0.6	
10	93.50	1.5	
15	106.50	1.8	
	440.00		
20	118.90	2.0	
05	400.00		
25	129.60	2.0	
30			

Pressure

(psi)

Test 1			_	Test 2	
Q =		ft^3/s		Q =	4.5E-03 ft^3/s
h1 =		ft		h1 =	42.7 ft
h2 =		ft	Zone 3	h2 =	230.7 ft
H =		ft	Method 2	H =	273.4 ft
r =		ft	$K = \frac{Q}{C_s r H}$	r =	0.1 ft
A =		ft	<i>L_srH</i>	A =	10.0 ft
A/r =		unitless		A/r =	80.5 unitless
Cs =~		unitless		Cs =~	110 unitless
K =	N/A	cm/s		K =	3.7E-05 cm/s

Q= flow rate

Reference

H = h1+h2 = effective head

r = radius of test hole

A = length of test section

Cs = conductivity coefficient

h1 = distance between gage and water table

h2 = applied pressure at gage

US Department of Interior, Ground Water Manual, 1977, Packer Test Solution

Pre-Test 1

Duration

Duration (psi)

Pre-Test 2

Flow Totalizer Readings	Flow Rate	Borehole Water Level
(gallons)	(gpm)	(ft)

Pressure

Notes:

ft bgs- feet below ground surface gpm - gallons per minute cm/s - centimeters per second psi - pounds per square inch ft amls - feet above mean sea level NA - not available N/A - not applicable

(mins)

NR - not recorded

(mins)

Boring No.	<u>MW-1802</u>	_	Contractor	AEP	Page	1	of <u>1</u>
Project	AEP Amos FGD Landfill We	<u>II</u> Install	Project No.	WV015976.0012	Arcadis Sta	fl <u>Allan Gillesp</u>	ie
Site Location	Winfield, WV				Date	8/21/2018	
Base of Top Pac	ker (ft bgs/ft amsl)	99.0		Surface Elevation (ft ame	sl)		<u>N/A</u>
Top of Bottom Pa	acker (ft bgs/ft amsl)	109.0		Distance from Gauge to	Ground Surfa	ce (ft)	7.6
Depth to Water F	Prior to Install (ft bgs/ft amsl)	35.1		Diameter of Boring (inch	es)		3.0
Depth to Water A	After Install (ft bgs/ft amsl)	35.1					

Test 1 Constant Pressure (psi) Test 2 Constant Pressure (psi) 100

Elapsed Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)
0	73.20	0	
1	73.20	0.000	
2	73.20	0.000	
3	73.20	0.000	
4	73.20	0.000	
5	73.20	0.000	
10	73.20	0.000	
15	73.20	0.000	
20			
25			
30			

Pressure

(mins)

60

Time (mins)	Flow Totalizer Readings (gallons)	Flow Rate (gpm)	Borehole Water Level (ft)
0	73.50	0	
1	73.50	0.000	
2	73.50	0.000	
3	73.50	0.000	
4	73.50	0.000	
5	73.50	0.000	
10	73.50	0.000	
15	73.50	0.000	
20			
25			
30			

Pressure

Flow Rate

(gpm)

(psi)

Borehole Water Leve

(ft)

(mins)

Test 1		
Q =		ft^3/s
h1 =		ft
h2 =		ft
H =		ft
r =		ft
A =		ft
A/r =		unitless
Cs =~		unitless
K =	N/A	cm/s

Test 2		
Q =		ft^3/s
h1 =		ft
h2 =		ft
H =		ft
r =		ft
A =		ft
A/r =		unitless
Cs =~		unitless
K =	N/A	cm/s
	Q = h1 = h2 = H = r = A = A/r = Cs =~	Q = h1 = h2 = H = r = A = A/r = Cs =~

Q= flow rate

H = h1+h2 = effective head

Cs = conductivity coefficient

h1 = distance between gage and water table

h2 = applied pressure at gage

r = radius of test hole A = length of test section

Reference

US Department of Interior, Ground Water Manual, 1977, Packer Test Solution

Pre-Test 1

Duration

(psi)

Pre-Test 2

Flow Rate (gpm)	Borehole Water Level (ft)	Flow Totalizer Readings (gallons)	

Notes:

ft bgs- feet below ground surface gpm - gallons per minute cm/s - centimeters per second psi - pounds per square inch ft amls - feet above mean sea level NA - not available N/A - not applicable

Flow Totalizer Readings

(gallons)

NR - not recorded

Well Yield Tests

Field Logs

ARCADIS Delign & Concultancy for natural and built assets

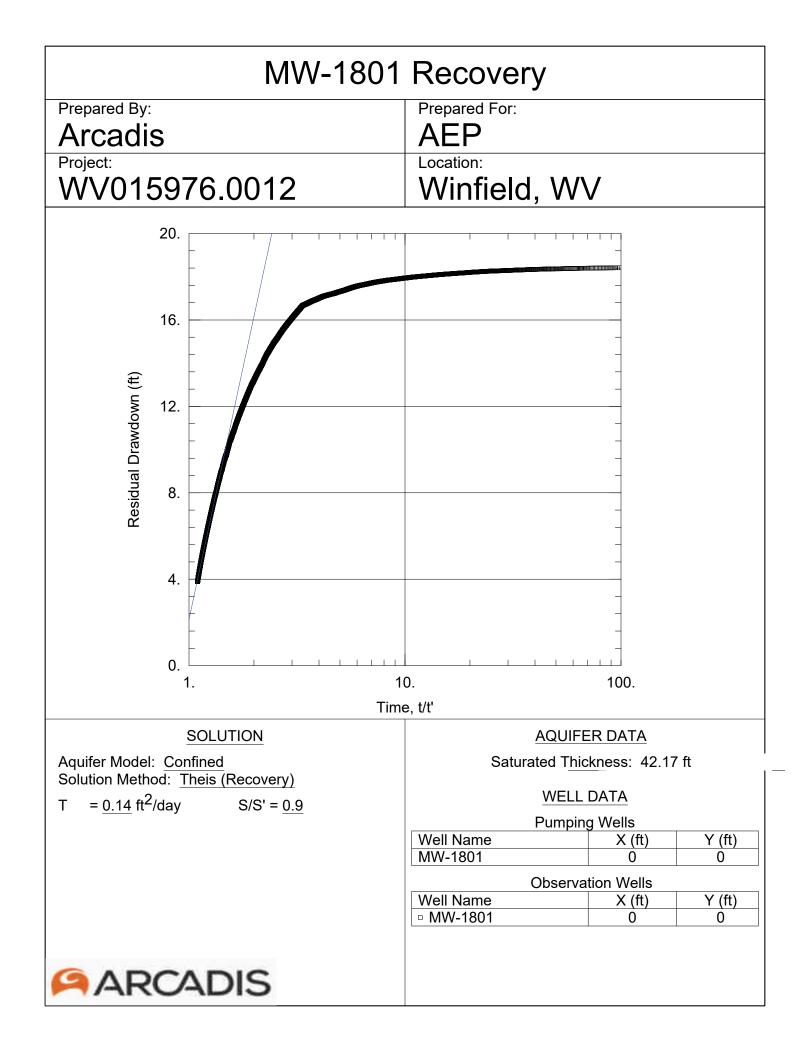
Well Yield - Pumping Drawdown/Recovery Log

