Annual Groundwater Monitoring Report

Southwestern Electric Power Company H. W. Pirkey Power Plant Landfill CCR Management Unit CN600126767; RN100214287 Registration No: CCR104 Hallsville, Texas

January 31, 2023

Prepared by: American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

BOUNDLESS ENERGY

Table of Contents

I.	Summary	2
II.	Groundwater Monitoring Well Locations and Identification Numbers	4
III.	Monitoring Wells Installed or Decommissioned	4
IV.	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion	
V.	Statistical Evaluation of 2022 Events	4
VI.	Alternate Source Demonstration	. 5
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	5
VIII.	Other Information Required	. 5
IX.	Description of Any Problems Encountered in 2022 and Actions Taken	. 5
X.	A Projection of Key Activities for the Upcoming Year	. 5

Appendix 1- Groundwater Data Tables and Figures

Appendix 2- Statistical Analysis

Appendix 3- Alternate Source Demonstrations

Appendix 4- Field Sheets

Appendix 5- Analytical Reports

Abbreviations:

ASD - Alternate Source Demonstration CCR – Coal Combustion Residual GWPS - Groundwater protection standards SSI - Statistically Significant Increase SSL - Statistically Significant Level TCEQ – Texas Commission on Environmental Quality

Page

I. <u>Summary</u>

This *Annual Groundwater Monitoring Report* (Report) has been prepared to report the status of activities for the preceding year for the Landfill (LF) Coal Combustion Residual (CCR) unit at Pirkey Power Plant. Southwestern Electric Power Company is wholly-owned subsidiary of American Electric Power Company (AEP). The Texas Commission on Environmental Quality's (TCEQ's) CCR rule requires that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2023.

In general, the following activities were completed:

- At the start of the current annual reporting period, the LF was operating under the Detection monitoring program.
- At the end of the current annual reporting period, the LF was operating under the Detection monitoring program.
- Groundwater samples were collected for the wells the landfill groundwater monitoring network in June and November 2022 and analyzed for Appendix III, as specified in 30 TAC §352.941 *et seq.* and AEP's *Groundwater Sampling and Analysis Plan (2021)*.
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units.
- Data and statistical analysis not available for the previous reporting period indicated that during the 2nd semi-annual 2021 sampling event (November 2021) with confirmation sampling conducted in January 2022:

The following Appendix III parameters exceeded background:

- TDS at AD-34
- A successful ASDs for the Appendix III parameter that exceeded the GWPS for the 2nd semi-annual 2021 was certified on July 18, 2022 and submitted to TCEQ July 18, 2022 for approval.
- During the 1st semi-annual 2022 sampling event (June 2022) with confirmation sampling conducted in August 2022:

The following Appendix III parameters exceeded background:

- Calcium at AD-34
- Chloride at AD-36
- Pirkey Power Plant submitted a Notice of SSI over background to TCEQ (November 15, 2022) which indicated an alternative source demonstration would be conducted. An

alternative source demonstration report will be prepared and certified and submitted to TCEQ's Executive Director for review within 90 days of the SSI determination.

- The 2nd semi-annual event (November 2022) data are still undergoing statistical analysis.
- The background data was re-established on January 27, 2021.
- A statistical process in accordance with 30 TAC §352.931 to evaluate groundwater data was updated, certified, and posted to AEP's CCR website in 2021 titled: AEP's *Statistical Analysis Plan* (Geosyntec 2021). The statistical process was guided by USEPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* ("Unified Guidance," USEPA, 2009).

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as **Appendix 1**);
- Statistical comparison of monitoring data to determine if there have been SSI(s) or SSL(s) (Attached as **Appendix 2**);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions (where applicable Attached as **Appendix 3**);
- A summary of any transition between monitoring programs, or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a SSI over background concentrations (where applicable);
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- Other information required to be included in the annual report such as field sheets, analytical reports, etc. (Appendix 4 and 5)

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

A figure that depicts the PE-certified groundwater monitoring network, the monitoring well locations, and their corresponding identification numbers is provided in **Appendix 1**.

Lan	dfill Monitoring Wells
Upgradient	Downgradient
AD-8	AD-23
AD-12	AD-34
AD-16	AD-35 (decommissioned 2018)
AD-27	AD-36 (installed 2019)

III. Monitoring Wells Installed or Decommissioned

There were no new groundwater monitoring wells installed or decommissioned during 2022. The network design is summarized in the *Groundwater Monitoring Network Design Report* (January 2021) and is posted at the CCR website for Pirkey Power Plant's LF. That network design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data. With Flow Rate and</u> <u>Direction and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality, and during detection and assessment monitoring. The groundwater velocity calculations, groundwater flow direction, and potentiometric maps developed after each sampling event are shown in **Appendix 1**.

As required by the detection monitoring rules, 30 TAC §352.941 *et seq*, two rounds of sampling were conducted in June and November including all 30 TAC §352 Appendix III parameters.

The verification sample after the 2nd half 2021 and the verification sample after the 1st half 2022 groundwater sampling event appeared to be consistent with groundwater flow that is normally seen near the landfill (toward the south).

Detection monitoring will continue in 2023.

V. Statistical Evaluation of 2022 Events

Data and statistical analysis not available for the previous reporting period indicated that during the 2nd semi-annual 2021 sampling event (November 2021) with confirmation sampling conducted in January 2022:

The following Appendix III parameters exceeded background:

• TDS at AD-34

During the 1st semi-annual 2022 sampling event (June 2022) with confirmation sampling conducted in August 2022:

The following Appendix III parameters exceeded background:

- Calcium at AD-34
- Chloride at AD-36

The 2nd semi-annual event (November 2022) data are still undergoing statistical analysis.

Appendix 2 contains the statistical analysis report(s).

VI. <u>Alternate Source Demonstration</u>

A successful ASDs for the Appendix III parameter that exceeded the GWPS for the 2nd semiannual 2021 was certified on July 18, 2022 and submitted to TCEQ July 18, 2022 for approval.

Pirkey Power Plant submitted a Notice of SSI over background to TCEQ (November 15, 2022) which indicated an alternative source demonstration would be conducted. An alternative source demonstration report will be prepared and certified and submitted to TCEQ's Executive Director for review within 90 days of the SSI determination.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

No transition was made during the reporting period and the CCR Unit remained in detection monitoring.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production are high enough at this facility that no modification to the semiannual assessment monitoring frequency is needed.

VIII. Other Information Required

The background data was re-established on January 27, 2021.

As required by the CCR detection monitoring rules in 30 TAC §352.941, sampling all LF CCR wells for the 30 TAC §352 Appendix III parameters was completed in 2021.

IX. Description of Any Problems Encountered in 2022 and Actions Taken

No significant problems were encountered. The low flow sampling effort went smoothly and the schedule was met to support the annual groundwater report preparation covering the year 2022 groundwater monitoring activities.

X. <u>A Projection of Key Activities for the Upcoming Year</u>

Key activities for the next year include:

• Detection monitoring sampling will be conducted;

- Complete the statistical evaluation of the second semi-annual groundwater monitoring event that took place in November 2022.
- Conduct groundwater sampling events for all constituents listed in 30 TAC §352 Appendix III as required by 30 TAC 352.941.
- Perform statistical analysis on the sampling results for the 30 TAC §352 Appendix III parameters as required by 30 TAC 352.941.
- Evaluation of the detection monitoring results from a statistical analysis viewpoint, looking for any SSIs over background;
- Completed ASDs, as needed.
- Responding to any new data received in light of TCEQ CCR rule requirements;
- Preparation of the next annual groundwater report.

APPENDIX 1- Groundwater Data Tables and Figures

Figures and Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.

Table 1 - Groundwater Data Summary: AD-8 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	1.58	109	9	< 0.083 U1	6.1	181	432
7/13/2016	Background	0.775	20.7	13	2	6.2	131	280
9/8/2016	Background	1.04	50.7	12	2	5.1	121	285
10/12/2016	Background	0.793	20.8	13	2	3.7	184	276
11/15/2016	Background	0.769	17.2	13	3	3.7	208	296
1/11/2017	Background	0.734	18.6	13	3	3.6	228	280
2/28/2017	Background	0.777	18.1	10	2	3.7	157	250
4/11/2017	Background	0.779	17.1	12	3	3.9	168	284
8/23/2017	Detection	0.411	19.4	9	0.587 J1	3.9	56	110
3/21/2018	Assessment	1.03	56.1	8	1.1987	5.7	140	278
8/20/2018	Assessment	0.714	14.5	18	5.1991	3.7	168	300
2/28/2019	Assessment	1.05	103	6.83	0.40	5.7	175	462
5/21/2019	Assessment	1.11	85.5	4.48	0.33	5.9	127	296
8/13/2019	Detection	0.818	27.6	12.7	3.39	4.6	128	260
6/3/2020	Detection	0.783	74.4	11.5	2.45	5.8	196	396
11/3/2020	Detection	0.822	18.5	15.8	2.50	4.1	119	237
5/26/2021	Detection	0.986	93.4	3.28	0.35	5.9	168	390
11/17/2021	Detection	0.693	21.9 M1, P3	15.4	2.31	4.2	97.2	220
6/22/2022	Detection	1.04	37.2 M1	17.0	2.85	5.0	117	270
11/14/2022	Detection	1.03	17.9	23.1	2.04	4.5	119	240

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

P3: The precision on the matrix spike duplicate (MSD) was above acceptance limits.

Table 1 - Groundwater Data Summary: AD-8 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	< 1.05 U1	38	1	< 0.07 U1	1	1.80288 J1	0.9155	< 0.083 U1	1.02541 J1	< 0.00013 U1	0.027	< 0.29 U1	15	1.19926 J1
7/13/2016	Background	< 0.93 U1	1.16508 J1	61	7	0.175996 J1	1	20	6.75	2	1.46729 J1	0.032	0.211	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	48	2	< 0.07 U1	0.835837 J1	9	1.658	2	< 0.68 U1	0.018	0.048	< 0.29 U1	3.84567 J1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	1.46586 J1	61	6	< 0.07 U1	0.74214 J1	18	6.72	2	2.30733 J1	0.032	0.112	< 0.29 U1	2.51464 J1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	52	6	0.118693 J1	0.805286 J1	18	6.14	3	2.85553 J1	0.03	0.16	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	1.53134 J1	60	6	0.108717 J1	2	18	6.29	3	2.99592 J1	0.032	0.157	< 0.29 U1	1.4083 J1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	1.68597 J1	52	6	0.13889 J1	0.633257 J1	18	7.64	2	3.26919 J1	0.031	0.153	< 0.29 U1	1.78549 J1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	51	6	0.128137 J1	0.887504 J1	19	5.56	3	2.44168 J1	0.031	0.01068 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	37.9	2.57	< 0.07 U1	< 0.23 U1	9.38	2.499	1.1987	0.95 J1	0.01503	0.049	< 0.29 U1	27.68	< 0.86 U1
8/20/2018	Assessment	0.02 J1	4.05	33.4	4.55	0.18	0.759	15.9	0.145	5.1991	4.46	0.0221	0.105	0.02 J1	9.8	0.083
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	46.8	< 0.4 U1	< 0.2 U1	< 0.8 U1	0.8 J1	1.066	0.40	< 0.4 U1	0.002 J1	< 0.005 U1	< 8 U1	30.8	< 2 U1
5/21/2019	Assessment	< 0.4 U1	1 J1	42.8	1 J1	< 0.2 U1	< 0.8 U1	< 0.4 U1	1.786	0.33	< 0.4 U1	0.0003 J1	0.009 J1	< 8 U1	23.9	< 0.1 U1

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report. - -: Not analyzed

Table 1 - Groundwater Data Summary: AD-12 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.03	0.362	5	< 0.083 U1	4.4	4	94
7/13/2016	Background	0.03	0.26	6	< 0.083 U1	3.1	4	75
9/7/2016	Background	0.04	0.343	6	< 0.083 U1	3.9	7	63
10/12/2016	Background	0.03	0.271	7	1	3.4	8	92
11/14/2016	Background	0.04	0.331	8	< 0.083 U1	2.6	6	80
1/11/2017	Background	0.03	0.315	7	< 0.083 U1	4.8	6	76
2/28/2017	Background	0.04	0.434	5	< 0.083 U1	3.6	4	50
4/11/2017	Background	0.05	0.299	6	0.2565 J1	4.7	7	72
8/23/2017	Detection	0.0495	0.245	6	0.213 J1	4.8	6	52
3/21/2018	Assessment	0.01397	0.269	5	< 0.083 U1	4.2	3	< 2 U1
8/20/2018	Assessment	0.017	0.338	10	< 0.083 U1	4.4	4	94
2/27/2019	Assessment	0.03 J1	0.4 J1	6.08	0.09	5.2	3.6	36
5/21/2019	Assessment	0.020	0.3 J1	6.30	0.09	4.1	4.0	80
8/12/2019	Detection	< 0.02 U1	0.278	7.24	0.06 J1	4.9	2.6	90
3/10/2020	Detection	0.02 J1	0.3 J1	6.08	0.10	4.9	3.7	62
6/2/2020	Detection	< 0.02 U1	0.2 J1	5.63	0.10	4.0	3.9	91
11/2/2020	Detection	0.03 J1	0.3 J1	4.65	0.08	4.3	3.3	74
3/8/2021	Detection	0.01 J1	0.2 J1	6.46	0.11	4.1	3.8	68
5/24/2021	Detection	0.032 J1	0.2 J1	5.54	0.12	4.2	5.46	70
11/15/2021	Detection	0.012 J1	0.28	8.03	0.07	3.5	2.90	90
3/28/2022	Detection	0.021 J1	0.20	6.10	0.07	3.9	3.80	60 L1
6/20/2022	Detection	0.042 J1	0.32	7.59	0.09	4.3	4.81	80
11/15/2022	Detection	0.013 J1	0.36	8.03	0.08	4.7	3.39	70

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

Table 1 - Groundwater Data Summary: AD-12 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	< 1.05 U1	26	0.219521 J1	< 0.07 U1	0.710981 J1	1.58207 J1	0.2073	< 0.083 U1	< 0.68 U1	< 0.00013 U1	< 0.005 U1	< 0.29 U1	1.73953 J1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	< 1.05 U1	23	0.190337 J1	< 0.07 U1	0.68835 J1	1.29444 J1	2.909	< 0.083 U1	< 0.68 U1	0.008	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	30	0.232192 J1	< 0.07 U1	0.353544 J1	1.66591 J1	0.881	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	< 1.05 U1	27	0.149553 J1	< 0.07 U1	0.529033 J1	1.56632 J1	0.257	1	< 0.68 U1	0.012	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	28	0.152375 J1	< 0.07 U1	0.32826 J1	1.47282 J1	0.767	< 0.083 U1	< 0.68 U1	0.013	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	< 1.05 U1	23	0.126621 J1	< 0.07 U1	0.650158 J1	1.09495 J1	1.536	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	< 1.05 U1	26	0.149219 J1	< 0.07 U1	0.325811 J1	1.29984 J1	0.416	< 0.083 U1	< 0.68 U1	0.009	< 0.005 U1	< 0.29 U1	< 0.99 U1	0.994913 J1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	24	0.159412 J1	< 0.07 U1	0.416007 J1	1.33344 J1	0.3895	0.2565 J1	< 0.68 U1	0.008	0.01364 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	25.82	0.16 J1	< 0.07 U1	1.05	1.49 J1	0.784	< 0.083 U1	< 0.68 U1	0.00722	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/20/2018	Assessment	< 0.01 U1	0.11	27.8	0.159	0.01 J1	0.330	1.72	1.128	< 0.083 U1	0.089	0.0143	< 0.005 U1	0.04 J1	0.1	0.04 J1
2/27/2019	Assessment	< 0.4 U1	< 0.6 U1	22.5	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.37	0.225	0.09	< 0.4 U1	0.00688	< 0.005 U1	< 8 U1	< 0.6 U1	< 2 U1
5/21/2019	Assessment	< 0.4 U1	< 0.6 U1	21.7	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.15	0.201	0.09	< 0.4 U1	0.00576	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report. - -: Not analyzed

Table 1 - Groundwater Data Summary: AD-16 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.02	1.21	8	< 0.083 U1	3.9	16	116
7/14/2016	Background	0.03	2	9	< 0.083 U1	3.8	45	148
9/8/2016	Background	0.03	1.83	9	< 0.083 U1	3.9	33	133
10/13/2016	Background	0.03	1.15	9	< 0.083 U1	3.9	16	124
11/14/2016	Background	0.03	1.58	9	< 0.083 U1	4.4	23	124
1/12/2017	Background	0.02	1.76	10	< 0.083 U1	3.7	43	112
3/1/2017	Background	0.03	1.29	9	< 0.083 U1	3.2	22	108
4/10/2017	Background	0.02	1.21	11	< 0.083 U1	3.4	24	106
8/24/2017	Detection	0.03648	0.945	12	< 0.083 U1	4.3	14	96
3/22/2018	Assessment	0.0171	1.03	14	< 0.083 U1	4.0	13	96
8/21/2018	Assessment	0.020	1.17	17	< 0.083 U1	4.0	15	128
2/27/2019	Assessment	0.03 J1	0.704	20.3	0.07 J1	4.1	17.7	76
5/23/2019	Assessment	0.022	1.06	20.8	0.06 J1	4.6	26.9	128
8/15/2019	Detection	< 0.02 U1	0.874	20.0	0.06 J1	5.1	15.4	110
6/3/2020	Detection	< 0.02 U1	0.872	21.7	0.11	4.7	13.3	122
11/3/2020	Detection	< 0.02 U1	0.817	19.9	0.07	4.4	11.0	105
5/26/2021	Detection	0.016 J1	0.8	23.2	0.13	4.4	7.36	120
11/17/2021	Detection	0.206	0.94	22.3	0.07	4.3	9.64	110
6/22/2022	Detection	0.021 J1	1.80	24.7	0.10	4.5	9.58	110
11/14/2022	Detection	0.024 J1	0.91	25.2	0.07	4.3	6.68	90

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-16 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	1.83497 J1	61	0.453643 J1	0.0817904 J1	1	4.23727 J1	1.294	< 0.083 U1	< 0.68 U1	0.006	0.01506 J1	< 0.29 U1	2.26113 J1	1.3697 J1
7/14/2016	Background	< 0.93 U1	< 1.05 U1	64	0.565692 J1	< 0.07 U1	1	6	1.438	< 0.083 U1	< 0.68 U1	0.036	0.02395 J1	1.1177 J1	< 0.99 U1	< 0.86 U1
9/8/2016	Background	8	< 1.05 U1	70	0.810547 J1	0.0926258 J1	2	8	1.931	< 0.083 U1	< 0.68 U1	0.032	0.00753 J1	< 0.29 U1	< 0.99 U1	1.75243 J1
10/13/2016	Background	< 0.93 U1	1.52475 J1	56	0.250902 J1	< 0.07 U1	1	3.33761 J1	1.843	< 0.083 U1	< 0.68 U1	0.033	< 0.005 U1	< 0.29 U1	1.70284 J1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	55	0.38481 J1	< 0.07 U1	0.561291 J1	4.34297 J1	2.123	< 0.083 U1	< 0.68 U1	0.028	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	58	0.70928 J1	< 0.07 U1	0.406161 J1	8	2.629	< 0.083 U1	< 0.68 U1	0.031	0.01045 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	1.50766 J1	76	0.487946 J1	< 0.07 U1	0.558767 J1	5	1.417	< 0.083 U1	< 0.68 U1	0.021	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	77	0.435552 J1	< 0.07 U1	0.822329 J1	5	0.932	< 0.083 U1	< 0.68 U1	0.019	0.00733 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	83.66	0.27 J1	< 0.07 U1	1.59	3.6 J1	2.11	< 0.083 U1	< 0.68 U1	0.02224	0.018 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/21/2018	Assessment	0.03 J1	0.42	69.0	0.213	0.03	0.211	3.78	1.92	< 0.083 U1	0.082	0.0347	0.014 J1	< 0.02 U1	0.1	0.051
2/27/2019	Assessment	< 0.4 U1	7.74	56.2	< 0.4 U1	< 0.2 U1	< 0.8 U1	3.21	0.848	0.07 J1	< 0.4 U1	0.0154	0.011 J1	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	5.80	83.4	< 0.4 U1	< 0.2 U1	< 0.8 U1	3.16	1.957	0.06 J1	< 0.4 U1	0.0227	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report. - -: Not analyzed

Table 1 - Groundwater Data Summary: AD-23 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.01	0.535	4	< 0.083 U1	4.0	10	72
7/13/2016	Background	0.03	0.317	4	< 0.083 U1	2.7	11	59
9/8/2016	Background	0.02	0.26	5	< 0.083 U1	3.5	12	64
10/12/2016	Background	0.03	0.321	6	< 0.083 U1	3.7	13	68
11/15/2016	Background	0.03	0.249	5	< 0.083 U1	3.5	14	100
1/11/2017	Background	0.02	0.319	6	< 0.083 U1	3.7	13	60
2/28/2017	Background	0.03	0.217	4	< 0.083 U1	4.0	9	48
4/11/2017	Background	0.03	0.543	7	0.2688 J1	4.2	11	76
8/23/2017	Detection	0.04021	0.276	6	0.198 J1	4.1	11	64
12/21/2017	Detection	0.04498	0.469					
3/21/2018	Assessment	0.01762	0.227	4	< 0.083 U1	3.9	10	72
8/20/2018	Assessment	0.017	0.247	9	< 0.083 U1	3.8	11	92
2/28/2019	Assessment	0.02 J1	0.3 J1	6.94	0.04 J1	5.1	7.2	70
5/23/2019	Assessment	0.017	0.3 J1	6.82	0.04 J1	4.8	9.1	54
8/13/2019	Detection	< 0.02 U1	0.325	7.12	0.03 J1	5.0	7.4	126
1/27/2020	Detection					4.3		70 J1
6/3/2020	Detection	< 0.02 U1	0.2 J1	7.08	0.07	4.3	8.5	65
11/4/2020	Detection	< 0.02 U1	0.2 J1	6.97	0.05 J1	3.9	7.9	71
5/26/2021	Detection	0.023 J1	0.3	6.94	0.06	3.6	7.90	70
11/17/2021	Detection	0.045 J1	0.22	7.11	0.05 J1	3.9	7.84	70
1/26/2022	Detection	0.040 J1				4.1		
6/22/2022	Detection	0.057	0.25	7.32	0.07	3.6	9.52	80
8/30/2022	Detection	0.032 J1				3.9		
11/14/2022	Detection	0.078	0.24	7.49	0.06	4.5	8.03	80