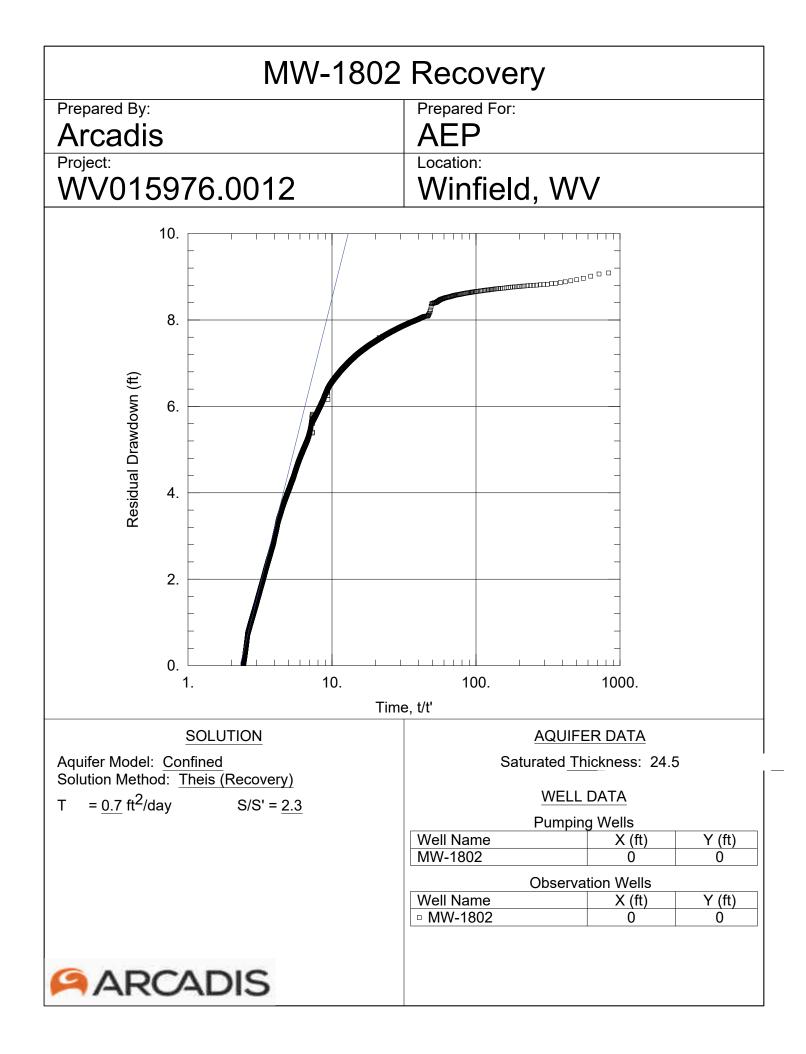
Static Water Level (ft-bmp) 3 MP Elevation	TOC 36.33 NA 0:45/13:45 NR ~71 feet Rate (gpm)		Screen Setting (ft- Total Dept	h (ft-bmp) _ ke (ft-bmp) [_] urged	andfill NR 78.5 75	Weather Casing Diameter Water Co Gallons i	' (in.) blumn		F .17	- Well Material <u>X</u> PVC SS
Measuring Pt. Description Static Water Level (ft-bmp) 3 MP Elevation Pump On/Off 10:45 0 10:55 10:55 10:55 10:55 10:55 11:05 20 11:17 32 11:25 40 11:35 50 11:45 60 11:45 60 11:45 61 11:45 60 11:45 61 11:45 63 11:20 75 12:10 85 12:20 95 12:30 105 12:50 12:50 12:50 13:00 13:10 145 13:10	TOC 36.33 NA 0:45/13:45 NR ~71 feet (gpm)		Screen Setting (ft- Total Dept Pump Intal Volumes F	bmp) h (ft-bmp) _ ke (ft-bmp)_ Purged _	NR 78.5	Casing Diameter Water Co	' (in.) blumn	2		
Description	36.33 NA 0:45/13:45 NR ~71 feet Rate (gpm)		Setting (ft- Total Dept Pump Intal Volumes F	h (ft-bmp) _ ke (ft-bmp) [_] urged	78.5	_ Diameter Water Co	blumn	42	.17	
Level (ft-bmp) 3 MP Elevation 10:4 Pump On/Off 10:4 Transducer SN -7 Transducer Depth -7 10:45 0 10:50 5 10:55 10 11:05 20 11:17 32 11:25 40 11:25 40 11:35 50 11:48 63 11:45 60 11:45 60 11:20 75 12:00 75 12:10 85 12:20 95 12:30 105 12:30 105 12:30 125 13:00 135 13:10 145	NA 0:45/13:45 NR ~71 feet Rate (gpm)		Pump Intal Volumes P	ke (ft-bmp) Purged		_			.17	_
Pump On/Off 10:4 Transducer SN	0:45/13:45 NR ~71 feet Rate (gpm)		Volumes F	Purged	75	Gallons i				
Pump On/Off 10:4 Transducer SN	0:45/13:45 NR ~71 feet Rate (gpm)		Volumes F	Purged	75			6.	75	-
Image: Fransducer SN	NR ~71 feet Rate (gpm)			<u> </u>		- Purge Me	ethod:	Pu	mp	
Min (m 10:45 0 10:50 5 10:55 10 10:55 10 11:05 20 11:17 32 11:25 40 11:35 50 11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:55 130 13:00 135 13:10 145 13:25 160	~71 feet Rate (gpm)		Observatio	··· \ \ / - !!	3	-	Centrifuga		Х	-
Min Elapsed (m 10:45 0 10:50 5 10:55 10 11:05 20 11:05 20 11:17 32 11:25 40 11:35 50 11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:50 125 13:00 135 13:10 145 13:25 160	Rate (gpm)			on vvelis	None		Submersib Other	le	X	-
Min Elapsed (m 10:45 0 10:50 5 10:55 10 11:05 20 11:05 20 11:17 32 11:25 40 11:35 50 11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:50 125 13:00 135 13:10 145 13:25 160	Rate (gpm)			-		- -				-
Min Elapsed (m 10:45 0 (m 10:50 5 (m 10:55 10 (m 10:55 10 (m 10:55 10 (m 10:55 10 (m 11:05 20 (m 11:05 20 (m 11:17 32 (m 11:25 40 (m 11:35 50 (m 11:48 63 (m 11:45 60 (m 11:45 60 (m 11:45 60 (m 11:40 63 (m 12:00 75 (m 12:20 95 (m 12:30 105 (m 12:50 125 (m 12:55 130 (m 13:00 145 (m 13:25 160 (m	(gpm)					Complete	ed by		A. Gillesp	16
10:45 0 10:50 5 10:55 10 11:05 20 11:05 20 11:17 32 11:25 40 11:35 50 11:45 60 11:45 60 11:45 67 12:00 75 12:10 85 12:20 95 12:30 105 12:30 105 12:50 125 13:00 135 13:10 145 13:25 160	. /	Total Gallons Purged	Depth to Water (ft)	pH (s.u.)	Cond. (mMhos) (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp. (°C) (°F)	Redox (mV)	Comments