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-23 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	2.89148 J1	1.65098 J1	48	0.186855 J1	0.0739811 J1	2	2.29646 J1	6.86	< 0.083 U1	< 0.68 U1	0.000135818 J1	0.01188 J1	< 0.29 U1	1.91991 J1	< 0.86 U1
7/13/2016	Background	3.79558 J1	< 1.05 U1	48	0.192156 J1	0.0925427 J1	2	2.72879 J1	5.69	< 0.083 U1	< 0.68 U1	0.006	0.01721 J1	1.34973 J1	2.00038 J1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	53	0.20435 J1	< 0.07 U1	5	2.01019 J1	6.68	< 0.083 U1	2.23756 J1	0.006	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	1.29835 J1	7	120	0.463688 J1	0.13648 J1	41	3.91303 J1	12.89	< 0.083 U1	31	1.01	0.095	0.563586 J1	2.10924 J1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	50	0.129296 J1	< 0.07 U1	6	1.66943 J1	7.54	< 0.083 U1	3.21271 J1	0.006	0.02438 J1	0.403857 J1	1.34763 J1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	2.03681 J1	73	0.159 J1	< 0.07 U1	15	2.25934 J1	8.06	< 0.083 U1	11	0.009	0.092	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	1.65681 J1	< 1.05 U1	41	0.116844 J1	< 0.07 U1	0.295768 J1	1.05228 J1	5.74	< 0.083 U1	< 0.68 U1	0.005	< 0.005 U1	< 0.29 U1	1.3076 J1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	3.9673 J1	86	0.318917 J1	0.107977 J1	22	2.60853 J1	10.31	0.2688 J1	15	0.01	0.118	0.31517 J1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	56.1	0.17 J1	< 0.07 U1	5.7	1.09 J1	7.55	< 0.083 U1	3.52 J1	0.00709	0.02 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/20/2018	Assessment	0.03 J1	0.87	53.5	0.147	0.01 J1	1.77	0.803	11	< 0.083 U1	4.79	0.00634	0.025	0.07 J1	1.0	0.176
2/28/2019	Assessment	< 0.4 U1	1 J1	46.9	< 0.4 U1	< 0.2 U1	4.16	1 J1	6.14	0.04 J1	3.46	0.00646	0.035	< 8 U1	1 J1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	0.7 J1	56.4	< 0.4 U1	< 0.2 U1	3 J1	0.7 J1	9.66	0.04 J1	8.99	0.00537	0.058 J1	< 8 U1	< 0.6 U1	0.2 J1

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report. - -: Not analyzed

Table 1 - Groundwater Data Summary: AD-27 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.02	4.41	8	0.6176 J1	3.9	51	198
7/13/2016	Background	0.03	4.43	8	< 0.083 U1	2.7	54	192
9/8/2016	Background	0.03	4.17	8	< 0.083 U1	2.9	52	196
10/12/2016	Background	0.03	4.09	8	< 0.083 U1	3.0	58	216
11/15/2016	Background	0.03	4.52	8	< 0.083 U1	3.5	92	216
1/11/2017	Background	0.02	3.74	9	< 0.083 U1	4.1	58	180
3/1/2017	Background	0.03	4.31	8	< 0.083 U1	2.8	56	216
4/10/2017	Background	0.03	4.01	9	< 0.083 U1	3.3	54	180
8/24/2017	Detection	0.0358	3.58	9	0.197 J1	3.7	52	168
3/22/2018	Assessment	0.03901	5.58	11	< 0.083 U1	3.9	78	192
8/21/2018	Assessment	0.024	4.58	10	< 0.083 U1	3.5	65	196
2/28/2019	Assessment	0.07 J1	4.02	11.7	0.20	4.7	52.8	42
5/23/2019	Assessment	0.023	3.89	11.4	0.20	4.4	55.2	204
8/16/2019	Detection	0.02 J1	3.94	10.5	0.18	3.9	53.2	198
6/3/2020	Detection	0.03 J1	3.55	12.8	0.25	4.2	54.6	219
11/3/2020	Detection	0.03 J1	3.45	10.8	0.19	3.6	53.1	196
5/26/2021	Detection	0.029 J1	3.6	13.5	0.25	3.5	50.8	230
11/17/2021	Detection	0.040 J1	3.76	11.6	0.20	3.7	56.4	190 P1
6/22/2022	Detection	0.028 J1	3.88	12.5	0.22	3.3	57.2	210
11/14/2022	Detection	0.034 J1	3.79	12.7	0.20	4.0	59.4	180

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

P1: The precision between duplicate results was above acceptance limits.

Table 1 - Groundwater Data Summary: AD-27 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	1.20808 J1	2.15232 J1	43	5	0.431235 J1	0.87101 J1	20	2.031	0.6176 J1	< 0.68 U1	0.066	< 0.005 U1	< 0.29 U1	1.10872 J1	< 0.86 U1
7/13/2016	Background	0.956365 J1	1.27952 J1	45	5	0.434627 J1	2	21	2.406	< 0.083 U1	< 0.68 U1	0.097	0.02241 J1	0.434679 J1	< 0.99 U1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	47	6	0.398469 J1	2	20	2.71	< 0.083 U1	< 0.68 U1	0.095	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	2.14429 J1	46	5	0.424977 J1	2	20	4.43	< 0.083 U1	< 0.68 U1	0.096	< 0.005 U1	< 0.29 U1	1.35863 J1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	41	5	0.419182 J1	2	22	3.69	< 0.083 U1	< 0.68 U1	0.095	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	1.56781 J1	46	5	0.30207 J1	1	18	2.62	< 0.083 U1	< 0.68 U1	0.1	0.00659 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	43	5	0.286804 J1	2	21	3.48	< 0.083 U1	< 0.68 U1	0.1	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	45	5	0.414787 J1	0.954802 J1	21	2.58	< 0.083 U1	< 0.68 U1	0.104	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	40.53	5.29	0.48 J1	3.09	25.63	2.808	< 0.083 U1	< 0.68 U1	0.108	0.012 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/21/2018	Assessment	0.02 J1	1.71	39.5	4.90	0.46	1.14	24.6	2.619	< 0.083 U1	0.296	0.0921	0.006 J1	0.07 J1	3.7	0.137
2/28/2019	Assessment	< 0.4 U1	1 J1	39.5	5.32	0.5 J1	< 0.8 U1	18.9	2.95	0.20	< 0.4 U1	0.0892	< 0.005 U1	< 8 U1	2 J1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	41.0	5.22	0.3 J1	< 0.8 U1	19.9	3.93	0.20	< 0.4 U1	0.0885	< 0.005 U1	< 8 U1	0.6 J1	0.2 J1

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report. - -: Not analyzed

Table 1 - Groundwater Data Summary: AD-34 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.08	37.8	7	< 0.083 U1	4.0	974	1,516
7/13/2016	Background	0.111	33.2	8	< 0.083 U1	3.6	837	1,396
9/8/2016	Background	0.09	39.5	8	< 0.083 U1	3.3	870	1,520
10/12/2016	Background	0.09	35.8	7	0.6272 J1	3.6	1,084	1,464
11/15/2016	Background	0.1	36.3	7	0.9978 J1	3.7	1,006	1,428
1/11/2017	Background	0.07	39.9	8	< 0.083 U1	3.2	1,334	1,378
2/28/2017	Background	0.08	37	6	< 0.083 U1	3.7	993	1,402
4/10/2017	Background	0.09	38.2	8	0.5241 J1	3.0	1,016	1,490
8/23/2017	Detection	0.107	36.2	7	0.619 J1	3.7	1,231	1,128
12/21/2017	Detection			8	0.6669 J1		1,020	1,260
3/21/2018	Assessment	0.171	40.1	6	< 0.083 U1	3.7	956	1,424
8/20/2018	Assessment	0.067	37.0	10	< 0.083 U1	3.7	1,064	1,462
2/27/2019	Assessment	0.08 J1	39.9	7.64	0.86	2.9	970	1,470
5/21/2019	Assessment	0.060	42.0	7.34	0.69	3.3	1,080	1,154
8/13/2019	Detection	0.070	39.8	7.46	1.13	3.7	1,060	1,648
1/27/2020	Detection				0.9	3.6		1,550
3/11/2020	Detection					3.6		
6/3/2020	Detection	0.058	40.1	7.68	1.22	3.4	1,150	1,620
7/15/2020	Detection				1.39	4.1		1,510
11/4/2020	Detection	0.060	39.5	7.10	0.82	3.4	1,090	1,670
5/26/2021	Detection	0.063	39.7	7.44	2.1	2.9	1,110	1,670
7/27/2021	Detection				0.82			
11/17/2021	Detection	0.069	45.8	7.09	1.11	3.1	1,280	1,850
1/26/2022	Detection		42.6			3.4		1,720 S7
6/22/2022	Detection	0.066	45.8	7.38	1.20	3.7	1,260	1,750
8/30/2022	Detection		46.0			4.0		1,650
11/14/2022	Detection	0.067	44.6	7.47	0.44	3.5	1,250	1,720

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

S7: Sample did not achieve constant weight.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

Table 1 - Groundwater Data Summary: AD-34 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	12	72	3	6	34	301	9.64	< 0.083 U1	12	0.176	0.105	0.688222 J1	< 0.99 U1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	25	177	4	6	81	296	7.75	< 0.083 U1	39	0.183	0.313	2.11044 J1	7	< 0.86 U1
9/8/2016	Background	< 0.93 U1	9	31	3	8	12	306	7.91	< 0.083 U1	1.01746 J1	0.158	0.064	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	10	39	3	5	15	297	10.12	0.6272 J1	3.69632 J1	0.174	0.036	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	7	23	2	8	6	292	13.21	0.9978 J1	< 0.68 U1	0.154	0.025	< 0.29 U1	4.50827 J1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	6	29	2	7	8	284	11.9	< 0.083 U1	< 0.68 U1	0.164	0.032	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	7	11	2	6	< 0.23 U1	294	9.87	< 0.083 U1	< 0.68 U1	0.158	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	4.49903 J1	23	2	11	7	299	2.407	0.5241 J1	< 0.68 U1	0.167	0.0164 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	6.51	10.6	2.24	11.97	< 0.23 U1	279	8.85	< 0.083 U1	< 0.68 U1	0.156	< 0.005 U1	< 0.29 U1	3.24 J1	< 0.86 U1
8/20/2018	Assessment	0.01 J1	14.4	7.77	1.77	4.34	0.977	249	10.17	< 0.083 U1	1.32	0.114	0.005 J1	0.03 J1	13.0	0.070
2/27/2019	Assessment	< 0.4 U1	15.9	9.93	2.42	4.57	0.9 J1	260	8.56	0.86	1 J1	0.153	0.015 J1	< 8 U1	14.8	< 2 U1
5/21/2019	Assessment	< 0.4 U1	12.7	10.5	2.25	4.48	0.8 J1	272	10.82	0.69	1 J1	0.158	< 0.005 U1	< 8 U1	4.9	< 0.1 U1

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report. - -: Not analyzed

Table 1 - Groundwater Data Summary: AD-36 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids	
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L	
8/13/2019	Background	0.065	0.240	9.46	0.05 J1	4.7	2.2	92	
1/27/2020	Background	0.056	0.304	8.65	0.05 J1	4.7	3.5	40 J1	
3/11/2020	Background	0.05 J1	0.2 J1	8.44	0.06	5.0	3.7	60 J1	
4/15/2020	Background	0.054	0.2 J1	8.40	0.05 J1	3.6	3.7	40 J1	
5/13/2020	Background	0.055	0.2 J1	8.56	0.05 J1	4.1	3.4	40 J1	
6/3/2020	Background	0.052	0.2 J1	8.52	0.07	4.6	3.3	65	
6/16/2020	Background	0.064	0.2 J1	8.39	0.05 J1	4.6	3.6	50 J1	
7/1/2020	Background	0.059	0.3 J1			4.9		52	
7/15/2020	Background			8.09	0.08	5.0	3.7		
11/4/2020	Detection	0.068	0.2 J1	7.99	0.06 J1	4.6	3.1	57	
5/26/2021	Detection	0.057	0.6	10.6	0.10	4.0	4.08	60	
7/27/2021	Detection		0.3	8.67	0.07				
11/17/2021	Detection	0.070	0.25	8.97	0.05 J1	4.0	2.89	50 P1	
6/22/2022	Detection	0.059	0.38	10.1	0.09	4.6	5.00	60	
8/30/2022	Detection		0.28	10.3	0.07	4.9	3.00		
11/14/2022	Detection	0.068	0.28	11.1	0.07	4.5	2.93	50	

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

P1: The precision between duplicate results was above acceptance limits.

Table 1 - Groundwater Data Summary: AD-36 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/13/2019	Background	< 0.02 U1	0.15	10.8	0.234	< 0.01 U1	0.203	0.901	1.298	0.05 J1	< 0.05 U1	0.0161	< 0.005 U1	< 0.4 U1	0.09 J1	< 0.1 U1
1/27/2020	Background	< 0.02 U1	0.14	9.94	0.191	0.01 J1	0.09 J1	0.762	1.096	0.05 J1	< 0.05 U1	0.00277	< 0.2 U1	< 0.4 U1	0.07 J1	< 0.1 U1
3/11/2020	Background	< 0.02 U1	0.09 J1	10.2	0.184	< 0.01 U1	< 0.04 U1	0.760	4.056	0.06	< 0.05 U1	0.00246	< 0.002 U1	< 0.4 U1	0.1 J1	< 0.1 U1
4/15/2020	Background	< 0.02 U1	0.10	10.1	0.179	< 0.01 U1	0.1 J1	0.770	2.84	0.05 J1	< 0.05 U1	0.00210	0.003 J1	0.8 J1	0.09 J1	< 0.1 U1
5/13/2020	Background	< 0.02 U1	0.15	10.2	0.194	< 0.01 U1	0.247	0.750	2.346	0.05 J1	< 0.05 U1	0.00266	0.004 J1	< 0.4 U1	0.08 J1	< 0.1 U1
6/3/2020	Background	< 0.02 U1	0.11	9.81	0.204	< 0.01 U1	0.08 J1	0.683	0.692	0.07	< 0.05 U1	0.00262	0.005 J1	< 0.4 U1	0.09 J1	< 0.1 U1
6/16/2020	Background	< 0.02 U1	0.11	9.75	0.173	< 0.01 U1	0.214	0.723	0.885	0.05 J1	0.08 J1	0.00254	0.003 J1	1 J1	0.1 J1	< 0.1 U1
7/1/2020	Background	< 0.02 U1	0.09 J1	9.72	0.179	< 0.01 U1	0.09 J1	0.681	1.171		< 0.05 U1	0.00268	0.004 J1	< 0.4 U1	0.06 J1	< 0.1 U1
7/15/2020	Background									0.08						

Notes:

µg/L: micrograms per liter

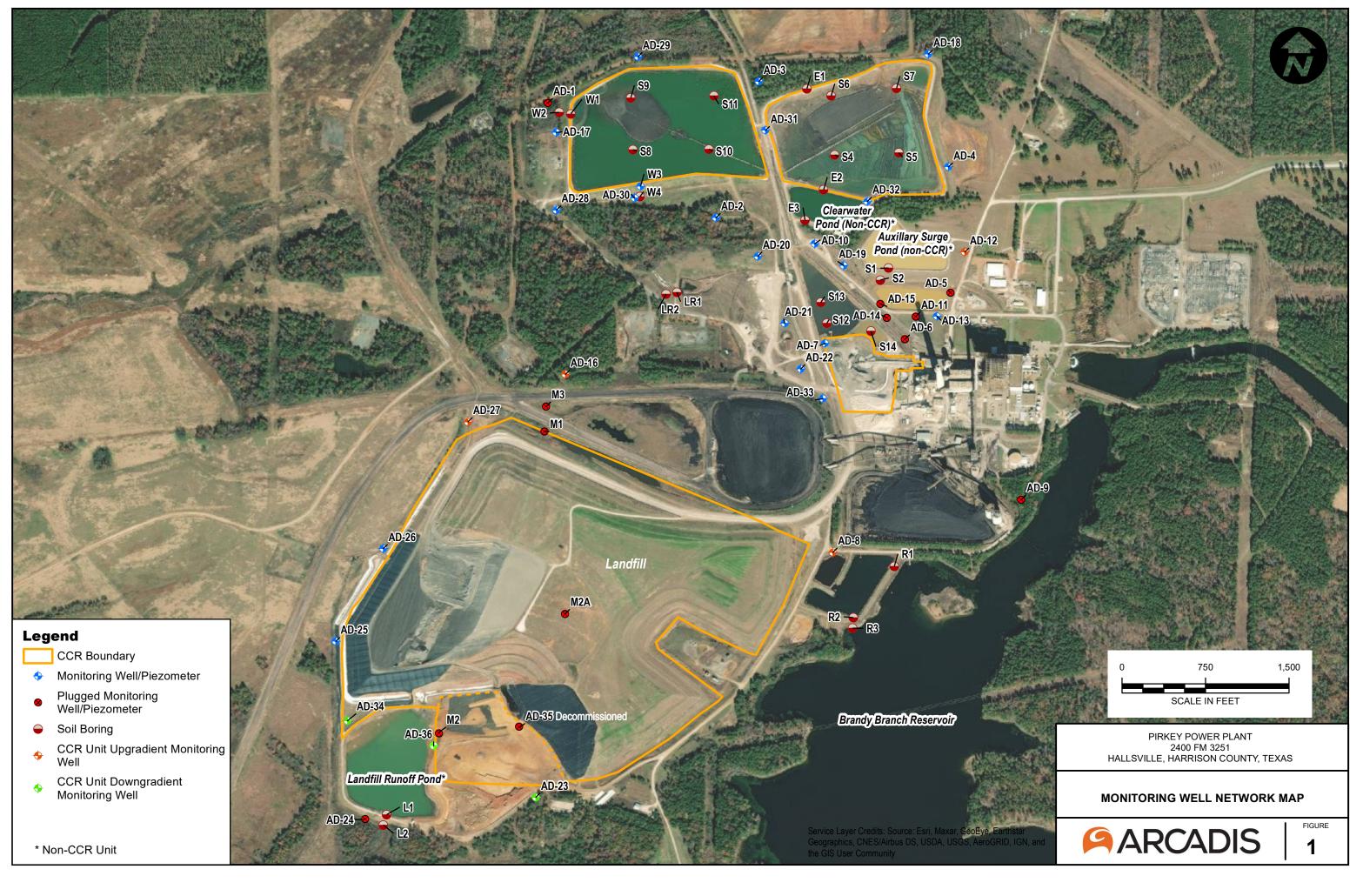
mg/L: milligrams per liter

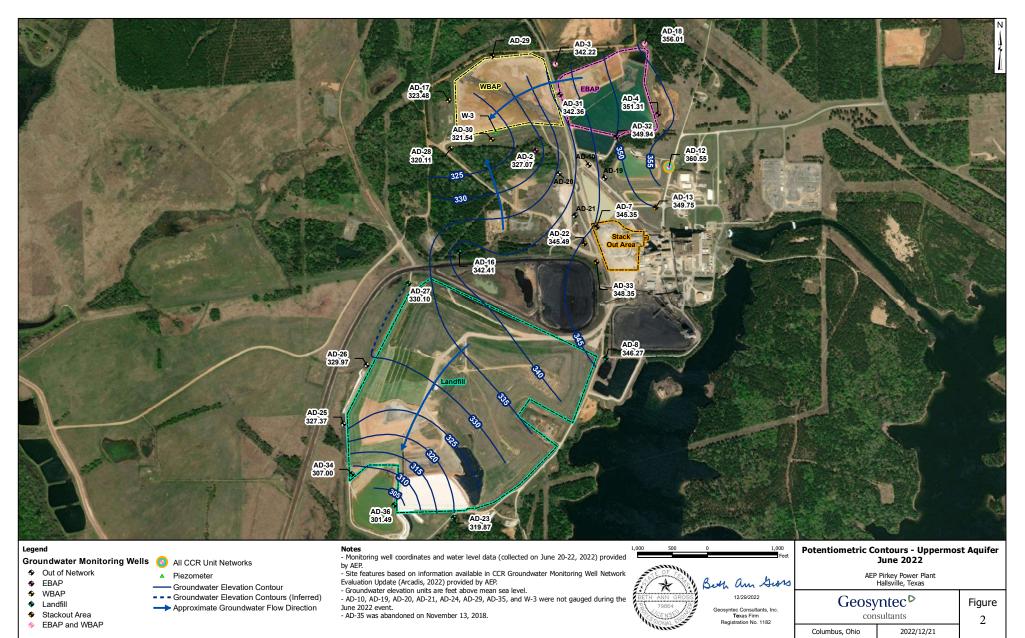
pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report. - -: Not analyzed

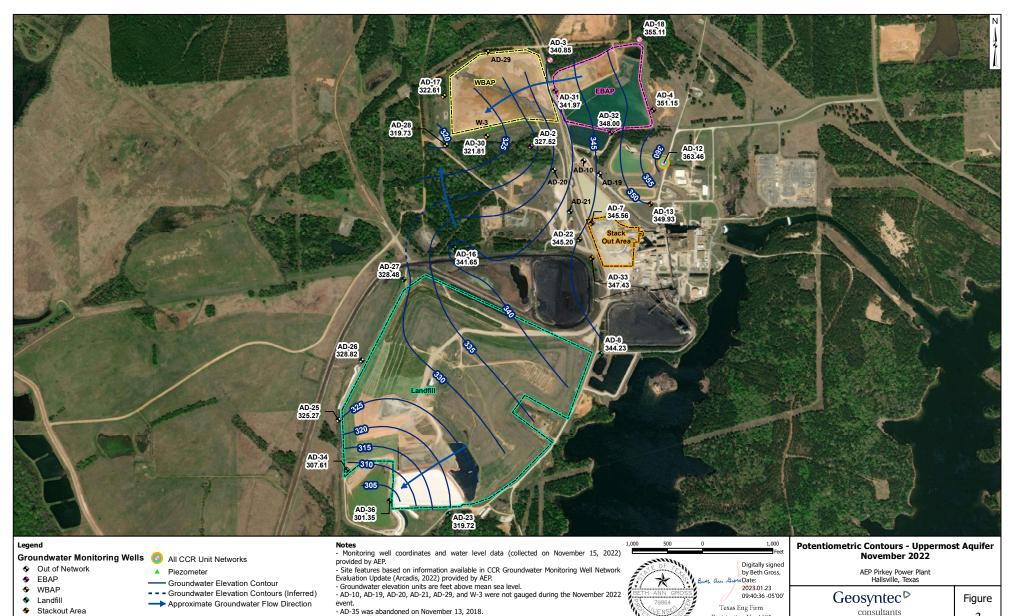
Table 1: Residence Time Calculation Summary Pirkey Landfill

				-01 ^[3]	202	2-06	2022	-08 ^[3]	202	2-11
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	AD-8 ^[1]	4.0	NC	NC	6.9	17.6	NC	NC	7.1	17.2
	AD-12 ^[1]	4.0	NC	NC	21.6	5.6	NC	NC	22.8	5.3
	AD-16 ^[1]	2.0	NC	NC	22.3	2.7	NC	NC	20.5	3.0
Landfill	AD-23 ^[2]	2.0	21.4	2.8	11.3	5.4	21.9	2.8	10.5	5.8
	AD-27 ^[1]	2.0	NC	NC	15.4	4.0	NC	NC	16.3	3.7
	AD-34 ^[2]	2.0	21.6	2.8	29.7	2.0	28.0	2.2	25.3	2.4
	AD-36 ^[2]	2.0	NC	NC	25.7	2.4	26.4	2.3	25.5	2.4


Notes:


[1] - Background Well

[2] - Downgradient Well


[3] - Only select wells were gauged as part of two-of-two verification sampling

NC - Not Calculated

W:Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Pirkey\2022\AEP-Pirkey_GW_2022-06June.mxd. ASoltero. 12/21/2022. Project/Phase/Task.