10:55 10 11:05 20 11:17 32 11:25 40 11:35 50 11:35 50 11:45 60 11:45 60 11:45 60 11:45 60 11:40 83 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:30 105 12:40 115 12:50 125 13:00 135 13:10 145 13:25 160	NR	NA	36.33	NR	NR	NR	NR	NR	NR	
11:05 20 11:17 32 11:25 40 11:35 50 11:35 50 11:45 60 11:45 60 11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:40 115 12:50 125 12:55 130 13:00 135 13:10 145	300	0	36.76	8.63	0.895	>1,000	8.32	21.63	63.1	Very turbid, no odors
11:17 32 11:25 40 11:35 50 11:45 60 11:45 60 11:45 60 11:45 60 11:45 60 11:40 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:40 115 12:50 125 12:55 130 13:00 135 13:10 145 13:25 160	300	1	38.59	8.76	0.826	>1,000	5.32	18.28	43.1	
11:25 40 11:35 50 11:45 60 11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:40 115 12:55 130 13:00 135 13:10 145	300	2	39.85	8.85	0.822	>1,000	2.64	18.76	25.7	Very turbid, no odors
11:35 50 11:45 60 11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:40 115 12:55 130 13:00 135 13:10 145 13:25 160	300	3	41.18	8.88	0.821	859	2.33	18.98	23.2	Turbidity decrease, no odo
11:45 60 11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:40 115 12:55 130 13:00 135 13:25 160	300	3	43.08	8.86	0.820	663	2.42	18.70	23.6	
11:48 63 11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:30 105 12:30 125 12:55 130 13:00 135 13:10 145 13:25 160	300	4	43.41	8.80	0.814	410	1.86	18.24	25.8	
11:52 67 12:00 75 12:10 85 12:20 95 12:30 105 12:40 115 12:50 125 12:55 130 13:00 135 13:25 160	NR	NA	NR	NR	NR	NR	NR	NR	NR	Loss of power to controlle
12:00 75 12:10 85 12:20 95 12:30 105 12:40 115 12:50 125 12:55 130 13:00 135 13:25 160	NR	NA	NR	NR	NR	NR	NR	NR	NR	-
12:10 85 12:20 95 12:30 105 12:40 115 12:50 125 12:55 130 13:00 135 13:10 145 13:25 160	450	6	46.62	8.78	0.813	280	1.90	17.29	28.6	-
12:20 95 12:30 105 12:40 115 12:50 125 12:55 130 13:00 135 13:10 145 13:25 160	450	7	48.71	8.72	0.805	238	1.08	16.98	30.0	Moderately turbid, no odor
12:30 105 12:40 115 12:50 125 12:55 130 13:00 135 13:10 145 13:25 160	450	8	50.71	8.80	0.806	232	1.17	17.50	23.7	Moderately turbid, no odor
12:40 115 12:50 125 13:00 135 13:10 145 13:25 160	450	9	52.13	8.83	0.807	261	1.12	17.88	22.1	Moderately turbid, no odor
12:50 125 12:55 130 13:00 135 13:10 145 13:25 160	450	11	53.61	8.80	0.805	192	1.01	17.48	23.4	Turbidity decrease, no odo
12:55 130 13:00 135 13:10 145 13:25 160	450	12	55.14	8.82	0.806	172	1.01	17.55	21.7	-
13:00 135 13:10 145 13:25 160	450	13	56.25	8.83	0.807	180	0.97	17.80	20.6	Moderately turbid, no odor
13:10 145 13:25 160	NR	NA	NR	NR	NR	NR	NR	NR	NR	
13:25 160	700	15	58.88	8.80	0.806	160	1.00	17.05	21.6	Moderately turbid, no odor
	700	17	60.42	8.77	0.812	164	0.92	16.94	20.8	
10.00 105	700	19	63.21	8.77	0.829	152	0.93	17.05	19.2	No odors
13:30 165	700	20	64.00	8.84	0.830	156	0.89	17.30	15.3	Moderately turbid, no odor
13:32 167	NR	NA	NR	NR	NR	NR	NR	NR	NR	
13:36 171	NR	NA	62.61	NR	NR	NR	NR	NR	NR	
13:40 175	NR	NA	62.05	NR	NR	NR	NR	NR	NR	
13:45 180		NA	61.45	NR	NR	NR	NR	NR	NR	

			well casing volu	umes (galion/r	eet)				
		1-1/4" = 0.06	2" = 0.16		3" = 0.37	4" = 0.65			
		1-1⁄2" = 0.09	2-1/2" = 0.26		3-1/2" = 0.50	6" = 1.47			
bmp	below measuring point	ml	mililiter	NTU	Nephelometric Turbidity Units	ORP	Oxidation-Reduction Potential		
°C	Degrees Celsius	mS/cm	Milisiemens per centimeter	PVC	Polyvinyl chloride	mV	millivolts		
ft	feet	msl	mean sea-level	s.u.	Standard units	NA	Not Available		
gpm	Gallons per minute	N/A	Not Applicable	umhos/cm	Micromhos per centimeter	NR	Not Recorded		
mg/L	Miligrams per liter	NM	Not Measured	VOC	Volatile Organic Compounds				
-	5				5				

ARCADIS Dullar & Concultancy for natural and built assets

Well Yield - Pumping Drawdown/Recovery Log


										Page	<u>1</u> of <u>1</u>		
Project N	0.	WV0159	76.0012		,	Well ID	MW-1802			Date	9/11/2018		
Project N	ame/Loca	ition	AE	P Amos Pla	ant - FGD L	andfill	Weather	Clou	idy, cool, 6	68°F	_		
Measurin	a Pt			Screen			Casing				Well Material X PVC		
Description TOC		Setting (ft-bmp)			NR	Diameter (in.)		2	-	SS			
Static Water						Water Co	lumn	24	.56				
Level (ft-bmp) 51.84		Total Depth (ft-bmp)			76.4					-			
MP Eleva	ition	NA		Pump Inta	ke (ft-bmp)	71	Gallons ir	n Well		4	-		
	104	NR		Volumes F	-	7	Purge Me	thod: Centrifugal		mp	-		
Pump On			-	volumes r	uigeu _	1	-	Submersib		х	-		
Transduc	er SN	NR	-	Observation Wells Nor			-	Other			-		
Transduc	er Depth	~68 feet					Complete	d by		A. Gillesp	ie		
		Rate	Total	Depth to		Cond.		Dissolved	Temp.				
Time	Min Elapsed	(gpm) (mL/min)	Gallons	Water (ft)	pH	(mMhos) (mS/cm)	Turbidity (NTU)	Oxygen (mg/L)	(°C) (°F)	Redox (mV)	Comments		
13:30	0	NR	Purged NA	51.84	(s.u.) NR	NR	NR	(mg/L)	NR	NR	Comments		
13:35	5	650	1	NR	NR	NR	NR	NR	NR	NR			
13:40	10	300	1	54.31	8.97	NR	>500	NR	NR	NR	No odors, high turbidity		
13:50	20	350	2	54.54	8.81	0.770	160	6.21	16.78	81.1	Moderately turbid, rust color		
14:00	32	350	3	54.63	8.71	0.757	145	4.05	16.65	43.4	Turbidity decrease, no odors		
14:10	40	350	4 54.81 8.85		0.754	133	2.15	16.19	14.6				
14:20	50	350	5 54.98 8.95		0.754	120	0.94	16.27	-8.5	Turbidity decrease, no odors			
14:35	60	350	6 55.44 8.89		0.752	120	0.58	16.19	-16.1				
14:38	63	NR	NA NR NR		NR	NR	NR	NR	NR				
14:40	67	700	8	56.13	9.01	0.757	118	2.43	16.87	-17.9			
14:50	75	700	10	56.40	8.94	0.752	159	1.14	15.86	-12.8			
15:00	85	700	11	57.51	8.92	0.750	175	1.31	15.48	-9.4			
15:10	95	700	13	57.91	8.97	0.749	170	1.50	15.47	-10.5			
15:20	105	700	15	58.72	8.96	0.753	168	1.52	15.00	-9.2	Moderately turbid, rust color		
15:35	115	700	17	59.42	8.99	0.756	178	1.38	15.03	-11.8			
15:40	125	NR	NA	60.12	NR	NR	NR	NR	NR	NR			
15:45	130	1100	21	61.21	8.97	0.759	122	0.72	14.38	-12.4	Moderately turbid, rust color		
15:50	135	1100	23	62.01	8.95	0.759	124	0.50	14.30	-13.5			
16:00	145	1000	25	63.41	8.99	0.764	192	0.53	14.50	-19.1			
16:05	160	1000	29	64.03	9.00	0.765	191	1.04	14.46	17.7			
16:06	165	NR	NA	NR	NR	NR	NR	NR	NR	NR			
16:10	167	NR	NA	61.50	NR	NR	NR	NR	NR	NR			
16:15	171	NR	NA	60.15	NR	NR	NR	NR	NR	NR			
16:20	175	NR	NA	58.56	NR	NR	NR	NR	NR	NR			
					•			-4)					
					w	en Casing Vo	lumes (gallon/fe	et)					


			Well Casing Volu	umes (gallon/f	eet)				
		1-1/4" = 0.06	2" = 0.16		3" = 0.37	4" = 0.65			
		1-1⁄2" = 0.09	2-1/2" = 0.26		3-1/2" = 0.50	6" = 1	6" = 1.47		
bmp	below measuring point	ml	mililiter	NTU	Nephelometric Turbidity Units	ORP	Oxidation-Reduction Potential		
°C	Degrees Celsius	mS/cm	Milisiemens per centimeter	PVC	Polyvinyl chloride	mV	millivolts		
ft	feet	msl	mean sea-level	s.u.	Standard units	NA	Not Available		
gpm	Gallons per minute	N/A	Not Applicable	umhos/cm	Micromhos per centimeter	NR	Not Recorded		
mg/L	Miligrams per liter	NM	Not Measured	VOC	Volatile Organic Compounds				

Well Yield Tests

AQTESOLV Plots

High-Resolution Water Level Monitoring Evaluation

HIGH-RESOLUTION WATER LEVEL MONITORING EVALUATION

INTRODUCTION

Arcadis U.S., Inc. (Arcadis) completed a high-resolution water level monitoring field event from May 7 to August 11, 2018 at the American Electric Power Service Corporation (AEP) Generating Plant (Plant) FGD Landfill located in Winfield, West Virginia. The objectives of the monitoring and evaluation were to better characterize hydrogeologic conditions and permeability within the stress relief fracture system (SRF) and shallow alluvium.