3

2023/01/17

Registration No. 1182

Columbus, Ohio

ANNAL ST

- AD-35 was abandoned on November 13, 2018.

- Stackout Area EBAP and WBAP

The reports summarizing the statistical evaluation follow.

941 Chatham Lane, Suite 103 Columbus, Ohio 43212 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Subject:	Evaluation of Detection Monitoring Data at Pirkey Plant's Landfill
From:	Allison Kreinberg (Geosyntec)
Copies to:	Leslie Fuerschbach (AEP)
To:	David Miller (AEP)
Date:	March 23, 2022

In accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (30 TAC 352, "CCR rule"), the second semi-annual detection monitoring event of 2021 at the Landfill, an existing CCR unit at the Pirkey Power Plant located in Hallsville, Texas, was completed on November 17, 2021. Based on the results, a two-of-two verification sampling was completed on January 26, 2022.

Background values (prediction limits) for the LF were previously calculated in January 2018. An alternative source demonstration (ASD) was certified on January 7, 2020 which resulted in a revision from interwell tests to intrawell tests for the pH, sulfate, and total dissolved solids (TDS) prediction limits. After a minimum of four detection monitoring events, the results of those events were compared to the existing background and the dataset was updated as appropriate. Revised upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 27, 2021.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL (or are below the LPL for pH). In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1 and noted exceedances are described in the list below.

Evaluation of Detection Monitoring Data – Pirkey Landfill March 23, 2022 Page 2

• TDS concentrations exceeded the intrawell UPL of 1,700 mg/L in both the initial (1,850 mg/L) and second (1,720 mg/L) samples collected at AD-34. Therefore, an SSI over background is concluded for TDS at AD-34.

In response to the exceedances noted above, the Pirkey LF will either transition to assessment monitoring or an ASD for TDS at AD-34 will be conducted in accordance with 30 TAC 352.931. The statistical analysis was conducted in accordance with 30 TAC 352.931 and completed within 90 days of sampling and analysis. A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data EvalationPirkey - Landfill

Analyta	Unit	Description	AD	-23	AD	-34	AD-36
Analyte	Unit	Description	11/17/2021	1/26/2022	11/17/2021	1/26/2022	11/17/2021
Deven	/T	Intrawell Background Value (UPL)	0.04	433	0.1	0.0702	
Boron	mg/L	Analytical Result	0.045	0.040	0.069		0.070
Calcium		Intrawell Background Value (UPL)	0.5	36	42	0.304	
Calcium	mg/L	Analytical Result	0.22		45.8	42.6	0.25
Chloride		Intrawell Background Value (UPL)	8.	88	9.3	9.54	
	mg/L	Analytical Result	7.11		7.09		8.97
Fluoride	mg/L	Intrawell Background Value (UPL)	1.	00	1.2	0.0800	
riuoride		Analytical Result	0.05		1.11		0.05
		Intrawell Background Value (UPL)	5	.2	4.	5.7	
pН	SU	Intrawell Background Value (LPL)	2.	.8	2.	3.5	
		Analytical Result	3.9		3.1		4.0
Sulfata		Intrawell Background Value (UPL)	14	.5	1,2	80	4.20
Sulfate	mg/L	Analytical Result	7.84		1,280		2.89
Total Dissolved Solida	ma/I	Intrawell Background Value (UPL)	11	11	1,7	98.5	
Total Dissolved Solids	mg/L	Analytical Result	70		1,850	1,720	50

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

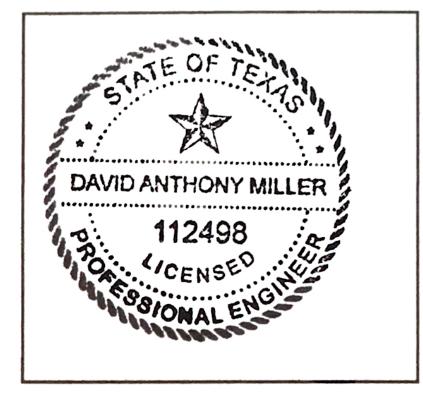
ATTACHMENT A Certification by a Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 27, 2021 Statistical Analysis Summary report, is appropriate for evaluating the groundwater monitoring data for the Pirkey Landfill CCR management area and that the requirements of 30 TAC 352.931(a) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer


David Luthony Milly Signature

TEXAS

License Number

112498

Licensing State

04.18.22

Date

January 11, 2023

David Miller American Electric Power 1 Riverside Plaza Columbus, Ohio 43215

Subject: November 2022 Evaluation of Detection Monitoring Data Memorandum Revisions

Dear Mr. Miller:

Geosyntec Consultants, Inc. (Geosyntec) has revised the attached Evaluation of Detection Monitoring Data Memorandum (Memo) for the H.W. Pirkey Power Plant's existing coal combustion residual (CCR) Landfill, which summarizes the first semi-annual detection monitoring event of 2022 at the Landfill, in accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of CCRs in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule").

The Evaluation of Detection Monitoring Data Memo was previously certified on November 11, 2022, which was within 90 days of issuance of the analytical laboratory reports for the June 2022 and August 2022 groundwater sampling events. Following certification, the analytical laboratory reports for the June 2022 sampling event were reissued with amended matrix spike precision calculations. The data quality review memoranda, which were provided as Attachment A of the certified Evaluation of Detection Monitoring Data Memo, has been updated to reflect the reissued analytical laboratory reports. A record of revisions is provided with the updated data quality review memorandum as Attachment A of the compiled Evaluation of Detection Monitoring Data Memo, as the conclusions of the data quality review memorandum were unaffected and no changes to the statistical analysis were required.

Sincerely,

denty

Allison Kreinberg, Project Manager

Attachment A: Evaluation of Detection Monitoring Data at Pirkey Plant's Landfill Memorandum. November 2022.

CHA8500B 20230113 Pirkey LF Rev1 CL

Memorandum

Subject:	Evaluation of Detection Monitoring Data at Pirkey Plant's Landfill
From:	Allison Kreinberg (Geosyntec)
Copies to:	Leslie Fuerschbach (AEP)
To:	David Miller (AEP)
Date:	November 8, 2022

In accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (30 TAC 352, "CCR rule"), the first semi-annual detection monitoring event of 2022 at the Landfill, an existing CCR unit at the Pirkey Power Plant located in Hallsville, Texas, was completed on June 22, 2022. Based on the results, a two-of-two verification sampling was completed on August 30, 2022.

A data quality review was completed to assess if the data collected for this semiannual detection monitoring event met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis¹. The data were determined usable for supporting project objectives, as documented in the review memoranda provided in Attachment A.

Background values (prediction limits) for the LF were previously calculated in January 2018. An alternative source demonstration (ASD) was certified on January 7, 2020 which resulted in a revision from interwell tests to intrawell tests for the pH, sulfate, and TDS prediction limits. After a minimum of four detection monitoring events, the results of those events were compared to the existing background and the dataset was updated as appropriate. Revised upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 27, 2021.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Draft Technical Guidance No. 32. May 2020.

Evaluation of Detection Monitoring Data – Pirkey Landfill November 8, 2022 Page 2

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL (or are below the LPL for pH). In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1. Noted exceedances are described in the list below.

- Calcium concentrations exceeded the intrawell UPL of 42.8 mg/L in both the initial (45.8 mg/L) and second (46.0 mg/L) samples collected at AD-34. Therefore, an SSI over background is concluded for calcium at AD-34.
- Chloride concentrations exceeded the intrawell UPL of 9.54 mg/L in both the initial (10.1 mg/L) and second (10.3 mg/L) samples collected at AD-36. Therefore, an SSI over background is concluded for calcium at AD-36.

In response to the exceedances noted above, the Pirkey LF will either transition to assessment monitoring or an ASD for calcium at AD-34 and chloride at AD-36 will be conducted in accordance with 30 TAC 352.931. The statistical analysis was conducted in accordance with 30 TAC 352.931 and completed within 90 days of sampling and analysis. A certification of these statistics by a qualified professional engineer is provided in Attachment B.

Table 1: Detection Monitoring Data EvalationPirkey - Landfill

Analyta	Unit	Description	AI	D-23	AD	D- 34	AD	0-36	
Analyte	Unit	Description	6/22/2022	8/30/2022	6/22/2022	8/30/2022	6/22/2022	8/30/2022	
Boron	mg/L	Intrawell Background Value (UPL)	0.0	433	0.1	145	0.0702		
Doron	mg/L	Analytical Result	0.057	0.032	0.066		0.059		
Calcium	mg/L	Intrawell Background Value (UPL)	0.:	536	42	2.8	0.3	304	
Calciulii	mg/∟	Analytical Result	0.25		45.8	46.0	0.38	0.28	
Chloride	mg/L	Intrawell Background Value (UPL)	8.88		9.	35	9.54		
Chionae	mg/L	Analytical Result	7.32		7.38		10.1	10.3	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.	.00	1.	29	0.0	800	
Fluoride	mg/L	Analytical Result	0.07		1.20		0.09	0.07	
		Intrawell Background Value (UPL)	5	.2	4	.2	5.7		
pН	SU	Intrawell Background Value (LPL)	2	8	2	.9	3.5		
		Analytical Result	3.6		3.7		4.6		
Sulfate	mg/L	Intrawell Background Value (UPL)	14	4.5	1,2	280	4.20		
Sunate	mg/∟	Analytical Result	9.52		1,260		5.00	3.00	
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	1	11	1,7	700	98.5		
10tal Dissolved Sollds	шg/L	Analytical Result	80		1,750	1,650	60		

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Data Quality Review Memorandum Revision 1 - January 2023

ATTACHMENT A DATA QUALITY REVIEW – H.W. PIRKEY POWER PLANT JUNE 2022 SAMPLING EVENT MEMORANDUM RECORD OF REVISIONS

Revision 1 (January 2023)

- The introductory text was updated to note that the laboratory reports for the sample data groups (SDGs) discussed in this memorandum were reissued in December 2022 with amended matrix spike (MS) precision calculations.
- For the second bullet point, regarding equipment blank detections, the text was amended to note that a high bias for groundwater chromium results may occur in multiple, not all, samples.
- The low matrix spike duplicate (MSD) recovery for beryllium in the sample "Duplicate 1" was added to the discussion of MS and MSD issues associated with SDG 222015.
- The relative percent difference (RPD) for sodium between the MS and MSD associated with sample 'AD-2' on SDG 222015 is no longer outside the acceptable range. This text was removed.
- The RPDs for calcium, lithium, magnesium, and sodium between the MS and MSD associated with sample 'Duplicate-1' on SDG 222015 are no longer outside the acceptable range. This text was removed.
- The RPD for calcium and sodium associated with the sample 'AD-8' on SDG 222016 are no longer outside the acceptable range. This text was removed.

Memorandum

January 11, 2023
David Miller (AEP)
Leslie Fuerschbach (AEP)
Allison Kreinberg (Geosyntec)
Data Quality Review – H.W. Pirkey Power Plant June 2022 Sampling Event – Revision 1

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in June 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

The following sample data groups (SDGs) were associated with the June 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221988
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221989
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221990
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221991
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 222015
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 222016

The laboratory reports for these SDGs were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these

Data Quality Review – Pirkey June 2022 Data January 11, 2023 Page 2 Revision 1.0

SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32^1 prior to submittal of this data to TCEQ.

The following data quality issues were identified:

- As reported in SDG 221989, the sample "AD-3" submitted for total dissolved solids (TDS) analysis via method SM2540C was analyzed out of hold time. The "AD-3" TDS results should be considered estimated.
- As reported in SDG 222015, chromium and cobalt were detected in the equipment blank sample "Equipment Blank" collected on 6/20/2022. The detected chromium concentration in the equipment blank (0.41 µg/L) was higher than the detected values for chromium in multiple groundwater samples, which could result in high bias for all groundwater chromium results. The cobalt equipment blank detection was less than 10% of the detected values in the groundwater samples and would not result in a high bias.
- As reported in SDG 221988 and SDG 221989, the relative percent difference (RPD) for fluoride concentrations from parent sample "AD-13" and duplicate sample "Duplicate-1" was 24%. The "AD-13" fluoride results should be considered estimated.
- As reported in SDG 2221989, the RPD for TDS (11.5%) in the laboratory duplicate was above the acceptable limit of 10%. The associated sample ("AD-3") was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-3" TDS results should be considered estimated.
- As reported in SDG 222015, the following matrix spike (MS) or matrix spike duplicate (MSD) recovery issues were observed:
 - The MSD recovery for sodium (-30.9%) associated with sample "AD-2" was below the acceptable range of 75-125%. The associated sample (AD-2) was flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
 - The MS recovery for cobalt (69.7%) and lithium (54%) associated with sample "AD13" were below the acceptable range of 75-125%. The associated sample (AD-13) was flagged M1: the associated MS or MSD recovery was outside

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Data Quality Review – Pirkey June 2022 Data January 11, 2023 Page 3

acceptance limits. The "AD-13" cobalt and lithium results should be considered estimated.

- The MSD recovery (72%) for beryllium associated with sample "Duplicate-1", which was collected from well AD-13, was below the acceptable range of 75-125%. The MS recovery (62.6%) for calcium was below the acceptable range of 75-125%. The MS recovery (5.81%) and MSD recovery (53.9%) for cobalt were below the acceptable range of 75-125%. The MS recovery (-49.7%) for lithium were below the acceptable range of 75-125%. The MS recovery (32.4%) and MSD recovery (52.1%) for magnesium were below the acceptable range of 75-125%. The MS recovery (54.3%) for sodium were below the acceptable range of 75-125%. The MS recovery (54.3%) for sodium were below the acceptable range of 75-125%. The S recovery (54.3%) for sodium were below the acceptable range of 75-125%. The YDUPlicate-1" beryllium, calcium, cobalt, lithium, magnesium, and sodium results should be considered estimated. Magnesium and sodium are not regulated Appendix III or IV constituents.
- As reported in SDG 222015, the RPD for radium-226 (25.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-13" radium-226 results should be considered estimated.
- As reported in SDG 222016, the MS recovery (49.2%) and MSD recovery (63.5%) for calcium associated with sample "AD-8" were below the acceptable range of 75-125%. The MS recovery for sodium (70.1%) was below the acceptable range of 75-125%. The MS recovery (62.6%) and MSD recovery (72.2%) were below the acceptable range of 75-125%. The associated sample (AD-8) was flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-8" calcium, sodium, and strontium results should be considered estimated. Sodium and strontium are not regulated Appendix III or Appendix IV constituents.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

Memorandum

November 1, 2022
David Miller (AEP)
Leslie Fuerschbach (AEP)
Allison Kreinberg (Geosyntec)
Data Quality Review – Pirkey Power Plant August 2022 Sampling Event
_

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Pirkey Power Plant, located in Hallsville, Texas, in August 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The samples were analyzed for 40 CFR 257 Appendix III constituents.

The following sample data groups (SDGs) were associated with the groundwater samples collected during the August 2022 sampling event and are reviewed in this memorandum:

• Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 222847

The data included in this SDG were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32^1 prior to submittal of this data to TCEQ.

No data quality issues were identified. Based on these findings, the data reported in this SDG are considered accurate and complete and the data are considered usable for supporting project objectives.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

ATTACHMENT B

Certification by a Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 27, 2021 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Pirkey Landfill CCR management area and that the requirements of 30 TAC 352.931(a) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David Anthony Milles Signature

112498

License Number

TEXAS

Licensing State

11.11.22

Date

Memorandum

Subject:	Data Quality Review – H.W. Pirkey Power Plant November 2022 Sampling Event
From:	Allison Kreinberg (Geosyntec)
Copies to:	Leslie Fuerschbach (AEP)
To:	David Miller (AEP)
Date:	January 20, 2023

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in November 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

The following sample data groups (SDGs) were associated with the November 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223647
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223649
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223664
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223668

The laboratory reports for SDGs 223647 and 223649 were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32^1 prior to submittal of this data to TCEQ.

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Data Quality Review – Pirkey November 2022 Data January 20, 2023 Page 2

The following data quality issues were identified:

- As reported in SDG 223664, chromium, cobalt, and molybdenum were detected in the equipment blank sample "Equipment Blank" collected on 11/16/2022. The detected chromium concentration in the equipment blank (0.47 μg/L) was more than 10% of the detected values in the groundwater samples, which could result in high bias for all groundwater chromium results. The detected cobalt concentration in the equipment blank (0.143 μg/L) was more than 10% of the detected value in sample "AD-18" (0.723 μg/L), which could result in high bias in the "AD-18" cobalt results. The estimated molybdenum concentration in the equipment blank (0.2 μg/L) was more than 10% of the detected value in sample "Duplicate-2" (0.2 μg/L), which could result in high bias in the "Duplicate-2" molybdenum results. Molybdenum was not detected in the other groundwater samples.
- As reported in SDG 223649, the relative percent difference (RPD) for sulfate concentrations from parent sample "AD-36" and duplicate sample "Landfill Duplicate" was 86%. The "AD-36" sulfate results should be considered estimated.
- As reported in SDG 223664, the following matrix spike (MS) and matrix spike duplicate (MSD) recovery for sodium (160% and 223%, respectively) associated with sample "AD-2" was above the acceptable range of 75-125%. The MS recovery for sodium (50.4%) associated with sample "AD-30" was below the acceptable range of 75-125%. The associated samples ("AD-2" and "AD-30") were flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" and "AD-30" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
- As reported in SDG 223664, the RPD for radium-226 (52.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-12" radium-226 result was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-12" radium-226 results should be considered estimated.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

APPENDIX 3- Alternate Source Demonstrations

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant Landfill Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

consultants

engineers | scientists | innovators

500 West Wilson Bridge Road Suite 250 Worthington, OH 43085

July 2022

CHA8495

TABLE OF CONTENTS

SECTION 1	Introduction and Summary	1-1
1.1	CCR Rule Requirements	1-1
1.2	Demonstration of Alternative Sources	1-2
SECTION 2	2 Alternative Source Demonstration	2-1
2.1	Regional Geology and Site Hydrogeology	2-1
2.2	Proposed Alternative Source – Natural Variation	2-1
2.3	Sampling Requirements	2-3
SECTION 3	Conclusions and Recommendations	3-1
SECTION 4	References	4-1

TABLES

FIGURES

Figure 1	Site Layout
Figure 2	Potentiometric Contours – Uppermost Aquifer November 2021
Figure 3	AD-34 Chloride Time Series Graph
Figure 4	AD-34 Boron Time Series Graph

ATTACHMENTS

Attachment A	Geologic Cross-Sections
Attachment B	February 2019 Landfill Leachate Laboratory Analytical Report
Attachment C	July 2019 FGD Sludge Laboratory Analytical Report
Attachment D	January 2022 Verification Sampling Laboratory Analytical Report
Attachment E	Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

amsl Above Mean Sea Level

ASD	Alternative Source Demonstration
CCR	Coal Combustion Residuals
EPRI	Electric Power Research Institute
FGD	Flue Gas Desulfurization
LPL	Lower Prediction Limit
QA	Quality Assurance
QC	Quality Control
SPLP	Synthetic Precipitation Leaching Procedure
SSI	Statistically Significant Increase
SWFPR	Site-wide False Positive Rate
TAC	Texas Administrative Code
TCEQ	Texas Commission on Environmental Quality
TDS	Total Dissolved Solids
UPL	Upper Prediction Limit

SECTION 1

INTRODUCTION AND SUMMARY

This Alternative Source Demonstration (ASD) report has been prepared to address a statistically significant increase (SSI) for total dissolved solids (TDS) in the groundwater monitoring network at the H.W. Pirkey Power Plant's Landfill (Landfill), located in Hallsville, Texas, following the second semiannual detection monitoring event of 2021. The H.W. Pirkey Plant has four coal combustion residual (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the Landfill. The Landfill is also registered as a source impoundment under TCEQ Industrial and Hazardous Waste Solid Waste Registration No. 33240. The western side of the Landfill overlies a former lignite mining area, as shown on **Figure 1**.

Background groundwater concentrations for the Landfill were initially calculated in January 2018 with data from at least eight monitoring events (Geosyntec, 2018). Upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. An ASD was certified on January 7, 2020 which resulted in a revision from interwell tests to intrawell tests for pH, sulfate, and TDS prediction limits due to the presence of lignite mine spoils within the screened interval at downgradient well AD-34 (Geosyntec, 2020). Prediction limits were calculated based on a one-of-two retesting procedure to maintain an appropriate site-wide false positive rate (SWFPR). With this procedure, an SSI is concluded only if both samples in a series of two exceed the UPL or, in the case of pH, are below the LPL.

The second semi-annual detection monitoring event of 2021 was performed in November 2021 (initial sampling event), and the results were compared to the calculated prediction limits in accordance with 30 TAC §352.941(a). Where initial exceedances were identified, verification resampling was completed in January 2022. Following verification resampling, an SSI for TDS was identified at well AD-34 by intrawell analysis. A summary of the detection monitoring analytical results and the calculated prediction limits to which they were compared is provided in **Table 1**.

1.1 <u>CCR Rule Requirements</u>

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments (TCEQ, 2020a) provide owners and operators with the option to make an ASD when an SSL is identified (30 TAC §352.941(c)):

... In making a demonstration under this subsection, the owner or operator must: ... within 90 days of making a determination of an SSI over the background value for any Appendix III constituent adopted by reference in §352.1421 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a coal combustion residuals unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

Pursuant to 30 TAC §352.941(c)(2), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSI identified for TDS at AD-34 is from a source other than the Landfill.

1.2 <u>Demonstration of Alternative Sources</u>

An evaluation was completed to assess possible alternative sources to which the identified SSI could be attributed. Alternative sources were identified amongst five types, based on methodology provided by the Electric Power Research Institute (EPRI, 2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the SSI identified for TDS at AD-34 was based on a Type V cause and not by a release from the Pirkey Landfill.