HIGH-RESOLUTION WATER LEVEL MONITORING

Introduction and Methods

Continuous water levels collected in high-resolution in the SRF and shallow alluvial zone monitoring wells were collected from May 7 through August 11, 2018 by installation of Solinst® Levelogger® Junior Edge (model 3001 M5/F15) absolute (non-vented) pressure transducers at each hydraulic monitoring location. Other information collected included Site barometric pressure with a barometric pressure logger. The pressure transducers were set to a 5-minute linear logging interval for background monitoring. The barometric pressure logger was set in the outer casing of MW-5 and also set to a 5-minute linear logging interval. Pressure transducers were installed at each of the seven hydraulic monitoring locations (**Table D-1** and **Figure D-1**) that included three SRF monitoring wells located upgradient on ridges in the north valley (MW-8, MW-9 and MW-10), two downgradient SRF monitoring wells with one in the south valley (MW-2) and north valley (MW-4), and two downgradient shallow alluvium monitoring wells with one in the south valley (MW-1) and one north valley (MW-5). Note that pressure transducers within wells MW-1 and MW-2 were installed at a later date on June 20, 2019. Precipitation data was also obtained from www.ncdc.noaa.gov from the closest weather station to the Site (US1WVKN0021) located approximately 9 miles southeast of the Site to aid in the evaluation.

Pressure transducer and barometric pressure data were downloaded by AEP personnel on a bi-weekly basis in May 2018 and then monthly during June through August 2018. In addition, a manual groundwater level measurement to the top of casing survey point was obtained during each download event. After data collection, raw files were transferred and checked for quality control.

After downloading the data, the groundwater levels were processed and corrected for barometric pressure influences. Groundwater levels exhibit fluctuations due to a variety of influences, making hydrographs a good tool for understanding long-, mid- and short-term trends at any study site. Typical influences can include for example: recharge from precipitation events and/or bank storage, local or regional pumping, seasonal or long-term trends, barometric pressure fluctuations, surface water fluctuations, and ocean and/or earth tides. Of these external hydraulic influences, the following were observed at the Site during the monitoring period: precipitation events, barometric pressure fluctuations, and responses to groundwater sampling. Post-processing of the water level data included barometric compensation of the absolute data to obtain true water column, shift correction due to manual movement of pressure transducers that may occur when accessed, elevation calibration, and barometric correction

using a set estimated barometric efficiency. The elevation calibration involved converting the water column data to groundwater elevations by comparison to manual measurements from the surveyed reference point.

Following elevation calibration, a correction factor for barometric efficiency (BE) was estimated for each hydrograph to remove barometric effects on water levels. The BE is defined as the water-level change caused by a barometric-pressure change divided by that barometric pressure change (Clark 1967). The BE was determined using both a visual corrected and a graphical elliptical method (Gonthier 2007). Barometric efficiency varies between 0 and 1 where low values typically indicates unconfined groundwater zones while higher values typically indicates confined groundwater zones. All BE values were low ranging from 0.05 to 0.2 that indicate a level of confinement for the SRF. In the north valley, shallow alluvium well MW-5 did not have an observed barometric effect (unconfined shallow water table) and a correction was not applied; whereas, in the south valley, shallow alluvium well MW-1 did have observed barometric effects and a correction was applied with a BE of 0.2, which is likely due to the finer grained nature of the deposits at MW-1 within the vadose zone compared to coarser grained deposits at MW-5.

Hydrographs

Long-term groundwater hydrographs were competed that depict observations in water level changes in Figures D-2 through D-8. Recharge occurs when precipitation infiltrates the unsaturated zones and reaches the capillary fringe in shallow groundwater systems. Deeper groundwater systems receive recharge via shallower groundwater zones and upgradient areas over longer periods of time. The presence of low permeability materials such as clay within the unsaturated zone can retard the rate of recharge and time lags occur depending on the thickness and vertical hydraulic conductivity (Fetter 2001). Additionally, the observed water level elevations confirm a vertical sequence separating the shallow alluvium and SRF indicating a level of hydraulic separation of the two zones (e.g. MW-1/MW-2 [south valley Figures D-2 and D-3] and MW-4/5 [north valley Figures D-4 and D-5]).

Several of the monitoring wells responded to precipitation events resulting in water level increases including MW-2, MW-4, MW-5 as well as MW-9, to a lesser extent. Sudden drops followed by recovery in water levels due to groundwater sampling were also observed in wells MW-5, MW-8, MW-9, and MW-10. The largest precipitation event that occurred during the monitoring period was on June 22, 2018 with almost 2 inches of rainfall in a 24-hour period. Monitoring well MW-5 had the highest magnitude of increase in response to precipitation of approximately 2-feet during this event. Following groundwater sampling events and an anomalous water level drop at MW-1, several wells had a recovery response that was more rapid at MW-5, MW-8, and MW-9 while other wells took several days or weeks to return to prepumping levels (MW-1, MW-10). The more rapid recharge response is reflective of a higher permeability of the materials at the respective locations.

SUMMARY

Continuous water level data in the SRF and shallow alluvial zone was collected in May through August 2018 in order to better characterize hydrogeologic conditions and permeability within the SRF system and shallow alluvium at the FGD Landfill. Pressure transducers were installed at each of the seven hydraulic monitoring locations that included three SRF monitoring wells located upgradient on ridges in the north

arcadis.com

valley (MW-8, MW-9 and MW-10), two downgradient SRF monitoring wells with one in the south valley (MW-2) and north valley (MW-4), and two downgradient shallow alluvium monitoring wells with one in the south valley (MW-1) and one north valley (MW-5).

The following external hydraulic influences were observed at the FGD Landfill during the monitoring period: precipitation events, barometric pressure fluctuations and responses to groundwater sampling. Water-levels were post-processed that included barometric compensation, shift correction, water-level elevation and barometric correction. Barometric efficiency was estimated for each monitoring well and varied from 0.05 to 0.2 and indicates a level of confinement for the SRF. In the north valley, shallow alluvium well MW-5 did not have a barometric effect reflecting unconfined shallow water table conditions. Shallow alluvium well MW-1 did have a barometric effect with a resulting barometric efficiency of 0.2, which is likely due to shallower finer grained material in the vadose zone compare to coarser deposits observed at MW-5. Additionally, the observed water level elevations confirm a vertical sequence separating the shallow alluvium and SRF indicating a level of hydraulic separation of the two zones (e.g. MW-1/MW-2 [south valley **Figures D-2** and **D-3**] and MW-4/5 [north valley **Figures D-4** and **D-5**]).

Several of the monitoring wells responded to precipitation events resulting in water level increases including MW-2, MW-4, MW-5 as well as MW-9, to a lesser extent. Sudden declines followed by recovery in water levels due to groundwater sampling were also observed in wells MW-5, MW-8, MW-9, and MW-10. Following groundwater sampling events and an anomalous decrease at MW-1, several wells showed a more rapid recharge such as MW-5, MW-8, and MW-9 (see **Figure D-7**) while other wells took several days or weeks to return to pre-pumping levels such as MW-10 (see **Figure D-8**). The more rapid recharge response is reflective of a higher permeability of the materials at the respective locations.

LIMITATIONS

Arcadis is not responsible for the independent conclusions, opinions, or recommendations made by others based on the data presented in this report. This report includes a limited set of data within the project site. The conclusions drawn from this investigation are considered reliable; however, there may exist localized variations in the subsurface conditions that have not been completely defined at this time. It should be noted that subsurface conditions may be better delineated with additional subsurface exploration and laboratory testing.

REFERENCES

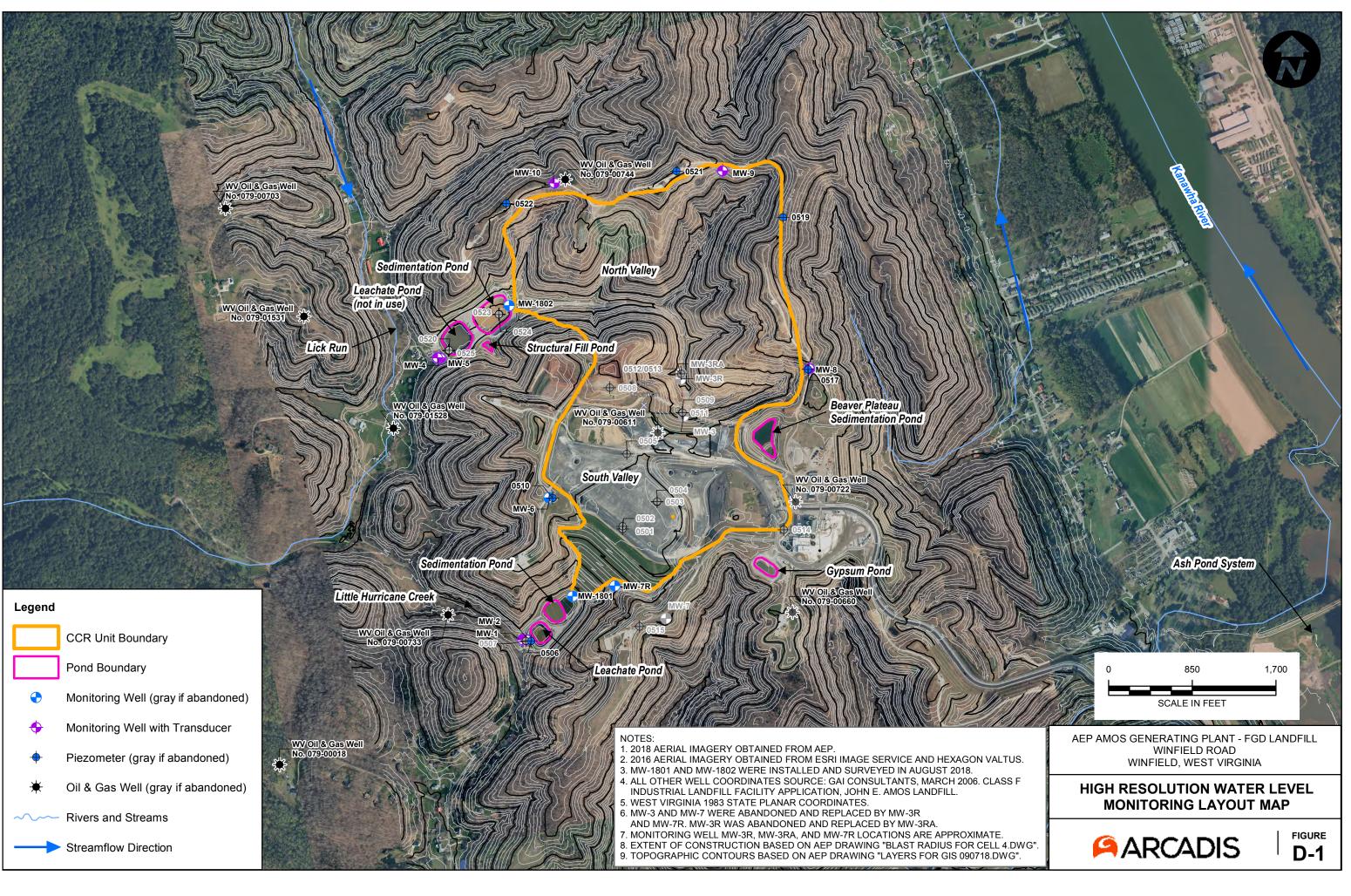
- Clark, W.E. 1967. Computing the barometric efficiency of a well. *Journal of the Hydraulics Division*, *93*(4), pp.93-98.
- Fetter, C.W. 2001. Applied Hydrogeology. 4th Edition, Prentice Hall, Upper Saddle River.
- Gonthier, G.J. 2007. A graphical method for estimation of barometric efficiency from continuous data– concepts and application to a site in the Piedmont. *Air Force Plant*, *6*.