SECTION 2

ALTERNATIVE SOURCE DEMONSTRATION

The TCEQ CCR Rule allows the owner or operator 90 days from the determination of an SSI to demonstrate that a source other than the CCR unit caused the SSI. Descriptions of the regional geology and site hydrogeology and the methodology used to evaluate the SSI identified for TDS and the proposed alternative source are described below.

2.1 <u>Regional Geology and Site Hydrogeology</u>

The Landfill is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis, 2022). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine to medium grained sand interbedded with silt and clay.

The Landfill monitoring well network monitors groundwater within the uppermost aquifer, which was defined by Arcadis (2022) as very fine to fine grained clayey and silty sand located below and adjacent to the Landfill between an elevation of approximately 270 and 330 feet above mean sea level (amsl). Geologic cross sections C-C' and D-D' from the Arcadis Monitoring Well Network Report (2022) show the subsurface structure of the uppermost aquifer (indicated on the figures as clayey silty sand, brown to gray) underlying the Landfill. These figures as well as the cross-section location map are provided as **Attachment A**. Geologic cross-sections C-C' and D-D' demonstrate lateral continuity of the uppermost aquifer spanning both directions underneath the entire length of the Landfill.

Groundwater flow direction near the Landfill is south-southwesterly (**Figure 2**). Seasonal variability in groundwater flow has not been observed since the monitoring well network was installed. The Landfill monitoring well network consists of upgradient monitoring wells AD-8, AD-12, AD-16, and AD-27, and downgradient compliance wells AD-23, AD-34, and AD-36. AD-36 was installed in April 2019 after the initial monitoring well network was already in place as a replacement for well AD-35, which was decommissioned in November 2018 due to Landfill expansion activities.

2.2 <u>Proposed Alternative Source – Anthropogenic Impacts</u>

An initial review of site geochemistry, site historical data, and laboratory quality assurance/quality control (QA/QC) data did not identify ASDs due to Type I (sampling), Type II (laboratory), or Type III (statistical evaluation) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with draft TCEQ guidance for groundwater monitoring (TCEQ, 2020b). As described below, the SSI for TDS at monitoring well AD-34 has been attributed to anthropogenic impacts associated with the former lignite mine, which is a Type V issue.

Variability in TDS concentrations at AD-34 is likely associated with former mining activities that took place immediately underlying and downgradient of the Landfill. As has been noted in previous ASDs (Burns & McDonnell, 2019; Geosyntec, 2019; Geosyntec, 2020), AD-34 is located within the footprint of a former lignite mining area (**Figure 1**), which has significantly impacted groundwater chemical composition. Prior to the installation of AD-34 in 2015, groundwater from the former lignite mine discharged to ground surface in the area of AD-34 (Burns & McDonnell, 2019). Water levels at AD-34 consistently reflect artesian conditions, indicating that this area was previously subjected to infiltration of surfaced groundwater from the lignite mine. Increased sulfate and TDS concentrations in waters affected by mine spoils are well documented in academic studies (Cunningham and Jones, 1990; Skousen and Zipper, 2014). Such impacts may be influential on TDS concentrations at monitoring wells within the area formerly in contact with mine groundwater, such as AD-34.

While it is likely that AD-34 is affected by the former lignite mining activities, there is limited evidence that AD-34 is impacted by the Landfill. Chloride and boron, which function as indicators for potential CCR releases due to their high relative concentration in CCR, are typically considered geochemically conservative parameters due to their lack of attenuation by geochemical processes in groundwater flow. Chloride was detected in the Landfill leachate at 640 mg/L (**Attachment B**), which is approximately two orders of magnitude greater than the concentrations detected at AD-34 (**Figure 3**). If Landfill leachate, which contains chloride concentrations multiple orders of magnitude greater than AD-34, were impacting downgradient monitoring wells, an increase in chloride concentrations at AD-34 would be expected. **Figure 3** shows that chloride concentrations at AD-34 are comparable to previous sample results.

Boron concentrations in Landfill leachate were unable to be accurately quantified in the 2019 leachate sample due to elevated reporting limits (5,000 mg/L for boron) caused by a large sample dilution factor. Boron was not detected above 5,000 mg/L in the leachate sample. However, boron concentrations in leached Flue Gas Desulfurization (FGD) sludge, which comprises much of the material placed in the Landfill, were reported to be 22.3 mg/L (via Synthetic Precipitation Leaching Procedure [SPLP]) and 8.44 mg/L (via Texas 7-day distilled water leaching procedure) in 2019 (Attachment C). Considering the elevated boron concentrations reported in the leached FGD sludge material, it is likely that boron concentrations in the Landfill leachate exceed concentrations at AD-34 (0.058 - 0.171 mg/L). An increase in boron concentrations at AD-34 over time are shown on Figure 4. Recent (2020 to present) samples contain lower than average (0.084 mg/L) boron concentrations, which is not consistent with the expected concentration trend if a Landfill release had occurred.

While a TDS SSI was identified during the second semi-annual sampling event, there is limited evidence that these TDS concentrations are indicative of larger changes in groundwater chemical composition, such as those that would be expected for geochemically conservative parameters following a release from the Landfill. Further, the reported TDS concentration for the verification

sampling event was 1,720 mg/L, which is only marginally above the intrawell UPL of 1,700 mg/L for AD-34. However, this result was flagged as "S7 – Sample did not achieve constant weight" (Attachment D), suggesting possible variability in the analytical results. These results suggest that the observed variability in TDS concentrations during the recent events may also be at least partially associated with the analytical procedure and not indicative of ongoing changes in the groundwater composition suggestive of a release from the LF. Additional sampling should be completed if TDS concentrations continue to remain above the UPL.

The current chloride and boron concentrations at AD-34 do not display increasing trends relative to previous monitoring data (**Figures 3 and 4**), which suggests that changes in TDS concentrations in AD-34 groundwater should not be attributed to a release from the Landfill. Instead, the elevated TDS concentrations at AD-34 are likely associated with the presence of mine spoils from the former lignite mine in the vicinity of AD-34.

2.3 <u>Sampling Requirements</u>

As the ASD described above supports the position that the identified TDS SSI is not due to a release from the Pirkey Landfill, the unit will remain in the detection monitoring program. Groundwater at the unit will continue to be sampled for Appendix III parameters on a semi-annual basis.

SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC 352.941(c)(2) and supports the position that the TDS SSI at AD-34 identified during the second semi-annual detection monitoring event of 2021 was not due to a release from the Landfill. The identified SSI was, instead, attributed to groundwater impacts associated with former mining activities. Therefore, no further action is warranted, and the Pirkey Landfill will remain in the detection monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E**.

SECTION 4

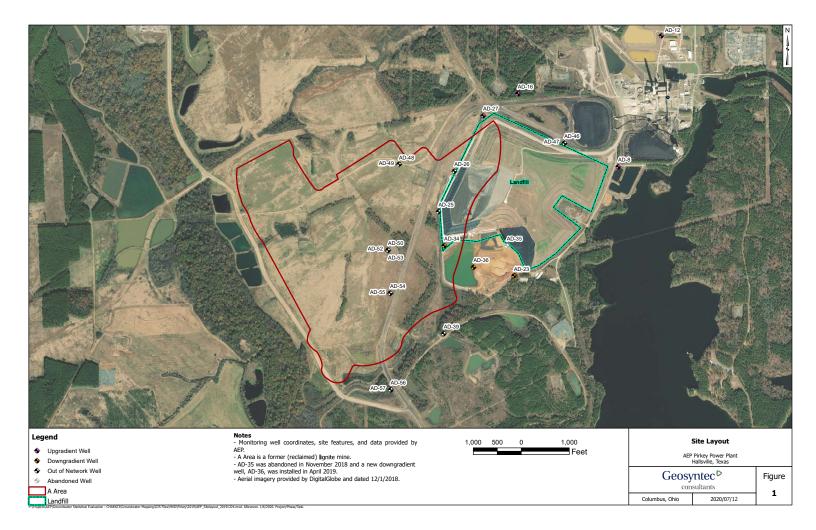
REFERENCES

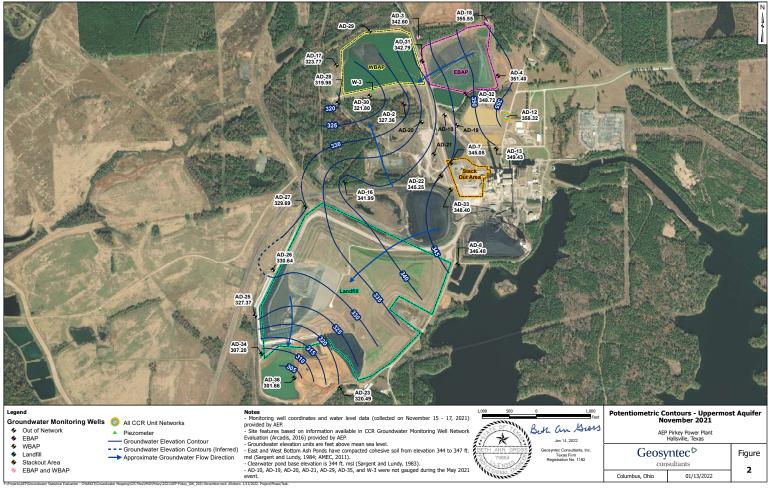
- Arcadis, 2022. Landfill CCR Groundwater Monitoring Well Network Evaluation Update H.W. Pirkey Power Plant. January.
- Burns & McDonnell, 2019. Alternate Source Demonstration Evaluation Report. H.W. Pirkey Power Plant Landfill CCR Management Unit. April.
- Cunningham, W.L. and Jones. R. L. 1990. Long-Term Effects of Surface Coal Mining on Ground-Water Levels and Quality in Two Small Watersheds in Eastern Ohio. USGS Water-Resources Investigations Report 90-4136.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Site. 3002010920. October.
- Geosyntec, 2018. Statistical Analysis Summary Landfill. H.W. Pirkey Power Plant. Hallsville, Texas. January.
- Geosyntec, 2019. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant Landfill. Hallsville, Texas. September.
- Geosyntec, 2020. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant Landfill. Hallsville, Texas. January.
- Skousen, J. and Zipper, C.E., 2014. Post-mining policies and practices in the Eastern USA coal region. International Journal of Coal Science & Technology, 1, pp.135-151.
- Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environmental Federation, 2018, Revised 2020. 2540 Solids in: Standard Methods for the Examination of Water and Wastewater. June.
- TCEQ, 2020a. Title 30, Part 1, Chapter 352: Coal Combustion Residuals Waste Management, May 22.
- TCEQ, 2020b. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Waste Permits Division. May.

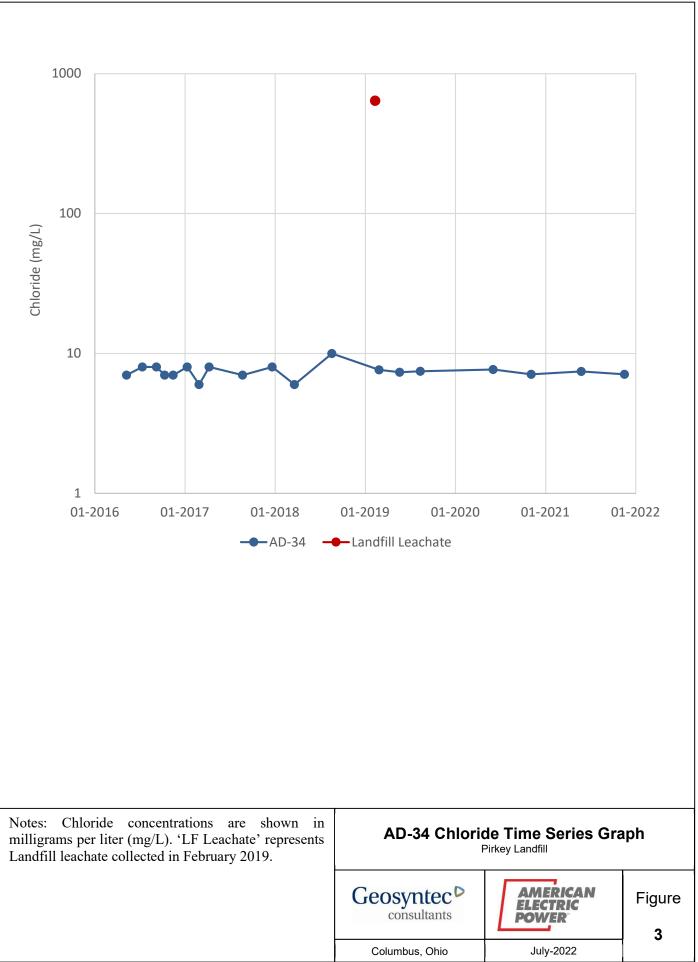
TABLES

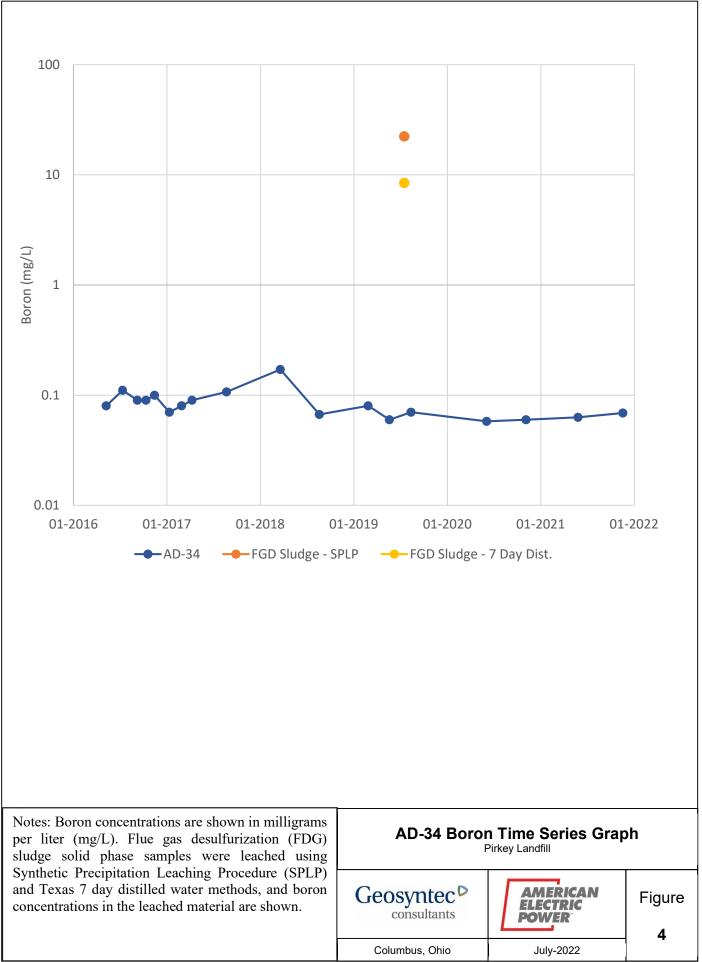
Table 1: Detection Monitoring Data Evalation
Pirkey - Landfill

Geosyntec Consultants, Inc.

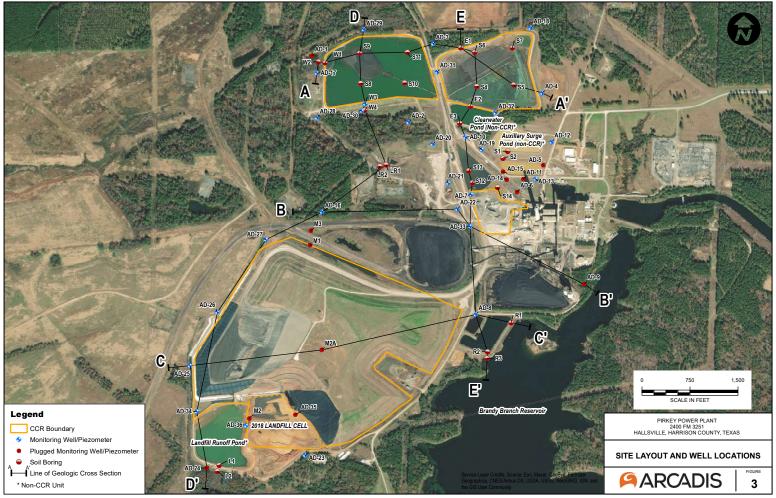

Analyte Unit		Description	AD	-23	AD-34		AD-36
		Description	11/17/2021	1/26/2022	11/17/2021	1/26/2022	11/17/2021
Boron mg/L		Intrawell Background Value (UPL)	0.0433		0.145		0.0702
Boron	iiig/L	Analytical Result	0.045 0.040		0.069		0.070
Calcium	mg/L	Intrawell Background Value (UPL)	0.536		42.8		0.304
Calcium	iiig/L	Analytical Result	0.22		45.8	42.6	0.25
Chloride mg/L	ma/I	Intrawell Background Value (UPL)	8.88		9.35		9.54
	iiig/L	Analytical Result	7.11		7.09		8.97
Fluoride mg/	ma/I	Intrawell Background Value (UPL)	1.00		1.29		0.0800
	iiig/L	Analytical Result	0.05		1.11		0.05
		Intrawell Background Value (UPL)	5.2		4.2		5.7
pH	SU	Intrawell Background Value (LPL)	2.	8	2.	3.5	
		Analytical Result	3.9		3.1		4.0
Sulfate	mg/L	Intrawell Background Value (UPL)	14.5		1,280		4.20
Suifate	mg/∟	Analytical Result	7.84		1,280		2.89
Total Dissolved Solids		Intrawell Background Value (UPL)	111		111 1,700		98.5
Total Dissolved Solids	mg/L	Analytical Result	70		1,850	1,720	50

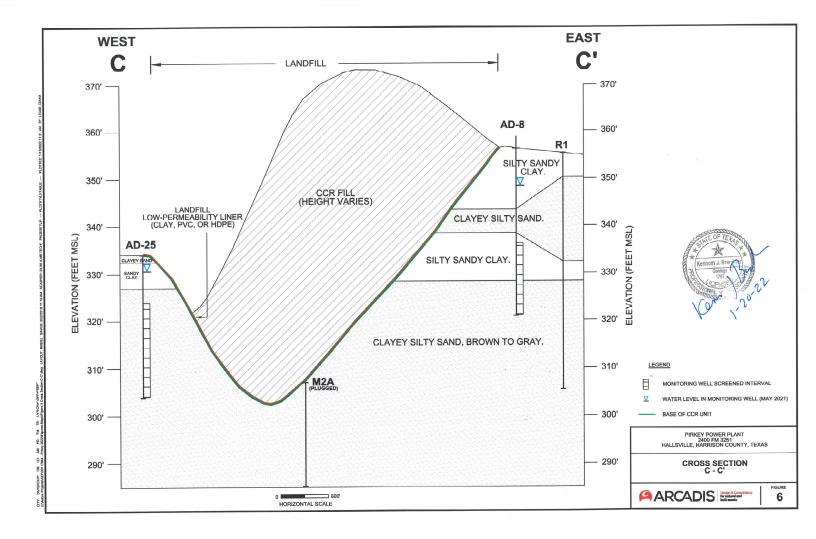

Notes:

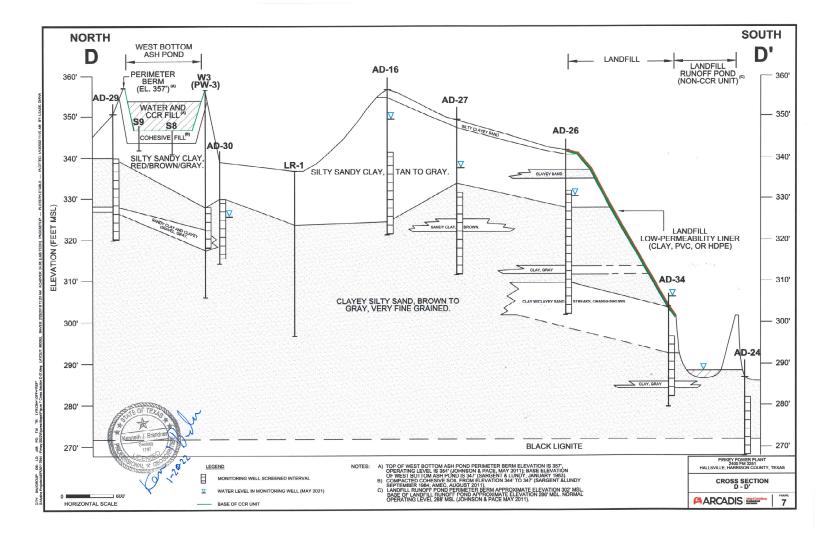

UPL: Upper prediction limit LPL: Lower prediction limit


Bold values exceed the background value. Background values are shaded gray.