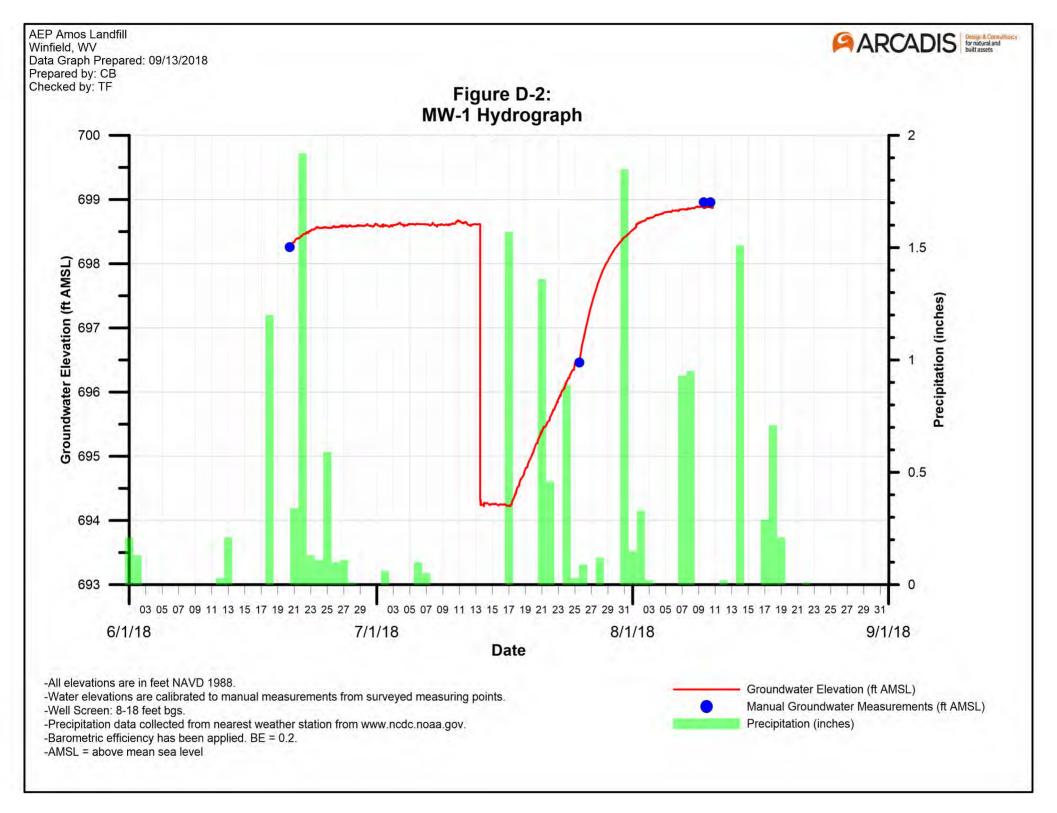
Table D-1 High-Resolution Water Level Monitoring Well Construction Details AEP Amos Generating Plant - FGD Landfill Winfield, West Virginia

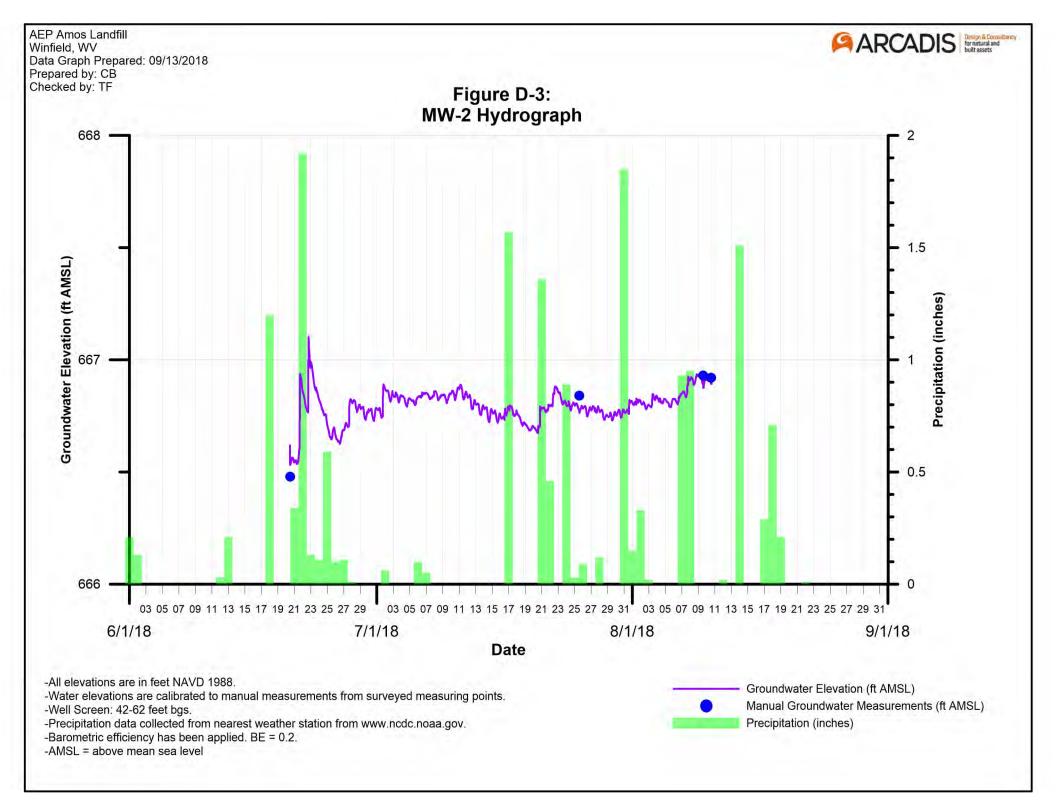
	Location			Ground Surface	Top of Casing	Borehole			Well				Bottom of Filter Pack		Top of Screen		tom of creen
	Description to			Elevation	Elevation	Depth	Date	Screen	Diameter	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
Well ID	CCR Unit	Northing ^a	Easting ^a	ft amsl	ft amsl	ft bls	Installed	Material	inches	ft bls	ft amsl	ft bls	ft amsl	ft bls	ft amsl	ft bls	ft amsl
Monitor Wells																	
Downgradient																	
MW-1 ^b	Southwest	539438.68	1722490.93	709.57	711.57	19.0	7/12/2005	screened PVC	2.00	6.0	703.57	19.0	690.57	8.0	701.57	18.0	691.57
MW-2 ^b	Southwest	539438.31	1722530.69	709.41	711.41	62.5	7/12/2005	screened PVC	2.00	37.0	672.41	62.5	646.91	42.0	667.41	62.0	647.41
MW-4 ^b	West	542302.52	1721626.94	674.76	676.76	78.5	7/7/2005	screened PVC	2.00	53.0	621.76	78.5	596.26	58.0	616.76	78.0	596.76
MW-5 ^b	West	542299.18	1721658.72	674.84	676.84	10.2	7/7/2005	screened PVC	2.00	4.0	670.84	10.2	664.64	5.0	669.84	10.0	664.84
MW-8 ^b	East	542193.80	1725402.80	945.01	947.01	60.5	7/11/2005	screened PVC	2.00	30.0	915.01	60.5	884.51	40.0	905.01	60.0	885.01
MW-9 ^b	Northeast	544204.89	1724522.80	933.39	935.39	62.5	6/30/2005	screened PVC	2.00	37.0	896.39	62.5	870.89	42.0	891.39	62.0	871.39
MW-10 ^b	Northwest	544079.05	1722812.23	909.43	911.43	157.0	7/6/2005	screened PVC	2.00	85.0	824.43	157.0	752.43	133.0	776.43	153.0	756.43