FIGURES







ATTACHMENT A Geologic Cross-Sections

ATTACHMENT B

February 2019 Landfill Leachate Laboratory Analytical Report

Client: Burns & McDonnell Project/Site: CCR App III & IV GW Monitoring - Texas TestAmerica Job ID: 490-168409-2 SDG: AEP-Pirkey Plant

5

6 7

Client Sample ID: LANDFILL LEACHATE-1 Date Collected: 02/11/19 15:45

Date Received: 02/13/19 09:40

Total Dissolved Solids

Lab Sample ID:	490-168409-1
-	Matrix: Water

Method: 9056A - Anions Analyte	· •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.50	J	1.0	0.010	mg/L			02/14/19 16:31	1
Sulfate	2200	В	500	3.0	mg/L			02/15/19 12:11	100
Chloride	640		150	10	mg/L			02/15/19 11:55	50
Method: 6020A - Metals	(ICP/MS) - Total F	Recoverabl	е						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0044	В	0.0030	0.00080	mg/L		02/13/19 15:36	02/18/19 17:23	1
Arsenic	0.045		0.0050	0.00040	mg/L		02/13/19 15:36	02/15/19 17:49	1
Barium	0.048	J	0.20	0.00010	mg/L		02/13/19 15:36	02/15/19 17:49	1
Beryllium	0.00011	J	0.0040	0.00010	mg/L		02/13/19 15:36	02/15/19 17:49	1
Boron	5000	U	5000	180	mg/L		02/19/19 10:08	02/20/19 15:59	5000
Cadmium	0.00030	J	0.0050	0.00010	mg/L		02/13/19 15:36	02/15/19 17:49	1
Calcium	590		1.0	0.053	mg/L		02/13/19 15:36	02/15/19 17:49	1
Chromium	0.0050	U	0.0050	0.00050	mg/L		02/13/19 15:36	02/15/19 17:49	1
Cobalt	0.00043	J	0.0050	0.00010	mg/L		02/13/19 15:36	02/15/19 17:49	1
Lead	0.00029	JB	0.0050	0.00010	mg/L		02/13/19 15:36	02/15/19 17:49	1
Lithium	0.042		0.040	0.0030	mg/L		02/13/19 15:36	02/15/19 17:49	1
Molybdenum	3.7		0.010	0.0010	mg/L		02/13/19 15:36	02/15/19 17:49	1
Selenium	0.13		0.010	0.00030	mg/L		02/13/19 15:36	02/18/19 17:23	1
Thallium -	0.0020	U	0.0020	0.00080	mg/L		02/13/19 15:36	02/15/19 17:49	1
Method: 7470A - Mercury	y (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00050		0.00020	0.00010	mg/L		02/15/19 10:11	02/18/19 12:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.0

0.28 mg/L

5100

02/14/19 12:50

1

ATTACHMENT C

July 2019 FGD Sludge Laboratory Analytical Report

	-			-
	v	-	-	- 7
-		_		
1000				

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

œ		Analysis Report					Fax: (318) 673-3960			
Report ID : 40143 Date Received: 07/18/2019	Co	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
AEP Sample ID : 227040 Cust Sample ID: Dirt/Sludge Sample Desc.: Pirkey Sludge I	Collected Date: 07/17/2019 Location: H.W. Pirkey Power Plant GD Total			By: RF Matrix: Solid						
Metals (227040)			1				1	1		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech		
Aluminum	20500	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Antimony	0.993	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Arsenic	28.3	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Barium	142	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Beryllium	2.12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Boron	845	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB		
Cadmium	1.68	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Calcium	77500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Chromium	30.6	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Cobalt	24.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Copper	30.2	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Dry Weight, Percent	94.7	%	0.001	1		07/22/2019 15:30	T5	JDB		
Iron	36300	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB		
Lead	5.31	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Lithium	11.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47	T5	JDB		
Magnesium	7150	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Manganese	498	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Mercury	0.653	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:37		LNM		
Molybdenum	8.45	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Nickel	28.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Potassium	1370	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Selenium	36.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Silver	0.208	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		
Sodium	1230	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Strontium	382	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB		
Thallium	0.503	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB		

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 1 of 15

A				
	v	-		
-		_	1	
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

			Analysi	3 Kepon	L	Fax: (316) 073-3900			
Report ID : 40143 Date Received: 07/18/2019		mpany: SEP Contact: Terr Phone: (318	y Wehling	(TW)	S	502 North Allen Avenue Shreveport, LA 71101 318) 673-3960			
Tin	1.28	mg/Kg	0.2	1:50	EPA 6010B 1996	07/26/2019 0:47	Т5	JDB	
Titanium	1360	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB	
Vanadium	77.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Zinc	26	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Waste Characterization (227040)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
pH, Soil	8.44	pН		1	EPA 9045D 2002	07/25/2019 12:30		GB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 2 of 15

			_	-
	v	-	-	2
-		_	100	
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Page 3 of 15

œ		Analysis Report					Fax: (318) 673-3960				
Report ID : 40143 Date Received: 07/18/2019	C	npany: SEF ontact: Ter Phone: (318		(TW)	Fax:	502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960					
AEP Sample ID : 227041 Cust Sample ID: Dirt/Sludge Sample Desc.: Pirkey Sludge	Lo	d Date: 07/1 cation: H.W	7/2019 /. Pirkey Powe	er Plant	By: Matrix:	RF Solid					
SPLP (227041)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech				
Aluminum	14.2	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Antimony	0.018	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Arsenic	0.015	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Barium	3.46	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB				
Beryllium	0.012	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Boron	22.3	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB				
Cadmium	0.002	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Calcium	2090	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB				
Chromium	0.005	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Cobalt	0.051	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Copper	0.009	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Iron	52.4	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB				
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Lithium	0.146	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Magnesium	62.3	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB				
Manganese	2.83	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Mercury	0.002272	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:05	LNM				
Molybdenum	0.229	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Nickel	0.054	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Potassium	9.61	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Selenium	0.93	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Sodium	35.6	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB				
Strontium	12.7	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB				
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB				

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

A				
	v	-		
-		-	100	1

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

			-	•		•	,
Report ID : 40143 Date Received: 07/18/2019	С	npany: SEP ontact: Terr Phone: (318	y Wehling	(TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
Titanium	0.041	mg/L	0.005	1	EPA 1312/6010B 1996		JDB
Vanadium	0.269	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Zinc	0.299	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 4 of 15

			_	-
	v	-	-	2
-		_	100	
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

e		Analysis Report					Fax: (318) 673-3960			
Report ID : 40143 Date Received: 07/18/2019	Co	ontact: Ter	P - Flint Creek ry Wehling 8) 673-2721	(TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960				
AEP Sample ID : 227042 Cust Sample ID: Dirt/Sludge Sample Desc.: Pirkey Sludge	Collected Loc	I Date: 07/1 cation: H.W	,	er Plant	By: Matrix:	RF				
7-Day Leachate (227042)										
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech			
Aluminum	0.563	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Antimony	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Arsenic	0.011	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Barium	0.134	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Boron	8.44	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43	JDB			
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Calcium	252	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43	JDB			
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Copper	0.002	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Iron	0.211	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Lithium	0.069	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Magnesium	6.73	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Manganese	0.008	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:19	LNM			
Molybdenum	0.18	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Potassium	4.82	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Selenium	0.208	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Sodium	19.8	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43	JDB			
Strontium	1.6	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB			

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 5 of 15

A. see				
	v	-		
-		-	100	1
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

			-	•		· · · ·	
Report ID : 40143 Date Received: 07/18/2019	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721		:	502 North Allen Avenue Shreveport, LA 71101			
		Phone: (318) 673-2721		Fax:	(318) 673-3960	
Titanium	0.015	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Vanadium	0.03	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 6 of 15

	v	-	-	
-		_		1
A				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

e e		Analysis Report					Fax: (318) 673-3960				
Report ID : 40143 Date Received: 07/18/2019	С	npany: SEF ontact: Terr Phone: (318	, ,	: (TW)	Fax:	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
AEP Sample ID : 227043 Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge Fr	Lo	Collected Date: 07/17/2019 Location: H.W. Pirkey Power Plant D 2 Total			By: Matrix:	RF Solid					
Metals (227043)			1	,			1	1			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Aluminum	19600	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Antimony	0.919	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Arsenic	22.8	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Barium	121	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Beryllium	1.66	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Boron	891	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25	T5	JDB			
Cadmium	1.37	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Calcium	84500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Chromium	28.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Cobalt	20.3	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Copper	26.9	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Dry Weight, Percent	97.2	%	0.001	1		07/22/2019 15:30	T5	JDB			
Iron	28800	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Lead	5.78	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Lithium	12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26	T5	JDB			
Magnesium	7070	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Manganese	388	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Mercury	0.606	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:27		LNM			
Molybdenum	11	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Nickel	25.7	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Potassium	1460	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Selenium	30.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Silver	0.19	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			
Sodium	1780	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Strontium	451	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB			
Thallium	0.562	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB			

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 7 of 15

1.1 3 -	
	-
Contractory of Contra	

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

			Analysis	Fax. (310) 0/3-3900				
Report ID : 40143 Date Received: 07/18/2019		mpany: SEP Contact: Terr Phone: (318	y Wehling	: (TW)	S	02 North Allen Avenue Shreveport, LA 71101 318) 673-3960		
Tin	1.06	mg/Kg	0.2	1:50	EPA 6010B 1996	07/26/2019 1:26	T5	JDB
Titanium	1280	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Vanadium	68.3	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Zinc	33.8	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Waste Characterization (227043)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
pH, Soil	8.71	pН		1	EPA 9045D 2002	07/25/2019 12:30		GB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 8 of 15

			_	-
	v	-	-	2
-		_	100	
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

(C)			Fax: (318) 673-3960				
Report ID : 40143 Date Received: 07/18/2019	C	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721				502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
AEP Sample ID : 227044 Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge	Collected Lo	d Date: 07/1	,	er Plant	By: Matrix:	RF	
SPLP (227044)			-	1		-	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Aluminum	10.5	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Antimony	0.017	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Arsenic	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Barium	2.57	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06	JDB
Beryllium	0.009	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Boron	26.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06	JDB
Cadmium	0.002	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Calcium	1960	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06	JDB
Chromium	0.004	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Cobalt	0.051	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Copper	0.003	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Iron	47.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06	JDB
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Lithium	0.136	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Magnesium	70.2	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06	JDB
Manganese	2.87	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Mercury	< 0.000025	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:21	LNM
Molybdenum	0.288	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Nickel	0.071	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Potassium	11.4	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Selenium	0.775	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Sodium	56.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06	JDB
Strontium	13.2	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06	JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 9 of 15

A. see				
	v	-		
-		-	100	1
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

			-	•		•	,
Report ID : 40143 Date Received: 07/18/2019	С	npany: SEP ontact: Terr Phone: (318	, ,	(TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
Titanium	0.037	mg/L	0.005	1	EPA 1312/6010B 1996		JDB
Vanadium	0.194	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Zinc	0.338	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 10 of 15

			_	-
	v	-	-	2
-		_	100	
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

®			Fax: (318) 673-3960							
Report ID : 40143 Date Received: 07/18/2019	Co	Company: SEP - Flint Creek (TW) Address Contact: Terry Wehling Phone: (318) 673-2721 Fax								
AEP Sample ID : 227045 Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge	Loc	Collected Date: 07/17/2019 Location: H.W. Pirkey Power Plant 2 7 Day Leachate				By: RF Matrix: Solid				
7-Day Leachate (227045)										
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech			
Aluminum	0.994	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Antimony	0.006	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Arsenic	0.031	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Barium	0.121	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Boron	16.4	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB			
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Calcium	633	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB			
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Copper	0.003	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Iron	0.225	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Lithium	0.1	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Magnesium	9.54	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Manganese	0.015	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:36	LNM			
Molybdenum	0.448	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Potassium	9.02	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Selenium	0.201	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Sodium	48.3	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB			
Strontium	3.79	mg/L	0.05	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB			
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB			

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 11 of 15

A. see				
	v	-		
-		-	100	1
1				

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

			-	•		•	,	
Report ID : 40143 Date Received: 07/18/2019	С	npany: SEP ontact: Terr Phone: (318	y Wehling	: (TW)		502 North Allen Avenue Shreveport, LA 71101		
	Phone: (318) 673-2721			Fax: (318) 673-3960				
Titanium	0.02	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB	
Vanadium	0.087	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB	
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 12 of 15

A		
-	-	-
Contraction of the local division of the loc	-	
		00

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

	œ		A	narysis	s Repor	ι	Fax: (318) 673-3960									
Report Date Re	ID : 40143 eceived: 07/18/2019	Contact:	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721							Address: 502 North Allen Avenue Shreveport, LA 71101						
		Phone:		Fax: (3	18) 673-3	960										
			Q	uality Co	ntrol Data											
		* Quality	control unit	ts are the sar	ne as reported	d analytical	results									
			Blank		Standard			Spike		Surrogate	Duplicate %					
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference					
7/25/2019	Aluminum	226939.1	<0.005	2	2.0229733	101.1	2	2.071639	103.6		0.4	JDB				
7/25/2019	Aluminum	227041.1	<0.005	2	2.0229733	101.1	2	2.2242	111.2		0.0	JDB				
7/26/2019	Aluminum	227040.1	<12.5	2	2.0358232	101.8	100	132.38333	132.4		1.2	JDB				
7/25/2019	Antimony	226939.1	<0.005	0.8	0.8092462	101.2	0.8	0.8159776	102.0		0.2	JDB				
7/25/2019	Antimony	227041.1	<0.005	0.8	0.8092462	101.2	0.8	0.7671843	95.9		0.5	JDB				
7/26/2019	Antimony	227040.1	<0.25	0.8	0.8071122	100.9	40	32.643192	81.6		1.8	JDB				
7/25/2019	Arsenic	227041.1	<0.005	0.8	0.8086795	101.1	0.8	0.7758421	97.0		0.0	JDB				
7/25/2019	Arsenic	226939.1	<0.005	0.8	0.8086795	101.1	0.8	0.8086275	101.1		0.1	JDB				
7/26/2019	Arsenic	226915.1	<0.25	0.8	0.7906797	98.8	40	40.306278	100.8		0.8	JDB				
7/26/2019	Arsenic	227040.1	<0.25	0.8	0.7940238	99.3	40	34.433917	86.1		2.3	JDB				
7/25/2019	Barium	226939.1	<0.001	0.2	0.2080557	104.0	0.2	0.209543	104.8		0.1	JDB				
7/25/2019	Barium	227041.1	<0.05	0.2	0.2080557	104.0	0.2	0.1829767	91.5		0.4	JDB				
7/26/2019	Barium	227040.1	<2.5	0.2	0.2112650	105.6	500	543.5715	108.7		7.2	JDB				
7/25/2019	Beryllium	226939.1	<0.001	0.2	0.2122779	106.1	0.2	0.2142832	107.1		0.3	JDB				
7/25/2019	Beryllium	227041.1	<0.001	0.2	0.2122779	106.1	0.2	0.1992329	99.6		0.4	JDB				
7/26/2019	Beryllium	227040.1	<0.05	0.2	0.2131235	106.6	10	9.40679	94.1		0.2	JDB				
7/25/2019	Boron	226939.1	<0.01	0.3	0.2995651	99.9	0.3	0.2984183	99.5		0.7	JDB				
7/25/2019	Boron	227041.1	<0.5	0.3	0.2995651	99.9	0.3	0.2855333	95.2		0.5	JDB				
7/25/2019	Cadmium	227041.1	<0.001	0.2	0.2069934	103.5	0.2	0.1836838	91.8		0.6	JDB				
7/25/2019	Cadmium	226939.1	<0.001	0.2	0.2069934	103.5	0.2	0.2061243	103.1		0.5	JDB				
7/26/2019	Cadmium	226915.1	<0.05	0.2	0.1973571	98.7	10	10.058007	100.6		1.8	JDB				
7/26/2019	Cadmium	227040.1	<0.05	0.2	0.2013293	100.7	10	8.0453767	80.5		1.6	JDB				
7/25/2019	Calcium	226939.1	<0.01	1	1.0087505	100.9	1	1.0243667	102.4		0.9	JDB				
7/26/2019	Calcium	227040.1	<25	1	0.8616568	86.2	50	113.63333	227.3		0.8	JDB				
7/25/2019	Chromium	226939.1	<0.001	0.4	0.4116387	102.9	0.4	0.4125529	103.1		0.4	JDB				
7/25/2019	Chromium	227041.1	<0.001	0.4	0.4116387	102.9	0.4	0.3867339	96.7		0.3	JDB				
7/26/2019	Chromium	227040.1	<0.05	0.4	0.40798	102.0	20	17.692233	88.5		1.6	JDB				
7/26/2019	Chromium	226915.1	<0.05	0.4	0.4059509	101.5	20	20.758823	103.8		0.8	JDB				
7/25/2019	Cobalt	227041.1	< 0.005	0.2	0.2043482	102.2	0.2	0.1839347	92.0	1	0.4	JDB				
7/25/2019	Cobalt	226939.1	< 0.005	0.2	0.2043482	102.2	0.2	0.2054714	102.7		0.4	JDB				
7/26/2019	Cobalt	227040.1	<0.05	0.2	0.2032547	101.6	10	7.7614833	77.6		1.8	JDB				
7/25/2019	Copper	227041.1	< 0.001	0.3	0.3066399	102.2	0.3	0.2963301	98.8		0.1	JDB				

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 13 of 15

				-
	4	=	-	
in the second		-		
				1 (16

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

							Fax: (318) 673-3960							
Report I Date Rec	D : 40143 :eived: 07/18/2019	Contact	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721				Ac	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
7/25/2019	Copper	226939.1	< 0.001	0.3	0.3066399	102.2	0.3	0.3109092	103.6		0.1	JDB		
	Copper	227040.1	< 0.05	0.3	0.3124104	104.1	15	15.003017	100.0		1.9	JDB		
	Iron	226939.1	< 0.01	3	3.1158893	103.9	3	3.1231158	104.1		1.0	JDB		
7/25/2019	Iron	227041.1	<0.5	3	3.1158893	103.9	150	159.28837	106.2		0.8	JDB		
7/26/2019	Iron	227040.1	<12.5	3	3.0861005	102.9					3.1	JDB		
7/25/2019	Lead	227041.1	< 0.005	1	1.0430644	104.3	1	0.9320653	93.2		0.6	JDB		
7/25/2019	Lead	226939.1	< 0.005	1	1.0430644	104.3	1	1.0416574	104.2		0.4	JDB		
7/26/2019	Lead	226915.1	<0.25	1	1.0147827	101.5	50	51.881956	103.8		1.4	JDB		
7/26/2019	Lead	227040.1	<0.25	1	1.0194305	101.9	50	41.227533	82.5		1.1	JDB		
7/25/2019	Lithium	227041.1	<0.001	0.2	0.2119096	106.0	0.2	0.2353987	117.7		0.1	JDB		
7/25/2019	Lithium	226939.1	<0.001	0.2	0.2119096	106.0	0.2	0.2163799	108.2		0.4	JDB		
7/26/2019	Lithium	227040.1	<0.05	0.2	0.211291	105.6	10	11.698417	117.0		2.8	JDB		
7/25/2019	Magnesium	226939.1	<0.01	2	2.0868175	104.3	2	2.0877567	104.4		0.2	JDB		
7/25/2019	Magnesium	227041.1	<0.5	2	2.0868175	104.3	2	1.9791333	99.0		0.6	JDB		
7/26/2019	Magnesium	227040.1	<25	2	2.0570549	102.9	100	76.916667	76.9		1.4	JDB		
7/25/2019	Manganese	226939.1	<0.001	0.2	0.2072869	103.6	0.2	0.2077536	103.9		0.2	JDB		
7/25/2019	Manganese	227041.1	<0.001	0.2	0.2072869	103.6	0.2	0.16684	83.4		0.7	JDB		
7/26/2019	Manganese	227040.1	<2.5	0.2	0.2066368	103.3	500	572.398	114.5		1.1	JDB		
7/24/2019	Mercury	227041.1	< 0.00002	0.001	0.00097	97.0	0.2	0.16373	81.9		7.0	LNM		
7/24/2019	Mercury	227040.1	<0.00002	0.001	0.00097	97.0	0.04	0.0496	124.0		4.4	LNM		
7/30/2019	Mercury	227042.1	<0.005	0.001	0.0009	90.0	0.2	0.156162	78.1		4.0	LNM		
7/25/2019	Molybdenum	227041.1	<0.005	0.2	0.2067657	103.4	0.2	0.197727	98.9		0.5	JDB		
7/25/2019	Molybdenum	226939.1	<0.005	0.2	0.2067657	103.4	0.2	0.2076129	103.8		0.4	JDB		
7/26/2019	Molybdenum	227040.1	<0.05	0.2	0.2073308	103.7	10	9.2486833	92.5		0.4	JDB		
7/25/2019	Nickel	227041.1	<0.025	0.5	0.5192594	103.9	0.5	0.46183	92.4		0.6	JDB		
7/25/2019	Nickel	226939.1	<0.025	0.5	0.5192594	103.9	0.5	0.5209379	104.2		0.6	JDB		
7/26/2019	Nickel	227040.1	<0.05	0.5	0.5228273	104.6	25	19.992767	80.0		1.9	JDB		
7/25/2019	Potassium	227041.1	<0.01	10	9.3692109	93.7	10	11.11754	111.2		0.3	JDB		
7/25/2019	Potassium	226939.1	<0.01	10	9.3692109	93.7	10	9.4631223	94.6		0.2	JDB		
7/26/2019	Potassium	227040.1	<25	10	9.1397018	91.4	500	428.035	85.6		2.9	JDB		
7/25/2019	Selenium	226939.1	<0.005	2	1.9998495	100.0	2	1.9816300	99.1		0.8	JDB		
7/25/2019	Selenium	227041.1	<0.005	2	1.9998495	100.0	2	1.991203	99.6		0.7	JDB		
	Selenium	227040.1	<0.25	2	1.9551138	97.8	100	89.733067	89.7		3.0	JDB		
7/25/2019	Silver	227041.1	<0.001	0.075	0.0712930	95.1	0.075	0.0708639	94.5		0.2	JDB		
7/25/2019	Silver	226939.1	<0.001	0.075	0.0712930	95.1	0.075	0.0714285	95.2		0.1	JDB		
7/26/2019	Silver	227040.1	<0.05	0.075	0.0712215	95.0	3.75	3.6188628	96.5		0.5	JDB		

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 14 of 15

A			
	H	-	
And a state	-		-

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

			~	indiyon	s Kepoi		Fax: (316) 073-3960					
Report ID : 40143 Company: SEP - Flint Creek (T Date Received: 07/18/2019 Contact: Terry Wehling							Ad			llen Avenue LA 71101		
		Phone:	(318) 6	73-2721				Fax: (3 ⁻	18) 673-39	960		
7/25/2019	Sodium	227041.1	<0.5	3	3.1384831	104.6	3	2.3746333	79.2		0.0	JDE
7/25/2019	Sodium	226939.1	<0.01	3	3.1384831	104.6	3	2.4693667	82.3		0.1	JDE
7/26/2019	Sodium	227040.1	<25	3	3.1256605	104.2	150	120.525	80.4		1.9	JDE
7/25/2019	Strontium	226939.1	<0.001	0.2	0.2059899	103.0	0.2	0.2081687	104.1		0.4	JDE
7/26/2019	Strontium	227040.1	<2.5	0.2	0.2078256	103.9	500	577.76733	115.6		17.9	JDE
7/25/2019	Thallium	227041.1	<0.005	0.4	0.4152040	103.8	0.4	0.3682771	92.1		1.2	JDE
7/25/2019	Thallium	226939.1	<0.005	0.4	0.4152040	103.8	0.4	0.4171124	104.3		0.0	JDE
7/26/2019	Thallium	227040.1	<0.25	0.4	0.4155052	103.9	20	15.947380	79.7		1.2	JDE
7/25/2019	Tin	226939.1	<0.005	0.7	0.6995446	99.9	0.7	0.6930628	99.0		0.2	JDE
7/25/2019	Tin	227041.1	<0.005	0.7	0.6995446	99.9	0.7	0.644164	92.0		0.2	JDE
7/26/2019	Tin	227040.1	<0.2	0.7	0.6896072	98.5	35	28.438362	81.3		0.8	JDE
7/25/2019	Titanium	227041.1	<0.005	0.2	0.2109341	105.5	0.2	0.2098874	104.9		0.2	JDI
7/25/2019	Titanium	226939.1	<0.005	0.2	0.2109341	105.5	0.2	0.2124567	106.2		0.1	JDI
7/26/2019	Titanium	227040.1	<2.5	0.2	0.2121079	106.1					1.6	JD
7/25/2019	Vanadium	226939.1	<0.001	0.3	0.3076519	102.6	0.3	0.3104754	103.5		0.4	JDI
7/25/2019	Vanadium	227041.1	<0.001	0.3	0.3076519	102.6	0.3	0.2997157	99.9		0.6	JD
7/26/2019	Vanadium	227040.1	<0.05	0.3	0.30789	102.6	15	15.291667	101.9		0.0	JDI
7/25/2019	Zinc	226939.1	<0.005	0.2	0.2091679	104.6	0.2	0.2081374	104.1		0.3	JD
7/25/2019	Zinc	227041.1	<0.005	0.2	0.2091679	104.6	0.2	0.1851907	92.6		0.1	JD
7/26/2019	Zinc	227040.1	<0.25	0.2	0.2074233	103.7	10	8.4881167	84.9		0.5	JDE

Code Code Description

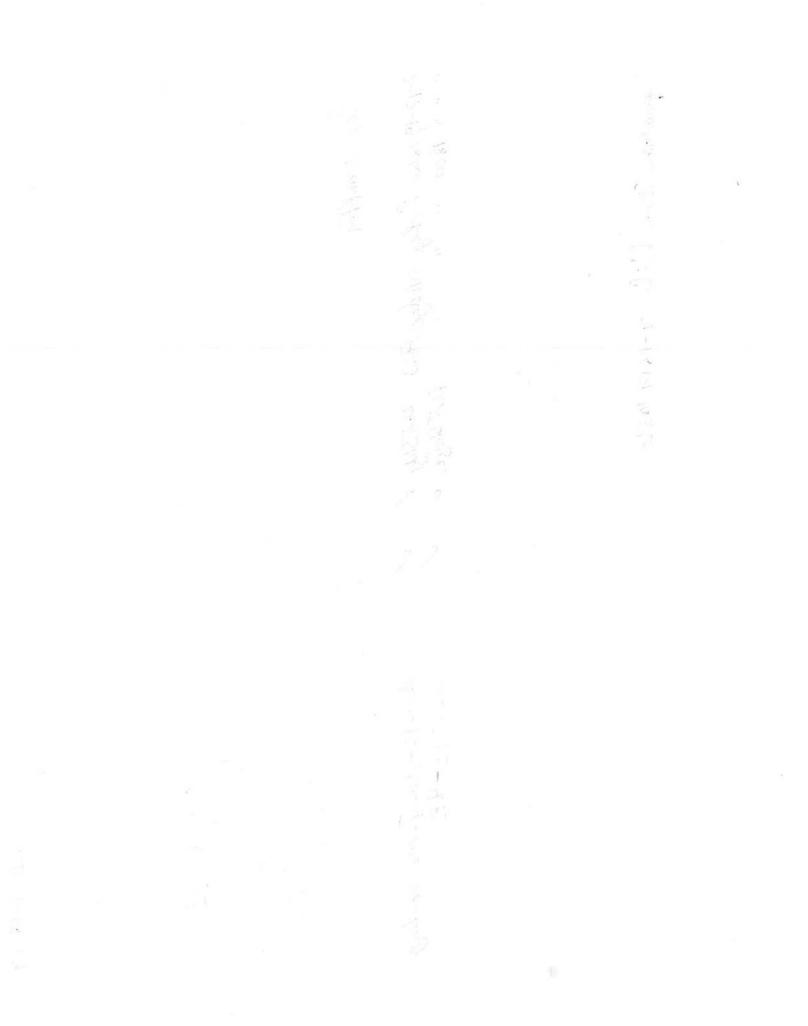
M4 The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery was acceptable.

T5 This parameter is not included in the Laboratory's LELAP Laboratory Scope of Accreditation.

Samhill Quality Assurance Officer

05-Aug-19 Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.


Page 15 of 15

JOB 7-18-19

Figure 1 – Chain of Custody

American Electric Power

Analytical Chemistry	y Services													
					CHA	IN O	FC	US	ΓΟΙ	ΟY		CO	oc 40143	
OPCO/PROJECT NAME H.	W Pirkey	FAX NO.			Г		AN	ALYSIS	REQU	STED		Metals	to analyze for each SPLP, DECONTERA)	
Power Plant						2						LTOTALS	SPLP, DEFUNTEDA)	
		(903) 927-584	0		F		20	(earl				Bica, a	sb, AG, BA, Be, Cd, Cr	
CONTACT PERSON(Please F	Print	PHONE NO.			Į,	Sr.	11				Co, Pb	Li, Hg, MU, SC, TE		
Ron Franklin, Ran Rountree, Ben Ho		(903) 927-5889				-	richa K	zedwate				Co, Pb, Li, Hg, Mu, Sc, Te and any other metals in Colliberation		
SAMPLEHISIGNATURE)	nKlin			C G O R	NUMBE		010	onige	H					
DATE TIME	SAMPLE SOURCE & DES	CRIPTION SA		M A P B	OF	TAINERS	53	Deionis	đ			Lab Number	REMARKS	
7-17-19 1800	Pirken Slodge	FGD 1	DirTSlake	V	`	1	10	- /	\sim	3	2704	0-42	Torry Wehling	
1. 1. 11 1800		Dil	T Sladge				1-	1^{\checkmark}	\lor	2.	270	43-4	5	
	IDATE/TIME	TRECEIVED BY			INQUISHE					DATE/		RECEIVED BY		
RELINQUISHED BY (SIGN)	DATE/TIME	RECEIVED BT				0110				DATE	, inter			
RELINQUISHED BY (SIGN)	DATE/TIME	RECEIVED BY		HEL	INQUISHE	D BY (S	GN)			DATE/	IME	HECEIVED BY	<u> </u>	
RECEIVED FOR LABORATO					COMMEN	rs								
Jonathan ?	Bambill .	7-18-19 10	36											

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX US Mail Walk in Shuttle
Other	Other	
	Tracking #	
Client Terry Wehling	Tracking #	10)
FI		Sample Matrix PCB Oil Water Oil Soil
Received By JOB Received Date 7-18-19	_	
Open Date 7- 18-19		Liquid Other
Container Temp Read		Project I.D
Correction Factor	More ca	malas respired an iso3 VES NO
Corrected Temp		mples received on ice? YES NO
	VEC	
Did container arrive in good condition?	YES	NO
Mag comple documentation received?	VEC	
Was sample documentation received?	YES	NO
Mee decumentation filled out property?		
Was documentation filled out properly?	YES	NO
Mana a success to a last standard success where		
Were samples labeled properly?	YES	NO
		-
Were correct containers used?	YES	NO
	C	<u></u>
Were the pH's of samples appropriately checked?	YES	NO
0		
Total number of sample containers		
	\frown	
Was any corrective action taken?	(NO)	Person Contacted
		Date & Time
Comments		110 - 21 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110

Sample ID	Analysis	pH Preservative Added / Lot #
		/
		/
		/
		· /
		//
		/
		/
	······	
		30.
	7	
1.1		
		//
	5 m	/
		//
		/
		/
		/
		/
	5.2.1	·//
	·	//

.

ATTACHMENT D

January 2022 Verification Sampling Laboratory Analytical Report

AMERICAN ELECTRIC POWER			Wate		Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221			
Job ID: 220297			Custom	er: Pirk	ey Power Stat	ion	Date	e Reported: 02/15/2022
Customer Sample ID: A			Customer De	ו:				
Lab Number: 220297-			Preparation:					
Date Collected: 01/26	ted: 01/26/2022 08:53 Date Received: 01/28/2022 11:30							
Metals								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.040 mg/L	1	0.050	0.009	J1	GES	02/01/2022 15:20	EPA 200.8-1994, Rev. 5.4
Customer Sample ID: A	AD-34				Customer De	scriptior	ו:	
Lab Number: 220297-	-002				Preparation:			
Date Collected: 01/26	/2022 09:35				Date Receive	d: 01/2	8/2022 11:30	
Metals								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Calcium	42.6 mg/L	1	0.05	0.02		GES	02/01/2022 15:25	EPA 200.8-1994, Rev. 5.4
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	1720 mg/L	1	50	20	S 7	SDW	01/31/2022 12:18	SM 2540C-2011

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 220297 Report Verification **Customer: Pirkey Power Station**

Date Reported: 02/15/2022

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlingen

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. S7 - Sample did not achieve constant weight.

> Page 2 of 2 Pirkey Power Station 220297 Form REP-703, Rev. 3, 09/2020

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey Landfill CCR management area and that the requirements of 30 TAC §352.941(c)(2) have been met.

Beth Ann Gross Printed Name of Licensed Professional Engineer

Beth am Geors

Signature

BETH ANN GROSS 79864

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308

Texas Registered Engineering Firm No. F-1182

79864 License Number Texas Licensing State <u>7/18/2022</u> Date

APPENDIX 4- Field Reports

Facility N		Pirk								
Sample b	Ý	M	the Hamilton					a		
Depth-t	o water, feet (TOC)			-		Sample Locat	ion ID		-23	
Monsure	d Tet JP		30.10					(1)	2)	
measure	d Total Depth, feet (TOC)	38-20			Depth to wat	er date	1-26-2	2	
Purge Sta	bilization Data	and the same of the same of the same the				1.0	*			
Time <u><u></u><u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>	Water Depth (from TOC) 30.33 30.34 30.34 30.34 3.24	Flow Rate (mL/min) 220 220 220 220 220 220	pH (S.U.) 4.31 4.16 4.15 4.14 4.13	Spec Cond (µS/cm) 143 116 116 116	Turbidity (N.T.U) 30, 2 78, 4 25 24 25	D.O. (mg/L) 6.23 4.12 3.85 3.6) 3.53	ORP (mV) 214 245 257 254 261	Temperature (°C) 17.24 17.35 17.30 17.26 17.28		
Total vol	ume purged		A sense and sense of the sense	needen met dat uit die gene Land Mag Deutskommendoor (voormaanse ge -	Next Contraction of the Constantion of Coloradory		Contrasting to the second s	AL CHARGE STREET, STRE		
Const				•				5		

Sample appearance	Clear
Sample time	0=3
Sample date	-21-22

· · · ·

AD-36-8.35

Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (Purge Stabilization Data	ГОС)	Pickey Mutt Hami TOC 26.0]	Sample Locat Depth to wat	. · ·	AD- 1-26-2		
Time Water Depth (from TOC) 918 0151 923 0160 933 0172	Flow Rate (mL/min) 120 120 120 120	pH (S.U.) 3,54 3,44 3,45 3,40	Spec Cond (µS/cm) 1680 1640 1640	Turbidity (N.T.U) 23,20 19,8 15.5 15.6	D.O. (mg/L) 5.55 4.94 4.54 4.46	ORP (mV) 550 536 530 528	Temperature (°C) 17. 42 17. 40 17. 41 18. 16		
Total volume purged		•		of new active clone and reactive carbin particular cocce	werden operation with the	Contracting and and an other participants of the second second second second second second second second second		**************************************	

Т.

recar volunic pulgeu	6) BOLAND AND AND AND AND AND AND AND AND AND
Sample appearance	Clark
Sample time	<u>Clent</u>
Sample date	137
	60.61

CCR Groundwater Monitoring Well Inspection Form

Facility: _ Sampling (Contract	P://ce or:	Y Esgle		Sampli Signati	ng Period: ure:	Datt -	
Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Well Properly Labeled	Well Cap Present and Vented*	All wells All wells N= f:11 N= Inteep h-le N= inside label
AN-12	d's	2	5	2	2	U	5	labeled as MW-12
AD-32	S	5	S	5	5	5	5	
(40.31	5	5	5	S	S	5	S	
AD-3c	5	S	S	S	2	2	5	- No lode - access not maintained
B-2	1)		V	V	S	U	2	- No look - GLOSS Not Maintained - No label
ANDE	5	5	5	7	. F	5	5	
AD-17	5	T	5	5	5	5	5	-needs weederting to see pa
An.z	5	5	5	5	5	S	5	
AN-2/	5	7	5	S	S	5	5	-needs new lock
AD:25	5	(5	5	5	5	5	
AD-23	5	ć	5	5	5	2	2	
AD-23	S	S	5	5	S	5	5	

*Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

CCR Groundwater Monitoring Well Inspection Form

Facility: _ Sampling	A (Contract	P PIANP or: <u>EAI</u>	1 PP ilt Envi	Normantal	-	ling Period	: J INTN	- JNG 2022
Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Well Properly Labeled	Well Cap Present and Vented*	Comments
AD-13	5	5	5	5	ч	ч	u	NO WEFP HELF, NO CHANNER FILL, WELLLADFLED MW-13, CAPNUT VINTO
A0-22	5	S	5	5	Ň	YØØ	Ч	NO WEEP HOLF, NO CAMULAN FILL CAP NOT VENTRA, NOT LABELED INSIDE
AD-73	5	5	5	Ч	ч	V	Y	NOT WEED FATTO, NOWER HOLL, NO GRANVLAN FILL, CAPNOT VENTED, NUT LABELED INS NOT LABELED INS IDE ON DUTSIDE, NO WEEP HUE, CAPNOT VENTED, NOCHAMILAN FILL
AD-7R	S	5	- 5	S	Ч	V	4	NOT LABRIED INS IDE ON OUTSIDE, NO WEEP HOLE, CAP NOT VENTED, NOLNAMULAN FILL
AD-2	5	S	5	5	N	И	Ч	NO VERPHOLE, NO COANVIAN FILL, CAD NOT VENTED, LASTIM AS MW-2, NOT LASTING INSIDE
AD-7	5	5	5	5	V	N	Ч	PLS6
HD-4	S U	5 U	BU	И	u v	V	V	NOLOCHWEEDERTERS NO 5000 WAY TO GET TOWFUL
AD-18	5	9	5	V	U U	V	Ч	OVENORION DOWN THEFIN VAY NOT LADRES INSIDE, NO WEEP HOLF, NO FUL
6-3	U	U	V	И	Ч	N	N	QUENORION DOWN TREEIN VAY NOTLADENESINSION, NO WEEP HOLE, NO FILL NOTOCH WULADEL INSIDE OF NO FILL OUTSIDE NO WEEP HOLE NO UN NOC DEN FILL
AD-16	2	S	5	U	u	И	. U	SYER GREWN TIMEL, WELL DYFIDIUM T
Ap-34	\$ 5	ur S	ws	65	Ч	V	V	NOT VALGED INSIDE NO GRANILAR FUL NOWE
AD-36	5	5	5	5	Ч	Y	Ч	RAP NOT VENTIN WOWER THE
40-8	<u>د</u> ۲	5	Ŝ	Ś	N N	V	N	CARENTO AS MW-8 NOWING CADNET VINTO

*Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility Name	ALP PIANCY PP
Sample by	KENNY MCDENALD

Depth to water, feet (TOC)	16,97
Measured Total Depth, feet (TOC)	40,36

AD-02 Sample Location ID

Depth to water date

06/21/22

Purge Sta	bilization Data							·····	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (Ŋ.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0832	17.01	200	7.02	668	16.5	831	475	23.82	
0837	17,13	z 00	4,00	674	1.8	5.00	475	23.16	
0842	17,21	200	3.96	675	0.0	4,47	475	23.04	
0847	7.28	200	3.96	677	0.0	4,42	476	27.9Z	
*									
						ļ			
							•		
								· ·	
					1		1		
			· · · · ·						
					1				
					· ·				
							[1

Total volume purged	
Sample appearance	CIGAN
Sample time	0849
Sample date	0 6 /21/22

Facility Name	Pickai
Sample by	Hitt Hamilton
Depth to water, feet (TOC)	

Sample Location ID AD-3	
Depth to water date	
0-21-2	2

Time	bilization Data Water Depth	Flow Rate	рН	Spor Cand					
1106	(from TOC) 33.51 33.68	(mL/min) 22= 22=	(S.U.) 4,3x	Spec Cond (µS/cm) <u>fZ</u>	Turbidity (N.T.U) 41.3	D.O. (mg/L)	ORP (mV) 274	Temperature (°C)	
116	33.77 33.85	210 220 220	4.40 4.36 4.35	40 40 90	10.8 4.2 4.2	1.04	275	25.50	
								24.51	
	· · · · · · · · · · · · · · · · · · ·								
		1				-			 1
								** *	

Total volume purged	-
Sample appearance	(cal
Sample time	11) 3
Sample date	6.21-27

Facility Name	/	ŀ	HP	PIRANO	ρø		
Sample by				KINM	Nef	Dorofl	

Depth to water, feet (TOC)	15,48				
Measured Total Depth, feet (гос) <u>47, 29</u>				

B0-4

00 Depth to water date

.

121/22	

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1017	15.81	160	4.27	127	228	8.21	329	24.82		
1022	15,86	160	436	113	216	3.17	341	24.63		
1027	15,93	160	4,39	11.0	201	3.06	355	24.57		<u> </u>
1032	15.99	160	4.40	08	204	3.02	357	24.51		ļ
0	• [•							L
-										
										<u> </u>
										ļ
										ļ
										
										<u> </u>
										<u> </u>
										
L						-				<u> </u>
<u> </u>		ļ				· · ·				
<u> </u>					·				<u> </u>	· · ·
										<u> </u>
					<u> </u>	<u> </u>				<u> </u>

Total volume purged		
Sample appearance	Comm	
Sample time	1034	
Sample date	06/21/22	

Facility Name	AEP PINTIMPP
Sample by	KANNT McDonAco

Depth to water, feet (TOC)	17.44
Measured Total Depth, feet (TOC)	41.98

Depth to water date

06/21/22

AQ-7

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	O. (mg/L)	ORP (mV)	Temperature (°C)		
0930	18.02	150	3,55	4 10.	2016	9,74	412	26:83		
0935	18.11	150	3,54	406	5.9	12,80	U72	26.42		
0940	18.19	150	3.SY	397	2,6	2,71	472	26.11		
0945	18,25	150	3,52	399	0.0	7.63	467	25.97		<u> </u>
,										
		· · · · · · · · · · · · · · · · · · ·				<u> </u>	i			
							<u> </u>			
L					· · · · · · · · · · · · · · · · · · ·					
			· · · ·				<u> </u>			
		·		· · · · · · · · · · · · · · · · · · ·						
		ļ		·	<u> </u>					
 				· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
		<u></u>	┼────		<u> </u>					
]			<u> </u>			-				
			<u> </u>				1			

Total volume purged	
Sample appearance	CLONIN
Sample time	0947
Sample date	06/21/22

Facility Name	AEP PIRNOTPP,
Sample by	KITPY M (Dural)

Depth to water, feet (TOC)	10.95
Measured Total Depth, feet (TOC)	33.03

AD-7R

Depth to water date

06/20/22

Purge Sta	bilization Data									
	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1104	11.01	120	4.56	210	4.1	10,21	383	28:27		
1109	11.02	120	4,59	211	0.0	3.21	360	26,97		
1114	11.05	120	4.58	212	0.0	3.19	351	24.52		
1119		120	4.57	213	0.0	3,12	3.46	26.25		
· · · ·										
					· · · · · · · · · · · · · · · · · · ·					
		-						· · · · · ·		
									1	
			· · · ·							

Total volume purged	
Sample appearance	Cum
Sample time	12
Sample date	06/20/22

Facility Name	AEP PIRADOL PP
Sample by	KERRY MIDORALd

Depth to water, feet (TOC)	1357	
Measured Total Depth, feet (TOC)	31,33	

A-0-8

Depth to water date 0 6/2

06/22/22

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1154	13.82	160	5.25	334	26,0	9.45	350	27.41	
1159	13.87	160	5.16	335	13.1	2,47	346	26.46	
1204	3.88	160	5.03	337	6.8	2,72	750	26,28	
1209	13.89	160	5.00	337	4.8	2,19	352	26.19	
1214	13.88	160	5.01	337	5,2	2,17	554	26.13	
				-					
			L						
		•							

Total volume purged	· · · · · · · · · · · · · · · · · · ·
Sample appearance	Clean
Sample time	1216
Sample date	06/22/22

Facility Name	D. I. I
Sample by	Piskery Matt Hemilte
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	21.44

Sample Location ID	ANIN
Depth to water date	6-20-27
	i d

Purge Stabilization Data

Time <u>\$46</u> <u>\$43</u> \$50	Water Depth (from TOC) 21.67 21.78 21.6-	Flow Rate (mL/min) 300 300 300	pH (S.U.) 4.61 4.30 4.25	Spec Cond (μS/cm) 123 57	Turbidity (N.T.U)	D.O. (mg/L) 3.71	ORP (mV) 254 242	Temperature (°C) 27,28 24,73	
				56	0	1.48	300	24,58	

Total volume purged	
Sample appearance	1/236
Sample time	852
Sample date	6.70-27

Facility Name	Ato Pirnon pp
Sample by	KENNY MIDERALD

Depth to water, feet (TOC)	5.01
Measured Total Depth, feet (TOC)	40.70

AD-13

Depth to water date

06/20/22

Purge Sta	abilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0821	15.22	170	5.79	539	556	12,75	-33	24.29	
0826	15,28	170	501	537	321	6.37	-22	24,31	
0831	15.37	170	5.68	536	337.	630	-8	24.02	
0836	15.48	170	5.68	535	306	5.97	-10	24,07	
0841	19.55	170	5.6B	533	298	5.91	-18	24.08	
									-1

Total volume purged	-
Sample appearance	BROWN
Sample time	0843
Sample date	06/20/22

Complete Duplicate 1400

Facility Name	APP PIMEY PP
Sample by	Kanny Ar Deaded

Depth to water, feet (TOC)	17,69
Measured Total Depth, feet (TOC)	

Sample Location ID PD-16

Depth to water date

06/22/22

irge Stal	ilization Data							Temperature	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	(°C)	
1948	18.01	210	4.57	3	35.5	3,87	421	73.87	
1953	18.09	210	4.51	136	28,6	1.97	419	23.91	
958	18.13	210	4,51	136	27.1	2.03	419		
002	18.17	210	4,51	136	26.9	2.11	419	23.97	
					╆╴────────		· ·		
						╂─────		<u> </u>	
			·	·					
					<u> </u>	· · · · · ·			
			<u> </u>		+	+	<u>+</u>		
	·		·	<u> </u>			<u> </u>		
			<u> </u>			_			
		<u> </u>	<u> </u>	<u> </u>		1	1		
				<u> </u>		<u> </u>			
			<u> </u>		+	<u> </u>			
		<u> </u>	<u> </u>	<u> </u>					

Total volume purged	
Sample appearance	Clan
Sample time	10.05
Sample date	06/22/22

Facility Name	Pilley
Sample by	19-07 Hamilta

Depth to water, feet (TOC)	22,61
Measured Total Depth, feet (TOC)	23.05

Depth to water date

6.21.27

190.17

Purge Stabilization Data Water Depth Flow Rate ORP pН Spec Cond Turbidity D.O. Temperature Time (from TOC) (mL/min) (S.U.) $(\mu S/cm)$ (N.T.U) (mg/L) (mV) (°C) 22,76 3,75 14. 1.7 224 .41 1023 360 26 00) 147 23.47 28 22.7 339 7.8 854 00 1,07 0.95 145 72176 3) 4.8 2-0 32 23.27 25 8 145 0,89 1038 22.76 200 216 2201 2 2.2 20

Total volume purged	
Sample appearance	rlear
Sample time	1040
Sample date	6-21-27 1

Facility Name	AFP PIRMM PP
Sample by	KENNY MODERAL

Depth to water, feet (TOC)	7.91
Measured Total Depth, feet (TOC)	28.42

ĤÛ-18 Sample Location ID

Depth to water date

06/21/22

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1108	837	102	4.83	58	SULY	5.28	3/15	25,12	
1113	9,41	102	4.61	51	56,4 18,2	3,79	374	24,68	
			WON 'T	Hold WI	TTM LAUTL				
									·····
					· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
		l							

 $\mathcal{M}^{\mathcal{D}}$

Total volume purged	
Sample appearance	CLAR
Sample time	.0.817.
Sample date	06/22/12

Facility Name	AEP Pinhon PP
Sample by	Kinny NODA400

Depth to water, feet (TOC)	13.02
Measured Total Depth, feet (TO	c) <u>32,70</u>

Sample Location ID 190-22

Depth to water date

06/20/22

Purge Sta	oilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
0936	3,22	164	Ц, 90	766	13,0	8.21	274	27,21		
0941	13.29	164	4.57	778	5.5	3.63	290	26.69		
0946	3.31	164	4,54	787	<u></u>	3.59	277	26.75		
0946 0951	13,36	169	4,51	791	4,6	3.52	274	26.71		
	· · · · · · · · · · · · · · · · · · ·					·		· · · · · · · · · · · · · · · · · · ·		
		·					· · · · ·			
					<u> </u>				······································	
	·				<u> </u>					
						,				
				<u> </u>		<u> </u>				
	· · · · · · · · · · · · · · · · · · ·									
		· ·								
			·							
			· · · · · · · · · · · · · · · · · · ·							
								<u> </u>		l

Total volume purged	
Sample appearance	CLAMA
Sample time	0953
Sample date	06/20/22

Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	Pickey Mitt Hami Bell 38.	3		Sample Locat Depth to wat		AD-2	
Purge Stabilization Data Time Water Depth Flo	ow Rate pH	n Chamman Contrast A (Second Second		n a standard a character e character a constant	Constitution and a constitution of the constitution of the constitution of the constitution of the constitution		2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ow Rate pH nL/min) (S.U.) 220 3.56 220 3.58 220 3.51 220 3.62 220 3.62	Spec Cond (µS/cm) 23 1 44 82 76 77 76	Turbidity (N.T.U) 46.2 85.7 55.7 €36.8 32,2 32,6	D.O. (mg/L) 2,33 1,53 1,53 1,557	ORP (mV) 26- 264 26- 284 287 288	Temperature (°C) 31.16 26.41 26.44 25.64 25.64 25.64 25.65	
							-

Total volume purged	
Sample appearance	White cleady
Sample time	White clendy
Sample date	6-12.22

.