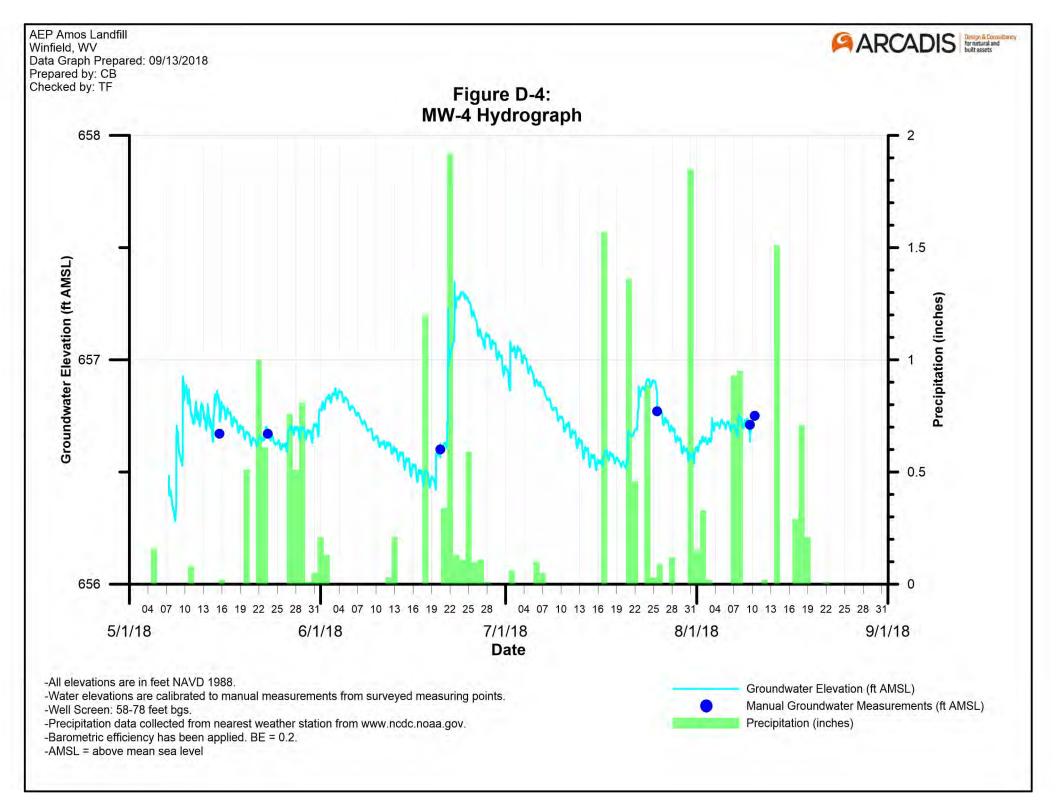
NOTES:

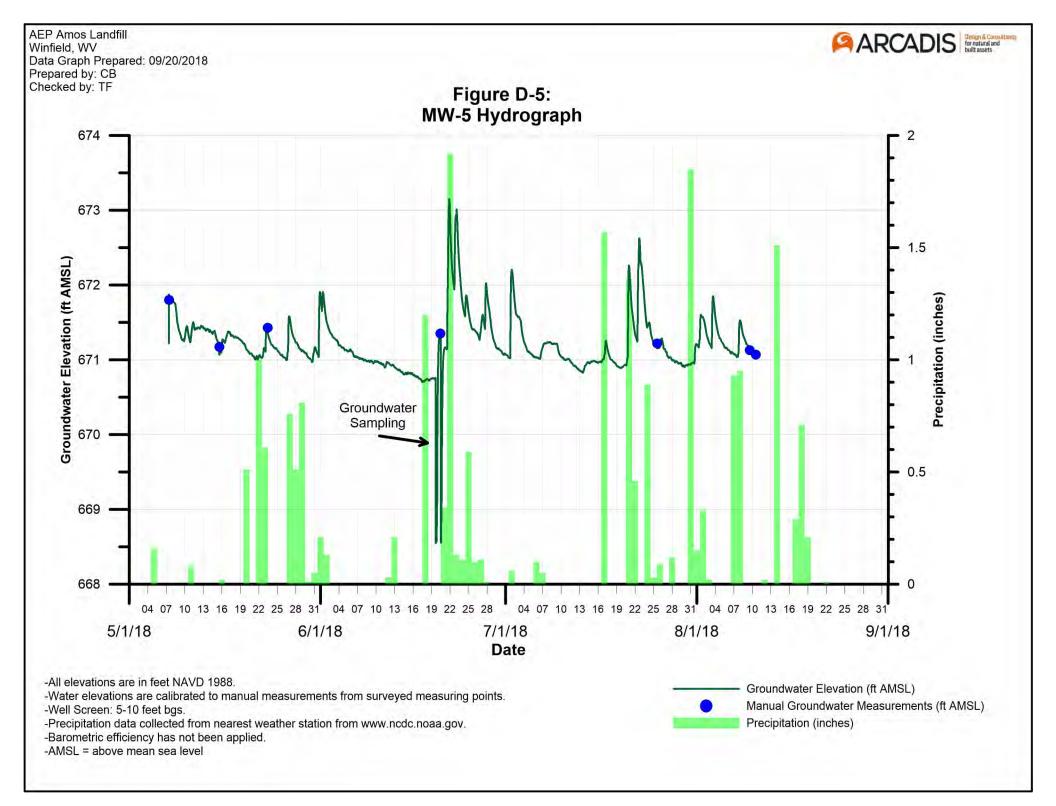
Elevation in feet above mean sea level


a. 1983 West Virginia State Planar Coordinates


b. Source: GAI Consultants. March 2006. Class F Industrial Landfill Facility Application, John E. Amos Landfill, Volume 1, Appendix K - Monitor Well Construction Diagrams.


amsl = above mean sea level


bls = Below land surface


ft = feet