Facility Name	21	
Sample by	Pirkey Mith Itemilton	_
Depth to water, feet (TOC)		Sa
Measured Total Depth, feet (TOC)	9.72	De
	27.38	L

Sample Location ID		AD-25	
epth to water date	6	22-25	
	į		

Purge Stabilization Data

Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond	Turbidity	D.O.	ORP	Temperature
455	9,91	120		(µS/cm)	(N.T.U)	(mg/L)	(mV)	
1000	6,95	120	3.81	867	54.0	1.45	218	(°C)
1005	10,06		3.83	867 834	32.3	0.38		29,00
1010	10,14	120	3.77	849	10.1		.208	28.12
	10,14	120	3.75	856	G G	0.24	209	28.15
			A			0.22	210	28.17
		(a) # A						
Г 								
	· · · ·							
ļ.	- v.							
al A								
								1 1
5								
1 1 1								
\$								
2				,	15			
ት ዘ ፲								
							2	
Latter down a provintion of	i Talah di Kanangang Kanang Tangka (Sanga mangka kanang kanang Kanang Kanang Kanang Kanang Kanang Kanang Kanang							

Deal
(0)7
6.72.25

Facility Na Sample by			ley 10++ Hami]		•	a ²	
Depth to Measured	o water, feet (TOC) d Total Depth, feet (TOC)		8		Sample Loca Depth to wat		AD-26	
Purge Sta	bilization Data	nan gana nga mga nga nga nga nga nga nga nga nga nga n				€ p	ž.		
Time <u>857</u> <u>6-2</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-7</u> <u>1-</u>	Water Depth (from TOC) 15.61 15.76 15.85 15.85 15.79 15.07 16.07 16.15	Flow Rate (mL/min) 300 300 300 300 300 300 300	pH (S.U.) 3.4 3.34 3.24 3.24 3.24 3.25	Spec Cond (µS/cm) 2,050 2,110 2,110 2,110 2,110 2,120 2,120	Turbidity (N.T.U) 51.40 54.30 50.0 28.20 17.5 17.8	D.O. (mg/L) 1,61 2,41 3,27 4,01 4,01 4,42 4,53	ORP (mV) 261 245 245 245 245 244 243	Temperature (°C) 27.41 25.6 24.41 24.82 24.82 24.75 24.75 24.75	

	- N	-	100	24.10	
				· · · ·	
•					
· · · · · · · · · · · · · · · · · · ·					
		. 4 ¹⁰ 2			
				· · · ·	
an any an and the second s		And a second			

I.

Cleaf
129

.

-

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Facility Na Sample b			Mult Hum	. 14 m		Complete			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Measured	d Total Depth, feet (TOC)	22	-52				· · · · ·	
	Time 114c 1145 1150	Water Depth (from TOC) 22.67 22.81 22.6	(mL/min) 300 300 300	(S.U.) 2.37 3.33 3.3c	(μS/cm) 221 224 230	(N.T.U) 87 17.6 5.9	(mg/L) 2.01 0.60 0.43	(mV) 312 324 332	(°C) 31.84 28.55 27.17	

Image: series of the series	ę							. 1
Image: state in the state	de las					S		
Image: state in the state								
Image: state in the state		i.e.			 	2		, i
Image: state in the state								
Image: series of the series	· ·		3		 			
Image: state in the state								
Image: series of the series	<u></u>		 Р. — К.					
Image: state stat	ά.		4		 			
Image: Section of the section of th							4) 2	
Image: Section of the section of th	9 2			1				
Image: Section of the section of th	2							
Image: Section of the section of th	÷		 					
Image: Second se Image: Exact second seco	5				 			
Image: Second se Image: Exact second seco	2				 ÷			
				e.			•	
	7 11				 			1
	9		 			2		
			1					 ·

Total volume purged	
Sample appearance	1 CRI
Sample time	1157
Sample date	6-22-27

Facility Name	Pillev
Sample by	Mutt Hamilin

Depth to water, feet (TOC)	19.29
Measured Total Depth, feet (TOC)	38.51

c 1	1	
Samn	e Locatio	nıD
Junp	C LOCULIO	

Depth to water date

6.21.27

AN-27

Flow Rate (mL/min) 22c 22- 22-	рН (S.U.) 4.27 4.6 4.6	Spec Cond (µS/cm) 1 o 3 1 o 7 1 o S	Turbidity (N.T.U)	D.O. (mg/L) 4, be 1, 76 1, 63	ORP (mV) <u>) ~ ⊱</u> ≥37 ≥ 45	Temperature (°C) 2652 24.30 24.01		
22-	406	107		1.76	237	24.30		
	100							
220	4.00	105	13	1.2.3	295	21.01		
						10		
	-							
				Image: Section of the section of th	Image: series of the series	Image: series of the series	Image: series of the series	Image: series of the series

Total volume purged	
Sample appearance	Clerk
Sample time	956
Sample date	6-21-27

Facility Name	T. (Loy
Sample by	ill still items It i

Depth to water, feet (TOC)	20,48
Measured Total Depth, feet (TOC)	27.15

Depth to water date

6.2.22

AD-3

Irge Sta	bilization Data	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	Water Depth (from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C) 22.07	
11-7	20.96	220	4.15	495	48.8	1.69	296	27:38	
1117	20151	220	4123	518	51.1	0.99	294	26.28	
1117	21,00	220	4.20	520	13.1	0.85	3-3	26.00	
122	20100	225	4.17	152	3.2	0,81	301	25.91	
1127	7)101	720	4.15	522	2.1	UIN	1		
									3

Total volume purged	1
Sample appearance	CCIV
Sample time	1124
Sample date	6-20-24

	71.1.1
Facility Name	$\int \frac{1}{10} \left(\frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{10$
Sample by	Matt Hawilly

Depth to water, feet (TOC)	18.31
Measured Total Depth, feet (TOC)	37130

-		
C-manla	Location	11)
Nample	LUCation	

Depth to water date

6.20.27

AD-31

Time	bilization Data Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm) ≩⇔ &	Turbidity (N.T.U) 79,4	D.O. (mg/L)	ORP (mV) 31/ 336	Temperature (°C) 24(37 20(8)	
021 1031 1031 1031	18:71 18:77 18:77 18:50 18:51	22- 22- 22c 22c 22c	3.45 3.47 3.46 3.45	255 256 255 256	24.6 14.3 7.5 7.5	0,24 0,24 0,25	256	25.57 25.57 25.57	

Total volume purged	
Sample appearance	
Sample time	1043
Sample date	D-Lorec

Facility Name	Pirkey
Sample by	Maxt Homilton

Depth to water, feet (TOC)	9.7.4
Measured Total Depth, feet (TOC)	24.19

 Sample Location ID
 A1
 32

 Depth to water date
 6-20-22

Purge Sta	bilization Data					-			
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
925	11.71	220	3.3]	415	82.4	1.14	125	26.89	
934	11 75	220	3.15	421	51.4	0.48	355	24.93	
936	11.8=	55.0	3.04	410	31.3	0.38	303	24.59	
944	11.87	520	3.05	417	9.9	0.31	386	24.45	
9.49	11.88	220	3.03	413	9.8	0,32	367	24.45	
						20			12

Total volume purged		
Sample appearance	110-1	
Sample time	G 5 (
Sample date	6-20-22	

and the

Facility Name	APP PINAM	ep ,
Sample by	KHNY MU	DARIO

Depth to water, feet (TOC)	14,02
Measured Total Depth, feet (TOC)	32.50

Sample Location ID A 17-33

Depth to water date 06/20

:

06/20/22

1.

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1020	14.09	200	4.60	180	9,5	(mg/L)	323	26.47		
1025	14.10	200	4,44	163	9.3	3,43	297	26.33		
1030	14.11	200	9,39	161	9,3	3.37	294	25.91		
1035	14.13	200	4.37	158	819	3.31	290	25.87		
							ļ			
				·						
			l	-						
							<u> </u>			
			l				· ·	· · · · · · · · · · · · · · · · · · ·		
			-						· · ·	
	<u> </u>		 			_	+			
								<u> </u>		

Total volume purged	
Sample appearance	CLGAN
Sample time	1037 .
Sample date	00/20/22

Facility Name	AFPPINNOY
Sample by	KINAT MEPENAL

Depth to water, feet (TOC)	0.61
Measured Total Depth, feet (TOC)	26.05

AD-34

Depth to water date

06/22/22

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O.	ORP (m)()	Temperature		
1031	1,01	120	3,76	1670	/0, 4	(mg/L) 10184	(mV) 457	(°C) Z 8. 4/		
1636	LID	120	3.70	1650	0.0	2,99	439	27,72		
1041,	<u> </u>	170	3.6.4	1670	3.3	2,87	428	27,49		
1046	1,26	120	3.66	1670	5.4	2,79	423	27.48		
┠───┼										
						· · · · · · · · · · · · · · · · · · ·				
	·		· · · · · · · · · · · · · · · · · · ·							
-										

Total volume purged	
Sample appearance	Clim
Sample time	10.48
Sample date	06/22/22

Dupucatt - 3 1400

Facility Name	ALP PINHOS PP
Sample by	Konry McDonald

Depth to water, feet (TOC)	7,71
Measured Total Depth, feet (TOC)	17.10

Sample Location ID AD-36	

Depth to water date

06/22/22

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1113	7,83	146	4,63	63	62,7	2,87	354	29.71	
1118	7,85	146	4,53	64	24,1	1.87	323	29.64	
1123	7.89	146	4.55	64	11.4	1.42	350	29.63	
1128	7.89	146	4,58	64	10.9	1.37	349	29.72	
1133	7.92	146	4,58	63	11.2	1.32	347	29.78	

Total volume purged	
Sample appearance	cum
Sample time	1135
Sample date	66/22/72

Piviley
14-14 Hamiltin

Depth to water, feet (TOC)	24.40
Measured Total Depth, feet (TOC)	51.44

13.2

Depth to water date

6-21 -22

Purge Sta	Purge Stabilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
mile	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
\$23	24.71	300	4.64	106	7.5	5-81	275	25.44	
828	24.78	300	4.52	103	0	4151	251	22.51	
\$33	24.83	300	4.66	izi	0	1.13	Th	72.27	
\$38	24,90	3-0	4.68	125	0	1.07	158	22,15	
				1. 17					
								÷	

Total volume purged		
Sample appearance	ole v	
Sample time	840	
Sample date	6-21-17	

Duplicute

Facility Name	APPIMONPP
Sample by	KINNY MIDERALD

Depth to water, feet (TOC)	16.24
Measured Total Depth, feet (TOC)	37,49

Depth to water date

06/21/22

B-3

Purge Sta	bilization Data						·		
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1142 1147	17.13	106	4.84 4.88	246 248	35.2 718	8:31 2:75	<u>414</u> 407	23.34 23.73	
		· · · · · · · · · · · · · · · · · · ·							
	····			WON'T Ite	d watm	LFIFL			

Total volume purged	
Sample appearance	Cllork
Sample time	.0851.
Sample date	06/22/22

Facility N Sample b	νy	P) P	1/Key later Hami	16	-	Sample Locat				
Depth t	o water, feet (TOC)					oumple Local	ION ID	EBAP		
Measure	d Total Depth, feet (ΤΟC)	. —]	Depth to wat				
	2 L					Depth to Wat	er date	6-22-22		
Purge Sta	bilization Data					2057		<u>.</u>		
Time	Water Depth	Flow Rate	рH	Spec Cond	Turbidity	Anno Anno ann ann an Anno Anno Anno Anno	CAR PROVIDE THE COMPLEX CONTRACTOR	- The set		
1210	(from TOC)	(mL/min)	(S.U.) 5.02	(μS/cm) 4,46e	(N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
					246	7.51	176	27.31		
2		4 K K								
	1			-				· · · · · · · · · · · · · · · · · · ·		
						· ·	,	2 s 		
		i				_				,
			4					••		
	ume purged	and design of the design of th			CONCERNMENT OF THE TRANSPORT OF THE TRANSPORT				40	

1

relative pulgeu	
Sample appearance	2
Sample time	Clandy 171
Sample date	1210
	b CC CC

Facility Name	PIRTION PP
Sample by	KENNY M (DENAID

Depth to water, feet (TOC)	33,46
Measured Total Depth, feet (TOC)	

Sample Location ID AP-3

Depth to water date 0

Purge Sta	abilization Data									
Time	, Water Depth (from TOC) -	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1033	33,91	200	4.88	136	31,3	2.38	306	24.91		
1038	33.96	200	4,71	110	8.4	1.04	298	24.86	· · · ·	
1043	34,00	200	4.68	108	ğ ,2	0,98	289	24.83		
1048	34,03	200	4.66	107	8,6	0,98	287	24.80		
18										i
										i
							· · · ·			
			-							
			-							
			1							
			· ·							
•				-						
										i

Total volume purged		
Sample appearance	Cienn	
Sample time	1050	
Sample date	08/30/22	

Facility Name	PIRKA PP
Sample by	KEMNY M DONALd

.

Depth to water, feet (TOC)	30,29
Measured Total Depth, feet (TC	DC) 38.20

Sample Location ID AD-23

Depth to water date 08/

Purge Sta	abilization Data							· · · · · · · · · · · · · · · · · · ·	
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC) -	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1946	30.61	200	4.01	80	32,6	2.87	327	24,64	
0951	30.61	200	3,97	78	24.5	1.42	331	24.51	
6956	30,62	200	3,92	78	24.5	1.47	338	24.44	
1001	30.61	200	3.91	81	24,3	1139	341	24.43	
1006	30,62	200	3.89	80	241	1.36	342	24.40	
				_					
			•						
							÷.,		
					-				
			•						
					· · · · · · · · · · · · · · · · · · ·				
14 									
							1		

Total volume purged	
Sample appearance	CLGAN
Sample time	1008
Sample date	08/30/22

Facility Name	PIRMM PP
Sample by	KENNY MCDONALD

Depth to water, feet (TOC)	0.77	
Measured Total Depth, feet (TOC)	26.05	

S	ample Location ID	HD-34	

Depth to water date

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
0819	0,92	118	4.25	1820	16.7	3,17	386	26,31	· · · · · · · · · · · · · · · · · · ·	
0824	0.97	118	4.05	1820	2,4	2:79	381	25.91		
0829	1,03	118	4.03	1820	1.8	2.77	378	25.90		
0834	1,12	118	4.01	1810	0,0	2:76	378	25.89		
· · · ·								· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·							 		
	····-		-							
					·		·		·	
					· · · · · · · · ·					
										
			•							
· · ·										

Total volume purged	
Sample appearance	CLOGR
Sample time	0836
Sample date	08/30/22

Facility Name	PIRAM PP
Sample by	Konny millionaid

Depth to water, feet (TOC)	7.85
Measured Total Depth, feet (TOC)	17.10

Sample Location ID	K-0-7	1
Sample Location ID	110-5	V

Depth to water date

Purge Sta	bilization Data					<u></u>			
Time	Water Depth (from TOC) -	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0848	8.01	150	4.98	125	38,6	2,17	353	26.21	
0853	8.03	150	Sill	74	10.3	1.42	353	26.17	
0859	8.06	150	4.97	71	9.7	1.38	350	25,93	
0903	8.06	150	4,93	68	9,2	1,35	346	25.88	
				·					
 									
ļ		· · · · ·							
ļ									
			·						
			· · ·						
`									
									İ

Total volume purged	
Sample appearance	CLAN
Sample time	0905
Sample date	08/30/22

CCR Groundwater Monitoring Well Inspection Form

Facility:	Ī	P;1)Ley			Sampling Perio	od:N	v 20.	22
Sampling	g Contrac	ctor:	Engk		Signature:	Jan.	v 20.	
Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
AD-26	S	51	5	5	_5	5	S	
AD-25	5	5	5	5	5	5	5	
AD-23	5	5	5	5	5	2	5	at a
AD-27	5	5	5	5	5	S	5	
AD-32	5	5	5	5	5	ک	5	
AD-31	5	5	5	5	5	5	5	
ADIZ	5	S	5	S	5	5	5	
B-2	\$U	U	V	5	5	()	S	-no label -ne lack
AD-25	5	S	S	5	5	5	5	
AD-30	5	S	S	5	5	5	5	
AD-17	5	5	5	5	5	5	5	
AD-3	5	5	5	5	5	5	5	

Instructions: Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

CCR Groundwater Monitoring Well Inspection Form

Facility:		PIRMM P	P		Sampling Perio		mBIA 20	22
Sampling	g Contrac	tor:	Acif		Signature:	1xt	n	
Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
Ap-34	V	V	V	V		V	V	HINGE BRANEN
AP-36	\checkmark	V	\checkmark	\checkmark	V	V	V	
AD-8	V	V		\checkmark	V	\checkmark	~	
AD-16	\checkmark		\checkmark	\checkmark	\checkmark	V	\checkmark	NEEDS NEW LUCK
AD-22	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	
AD-13	\sim	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
A0-7R	\checkmark	\sim	\checkmark	\checkmark	\checkmark		\checkmark	NOLABEL
Ab-2	V	\checkmark	\checkmark	\checkmark	\checkmark	V	V	
AD-33	V	\checkmark	./	\checkmark	\checkmark	V	V	
B-3					\checkmark		\checkmark	NO ICE M NOT LASPLUM
AD-18		\checkmark	\checkmark			\checkmark	V	NEEPS MOWING + BRUSHCEMANNO
AD-7	\checkmark	\checkmark	\checkmark	\sim	\checkmark	\checkmark	\checkmark	

Instructions: Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

CCR Groundwater Monitoring Well Inspection Form

Facility:PIRMM Sampling Contractor:FAGLE					Sampling Period: Nov(-mbin 2022 Signature:				
Sampling	g Contrac	tor: <u>-</u>	61 6		Signature:	a	ANI		
Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments	
AD-4					\checkmark	\checkmark	\checkmark	NEEDS WEEDERAAMS	

Instructions: Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	AGP PIRMOT PP
Sample by	KINNY Mi Ponnid

Depth to water, feet (TOC)	16,52	
Measured Total Depth, feet (TOC)	40.36	

Sample Location ID AD-2

Depth to water date

11/15/22

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0948	16.71	210	3.97	581	2.4	3.97	280	15,52	
0953	16:76	210	3,96,	592	1.8	2.54	276	16.28	
0958	16,83	210	3,96	594	1.7	2.46	276	16:39	
1003	16.87	210	3,96	595	1.3	2.49	275	16147	
					_				

Total volume purged		
Sample appearance	climm	
Sample time	1005	
Sample date	11/15/22	

Facility Name	
Запре ву	
Depth to water, feet (TOC)	Sample Location ID
Measured Total Depth, feet (TOC)	143
	57.41 Depth to water date 11-16-20
Purge Stabilization Data	
Time Water Depth Flow Rate	
(from TOC) (ml (min)	pH Spec Cond Turketty
1128 34.86 22	(J.J.) (µS/cm) (NTII) (V.T.
1122 34 16 25	316 $3L$ $("C)$
	2.54 144 76 27 (4) 1134
1 x12	Fail 98 15 0.76 141 8.33
	5.14 141 6.4 0.28 186 15.68
	0.28 186 18.79
Total volume purged	
Sample appearance	
	ar
Sample date	15

1-

6.22

.

.

Facility Name	AGP PINHON PP
Sample by	KIMMY MIDGINIA

Depth to water, feet (TOC)	15,64	
Measured Total Depth, feet (TOC)	47,29	

Sample Location ID AD-4

Depth to water date

11/16/22

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
inne	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
116	15,69	170	4.59	77	13.2	4.82	339	19.86	
1121	15.73	170	4.63	77	14.3	3.31	330	20,65	
1126	15,99	170	4,65	77	15.9	3,27	330	20.71	
113/	16:03	170	4,68	76	Ilaiz	3,22	329	20,74	
								1	

Total volume purged	
Sample appearance	CLEAN
Sample time	133
Sample date	11/16/22

Facility Name	AEPPIRKEY PP
Sample by	KINNY MiDinvaid

Depth to water, feet (TOC)	17,23	
Measured Total Depth, feet (TOC)	41.98	

A0-7

Depth to water date

11/16/22

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate	pH (S.U.)	Spec Cond	Turbidity	D.O.	ORP	Temperature	
0009		(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0822	17.82	160	3.66	424	4.2	3,62	367	16,82	
0853 0858	17,91	160	3.67	424	207	2,09	372	17,46	
0903	17.98	110	3,64	427	3,2	2,03	369	17,51	
0908	18.03	160	3,62	429	5,6	1.97	366	17,57	

Total volume purged	
Sample appearance	Clfan
Sample time	0910
Sample date	11/16/22

RA MS/mSO

Facility Name	AGP FINNES PP
Sample by	KIMMY Mc Ponsid

Depth to water, feet (TOC)	10,75	
Measured Total Depth, feet (TOC)	33,03	

Sample Location ID

AD-7R

Depth to water date

11/15/22

Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	Τ
and the second	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
859	10,80	126	4.92	204	12,9	6121	142	15,62	\square
904	10,81	126	4.89	208	2.4	2,48	151	16:13	\top
909	10,82	126	4.90	208	2.8	2,46	156	16.18	
914	10.85	126	4,90	208	3,1	2,45	161	16.27	1
							1 1		

Total volume purged		
Sample appearance	Clfm	
Sample time	09/6	
Sample date	11/15/22	

Facility Name	AEP PINNEY PP
Sample by	KINNY MEDENALD

Depth to water, feet (TOC)	15,61	
Measured Total Depth, feet (TOC)	31.33	

AD-8

Depth to water date

11/14/22

Purge Sta	bilization Data							a for the state of the first state of the st	
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0756	15.63	168	4,43	310	8.2	3.84	322	19.07	
0955	15.64.	168	4.44	312	7,6	2.13	331	19.19	
1000	15,64	168	4.43	314	7.4	2.09	333	19,22	
1005	15,66	168	4.46	323	6.9	2.14	333	19.26	

Total volume purged		
Sample appearance	(lman	
Sample time	100.7	
Sample date	1/14/22	

Facility Name	. [0.							
Sample by			11201						
Depth to water, f Measured Total De	feet (TOC)		Yest Hom. 18.53			Sample Locat	1	RD-12	
	epin, feet (1	OC)		57-0		Depth to wat	er date	11-13-22	
Purge Stabilization	n Data		a na an			н 14 м			
Time Water 1-36 18 1-41 16 1-41 16 1-41 20 1-51 20	r Depth n TOC) (G S (S 7 (2) (S 7 (2) (3) (3)	Flow Rate (mL/min) 300 300 300 300	pH (S.U.) 4.38 4.56 4.66 4.71 4.73	Spec Cond (µS/cm) 777 67 66	Turbidity (N.T.U) 12 33 & 30.1 30.0	D.O. (mg/L) 2.44 1.88 1.83 1.82 1.80	ORP (mV) 72 325 223 318 220	Temperature (°C) (7.14 14.55 14.25 14.29	
								••• •	
		and the same of							
Total volume purg	ed				namen der Celonationen nicht die Geschland in Dogen Cabertion		TENNING COMPANY OF THE OWNER COMPANY		

i otal volume pulged	
Sample appearance	(7) e (1)
Sample time	
Sample date	1050

1 2

ms/nsd

Facility Name	APP PIRKEMPP
Sample by	Ktnny MiDenvald

Depth to water, feet (TOC)	14.83	
Measured Total Depth, feet (TOC)	40.70	

AD-13

Depth to water date

11/15/22

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0804	15.01	180	5.65	400	126	8,21	224	17,21	
0809	15,10	180	5,83	400	88.2	4,63	140	18.06	
0814	15,21	180	5.81	399	8614	4,59	131	18,32	
0819	15.33	180	5.81	398	85.1	4.54	124	18.51	
					1				

Total volume purged		
Sample appearance	SUGHTLY TUNDID	
Sample time	0821	
Sample date	11/15/22	

DUPLICATE-2 WG + MITTALS ONLY 1400

Facility Name	PINKING PP
Sample by	KIMMY M(Plan. 0

Depth to water, feet (TOC)	18,40	2
Measured Total Depth, feet (TOC)	38.24	

AD-16

Depth to water date

11/14/22

Purge Sta	abilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1038	18,62	200	4,26	132	21,7	2,87	3/3	18,14	
1043	18,68	200	4,31	132	19.9	1,94	321	18.71	
1048	18.71	200	4,33	132	19.7	1.94	324	19.02	
1053	18,73	200	4,33	124	18,8	1,90	331	19.13	
						1. (

Total volume purged		
Sample appearance	Clown	
Sample time	1055	
Sample date	1/14/22	

Facility Na	ame									
Sample by	/	1	illery				2			
		<u> </u>	yett It.	emiltin		Sample Loca		10 a o		
Depth to	water, feet (TOC)		27.110		é	Comple Loca		AD-17	1	1
Measured	Total Depth, feet (TOC)	23.48			Depth to wat	tor data	1 1 7		
			33	s.ot		- open to war		11-16-22	2	
Purge Sta	bilization Data	Construction of the same contain an annual to the Charles and an a				8 K				
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity	D.O.	ORP	Temperature		
1070	23:59	200	4.81	154	(N.T.U)	(mg/L)	(mV)	~ (°C)		
1036	23.60	200	4.76	153	42.7	1.60	786	. 17.63		
1041	23.11	- 260	4.66	156	43,1	0.77	.783	16.51		
1-46	23.67	700	4.bc	160	32.2	0.45	285	15.33		
1051	23.67		4.56	163	218	1.17	1254	16.54		
1056	23.62	- <u>200</u> 1:00	4.95>	165	9.6	1.05	785	15.72		
			4.51	166	6. b	1.01	286	16.75		
5			İ				. 201	. 16.7.1		
	4									
n 1										
ii e							-	<u>ه کر</u> س		
2	2		· · · ·							
<u>.</u>										
5					·					
					ta-					
1										
<u> </u>										
Total volu	me purged			A CHARLEN COMPANY OF CHARLEN CONTRACTOR CONTRACTOR			C. C. STRACT MARKED CO. C. MARKANING COMPANY			
Sample ap	ne purgeo									La constanting of the second s
Sample tir	ne		Glass							
Sample date		058				к 25				

. 1

. *

Facility Name	AEP PIRMM PP				
Sample by	KENNY MiDonnid				

Depth to water, feet (TOC)	8,31
Measured Total Depth, feet (TOC)	28.42

AD-18

Depth to water date

11/15/22

Purge Sta	abilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1201	9,27	110	4.37	55	16.5	3.87	332	15.50	
1206	10,42	110	4.46	52	812	2,19	331	16.97	
				WON'T HOLD	watten l	INT			

Total volume purged		
Sample appearance	clima	
Sample time	013	
Sample date	1//6/22	

Facility Name	AFPPIRMET PP
Sample by	KENNY MI DENVALD

Depth to water, feet (TOC)	13,31	
Measured Total Depth, feet (TOC)	32,70	

Sample Location ID

AD-22

Depth to water date

11/14/22

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
114	13.46	160	4.64	769	10.7	4.21	311	17.45	
1110	17,48	160	4.76	767	5.2	2187	300	17.50	
1124	13,49	160	4.77	768	4.8	2.83	295	17.56	
1129	13,51	160	4.77	770	5.5	2,80	292	17,61	
								1	
						.8a			

٦

Total volume purged		
Sample appearance	Curan	
Sample time	13	
Sample date	11/14/22	

Facility Name Sample by		Pirken 1				e 1		
Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	3-38	-Ze		Sample Loca Depth to wat		AD-23	
Purge Stabilization Data	Kanananan Kananan Kananan Ingerangkan Ingerangkan Ingerangkan Ingerangkan Ingerangkan Ingerangkan Ingerangkan I		Chi Challenna (Chi Tana Anna Anna Anna Anna Anna Anna Anna		•		(
Time Water Depth (from TOC) 1034 30:61 1034 30:61 1044 30.63 1044 30.65 1054 30.65	Flow Rate (mL/min) 22¢ 22¢ 22¢ 22¢ 22¢	pH (S.U.) 4-77 4-32 4-38 4-43 4-43 4-43 4-43 4-44	Spec Cond (µS/cm) 5 151 1-4 87 71 71	Turbidity (N.T.U) 28.8 376 212 204 36 201 204	D.O. (mg/L) 7.15 <u>1.37</u> <u>5.17</u> <u>4.58</u> <u>3.77</u> <u>3.81</u>	ORP (mV) 16- .216 227 231 233	Temperature (°C) 13.75 14.62 14.62 14.80 14.90 15.07	
Total values a sure l				PROVIDENT DECISION DE TRACTECOMO EN 2000 DESCRICTOR			Contractor of the Contractor of the Contractor	
Total volume purged Sample appearance		turbid					4.	

Sample time

. I

 \overline{c}

Facility Name	T								
Sample by		1944	n - i]		a 2			
Depth to water, feet (TOC) Measured Total Depth, feet	TOC)	1.82	Hen. A.]	Sample Locat	ion ID	AD-2 11-14-27	5	
Purge Stabilization Data							i		
Time Water Depth (from TOC) 944 12.cc 944 12.cc 954 12.14 955 12.14 1004 12.23	Flow Rate (mL/min) 120 120 120	pH (S.U.) 4 5 5 7 0 1 4 5 7 4 0 1 7 0 1 0 1 7 0 10 1 7 0 1 0 1 7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Spec Cond (µS/cm) (24 c (20 c (20 c (27 c (27 c (27 c) (Turbidity (N.T.U) 17.6 21.5 37.1 37.8	D.O. (mg/L) 7.04 0.85 0.93 0.93 0.93	ORP (mV) 172 153 151 151 152	Temperature (°C) 11.4(13.67 14.43 14.78 14.87		
<u> </u>		and the part of the second second second second second second second second second second second second second							
Total volume purged					n na 1 Canada ann an An Aonaichtean na An Aonaichtean Na Ann Ann Ann Ann Ann Ann Ann Ann Ann An	A COMPACT OFFICE AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A COMPACTA AND A C			
Sample appearance Sample time	C	lest							

100

11-14-7

.

.

Sample date

Facility Name		-							
Sample by		Pirkey		1					
		Muff. Har	ni Ita.		Sample Loca	tion ID			
Depth to water, feet (TO	C)	11 110			Sumple Loca	lion ID	AD-26		
Measured Total Depth, fe	et (TOC)	16.43]	Depth to water date				
		4	2.74	1	Deptil to wat	erdate	11-14-2	2	1000
Purge Stabilization Data	na da se anno anna ann an tao ann an tao ann an tao ann an tao ann an tao ann an tao ann an tao ann an tao ann		Construction (Construction) and a second s Second second sec Second second s Second second br>Second second sec		N				
Time Water Depth (from TOC) \$41 16.81 \$52 17.22 \$57 17.14 \$657 17.21	Flow Rate (mL/min) 300 300 300 300 300	pH (S.U.) 3 57 3 78 3 67 3 67 3 67 3 67 3 67	Spec Cond (µS/cm) 2,23c 2,23c 2,23c 2,23c 2,23c 2,23c 2,23c	Turbidity (N.T.U) 56.1 31.8 31.1 31.2 31.1	D.O. (mg/L) 17.06 1.87 0.70 0.65	ORP (mV) 346 274 251 203 238	Temperature (°C) 36 4.78 5.23 5.06 5.04		
	антан на ради и славни на на на на на на на на на на на на на	CARGIN DYCHINACOT PAR WARMAN DYC COMPANY		newsparsion and excession participations		the second second second second second second second second second second second second second second second s			
Total volume purged			•	1		Construction (Broadd) Index (pro			
Sample appearance	c	ear		- 			*		
Sample time		909				5			
Sample date	1	1-14-22							
		1		1		×			

. .

Facility Name		7.1.						
Sample by		MLer 1		7				
Depth to water, feet Measured Total Depth	(TOC)	4.14 1.14	4.07		Sample Loca Depth to wat		AD.27	
Purge Stabilization Da Time Water De	pth Flow Rate	рН	Spec Cond			- Of two City Angle City Part of the Street City of the Street		
(from TC (172 24.34 (177 24.44 (137 24,44 (137 24,44	8.3-	(S.U.) 3 73 3.11 3.81	(µS/cm) /55 214 215	Turbidity (N.T.U) 52.1 47.8	D.O. (mg/L) 7.62 3.43	ORP (mV)	Temperature (°C) (3.) (
1137 24.5 1142 24.56 1141 24.60	300	3.07 4.02 4.04	223	23.5	2.26 1.03. 0.87 0.82	3-3 211 287 285	14.48	
		· ·				283	14.55	
							2 . 2) 2	
Total volume purged					, 	K. A. T. T. T. M. C. M.		
Sample appearance		clear						
Sample time Sample date		11-14-27		-	5			

.

. .

-

- C

Facility N Sample b	Facility Name P			ilty -						
Depth t	o water, feet (TOC)					Sample Locat	ion ID	AD-2	0	
Measure	d Total Depth, feet (15.67						¥	
	a Total Depth, feet (TOC)	25	5.59		Depth to wat	er date	nellass		
Purge Sta	bilization Data					1. S.		i		
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond	Turbidity	D.O.	ORP	Tommer i		
826	20.02	220	4.54	(μS/cm)	(N.T.U)	(mg/L)	(mV)	Temperature (°C)		
831 836 841	20.24.	220	4.40	66	22.0	2126	.307	16.53		
846	2-136	220	4.32	60	4.8	2.81.	3-8-	17.82		
					4.4	all 1.52	310	18.16		
					· .					
р. 										
и к ц							-	<u>ب د</u> س		
9 9 9 9										/
5 5 2			· · · · · · · · · · · · · · · · · · ·							
р Ч								· · · ·		
1		and provide a first and the particular constraints and the particular constraints and the particular constraints	STREET CARLON DO MANY MANY COMPANY							
Total volu	ume purged				NORMAL SHOP CALLER AND AN AN AN AN AN AN AN AN AN AN AN AN AN		A COMPANY OF A CONTRACT OF A C	-		
	ppearance		1							

-

Sample appearance	C any
Sample time	CIEIV CHC
Sample date	11-11-22

·- 1

.

Facility Name		0							
Sample by		Filley]					
Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	20.21	7.15		Sample Loca Depth to wat	· · · ·	AD-30		
Purge Stabilization Data		<u></u>	1.15				1 11-16-6	5	
Southantion Data Time Water Depth (from TOC) 414 $2 = .52$ 624 $2 = .52$ 624 $2 = .52$ 624 $2 = .52$ 624 $2 = .52$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$ 634 $2 = .55$	Flow Rate (mL/min) 22c 22c 22c 22c 22c 22c	pH (S.U.) 4.81 4.48 5.03 5.05 5.05	Spec Cond (µS/cm) 447 516 523 526 527 528	Turbidity (N.T.U) 24.7 23.1 22.5 22.5 22.7 11.8 10,7	D.O. (mg/L) 7.36 1.26 1.26 1.27 1.14 1.17	ORP (mV) 256 254 276 265 264	Temperature (°C) 14.08 18.22 14.01 14.72 14.72		
	1	CONTRACTOR OF THE WARMAN PORT ADDRESS OF		THE REPORT OF THE REPORT OF THE REPORT OF					
Total volume purged				1 .		na a ta panala (a senara la Carta da Ca	No. Consecution and the second second second second second second second second second second second second sec		
Sample appearance		cle-r							
Sample time Sample date	11.	946							

- 1

Facility Na	ime		P							
Sample by	/		Pilley]					
Depth to	water, feet (TOC)		Mart	1.2 cmin /44		Sample Locat	ion ID	AD-3		
Measured	Total Depth, feet (TOC)	18.78			Depth to wat				
	16		4	7.32		Deptil to wat	erdate	11-15-2	2	
Purge Sta	bilization Data		an and the second second second second second second second second second second second second second second s			18 a	2			
Time <u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>	Water Depth (from TOC) 14.02 14.02 14.12 14.12 14.13 14.13 14.13	Flow Rate (mL/min) 22- 22- 22- 22- 22- 22- 22-	pH (S.U.) 3.99 4.29 4.26 4.27 4.27 4.27 4.28	Spec Cond (µS/cm) 4 c 7 3 - 7 3 - 7 3 - 2 3 - 7 3 - 2 3 - 2 3 - 2 3 - 2	Turbidity (N.T.U) (2.7 1)1 65.6 57.2 40.6 12.5 13.3	D.O. (mg/L) 3.51 0.46 0.46 0.46 0.46 0.45 0.45	ORP (mV) 345 335 335 332 332	Temperature (°C) 12.13 14.71 17.67 17.67 17.84 17.67 17.67 17.67 17.67		
<u></u>							-			
Total volu Sample ar	me purged opearance									
Sample ti			eil.							
Sample da			12-22		2	10 20				

.

11-15-27

Facility Name	AEP PIRNON PP
Sample by	KINNY MIPENNIC

Depth to water, feet (TOC)	14.94	
Measured Total Depth, feet (TOC)	32,50	

Sample Location ID	A 1 27
Sample Location iD	1711-22

Depth to water date

11/15/22

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1049	15,00	192	3.97	171	5,6	5,12	SIC	18,95	
1054	15,01	192	3.97	166	4.8	3,27	306	18,97	
1059	15,01	192	3,98	164	4.3	3.24	302	18.96	
1/04	15.02	192	3,96	163	4,5	3.20	297	18,95	
		1							
				0					
				5. J. SQ					

Total volume purged		
Sample appearance	CLEMM	
Sample time	1106	
Sample date	11/15/22	

Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	Pilley NGU	Hamilta]	Sample Loca Depth to wat	н., т.	AD-32	
Purge Stabilization Data				Amer Dect and an an an an an an an an an an an an an	March) (construction of protocol of the same		e E
(from TOC) (I 831 11,62 2 836 11,71 2 841 11,71 2 846 11,83 2 851 11,84 2 856 11,84 2	low Rate pH mL/min) (S.U.) 2c 3 2c 3 2c 3 2c 3 2c 3 3 4 2c 3 3 4	Spec Cond (µS/cm) (1 < 6 1 & 7 & 5 9 & 5 0 & 5 0 & 5 & 7 & 5 & 7 & 5 & 7 & 7 & 7 & 7 & 7	Turbidity (N.T.U) 77.3 46.4 34.8 15.5 4.2 208	D.O. (mg/L) $5 \cdot bi$ 0.7i 0.55 0.62 0.62 0.64 0.55	ORP (mV) 4-1 34(37(371 363 357 357	Temperature (°C) 15.//5 17.01 18.16 18.16 18.1- 17.74 17.85 17.62	

-

Sample appearance	
Sample time	Clean Clean
Sample date	11-15-20

Facility Name	AFP PINHEY PP	
Sample by	KEMMY MEDENALD	

Depth to water, feet (TOC)	TUP OF CASING	
Measured Total Depth, feet (TOC)	26.05	

Sample Location ID

AD-34

Depth to water date

11/14/22

1

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0802	0.6	124	3.63	17.50	3,8	3,62	78	14.94	
0807	0.73	124	3,61	1730	611	2,55	98	15.37	
0812	0,88	124	3.59	1720	YIZ	2,54	104	15,40	
0817	0,97	124	3.54	1690	4,5	2,51	106	15.44	
	-								

Total volume purged	
Sample appearance	CLEAN
Sample time	0 81 9
Sample date	11/14/22

Facility Name	PED PIRKIT PP
Sample by	KOWNY MCDONALD

Depth to water, feet (TOC)	7.85
Measured Total Depth, feet (TOC)	17,10

Sample Location ID AD-36

Depth to water date

11/14/22

Purge Sta	abilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0401	7.92	150	4,18	125	41,2	13,21	184	15,39	
0906	7,93	150	4,39	90	16.8	7.48	177	16.54	
0911	7,93	150	4.41	83	10,1	6,13	169	17,61	
0916	7,95	150	4.45	75	7.6	5.52	170	18,20	
0%1	7,95	150	4.45	74	7.8	5.52	168	18124	
0926	7,95	150	4.46	72	7.4	Sisc	168	18,26	
							10		

Total volume purged		
Sample appearance	Clippn	
Sample time	0928	
Sample date	11/14/22	

LAND FILL PUPLICITY 1400

Facility Na	me									
Sample by			ricey		1					
		<u> </u>	it I ton it.			Sample Locat		·· .		
Depth to	water, feet (TOC)		2-12		-	Sumple Loca	tion ID	B-7		
Measured	Total Depth, feet (TOC	27.15		7	Depth to wat				
			51	,44	1	Deptil to wat	er date	11:15-2	2	
Purge Stat	oilization Data	and the second second second second second second second second second second second second second second second	Company of the provided of the state of the		-			i		
n	Water Depth	Eleve D. J.	T				Manufactory of the second second second second second second second second second second second second second s			2
Time	(from TOC)	Flow Rate	рН	Spec Cond	Turbidity			1		
1141	27.58	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	D.O.	ORP	Temperature		T
146	27.66	30.	5.68	113	41.4	(mg/L)	(mV)	(°C)		
1151	27.61		5.87	125	42.0	2.1	266	17.77		
		300	5.89	124	42.2	0.83	. 197	18.54		
					1611	0.5.6	155	18.45		
				4						
								· · · · · · · · · · · · · · · · · · ·		
					1		,		and the second	
							·			
						-		7 A		
	1					-	<u> </u>			
										2
		i								
				2						
				e.						
all-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub			A ROME IN COMMON PERMIT		1					
Cotol wel					COLUMN TO THE REPORT OF THE OWNER OWNER	And a subsection of the subsec	Contraction of the second second second second second second second second second second second second second s			

Total volume purged		
Sample appearance	1 0.4	
Sample time	(101)	
Sample date	11-15-22	
	11713-66	

 \mathbf{x}

Dap-1

023

Facility Name	AEP PIRAM PP
Sample by	KIMMY Mipingid

Depth to water, feet (TOC)	15,83	
Measured Total Depth, feet (TOC)	37,49	

Sample Location ID

8-3

Depth to water date

11/15/22

Purge Sta	bilization Data							n na har i Bran alla da martin de la serie de la materia serie	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1216	16:71	108	4.99	224	11.4	4,11	375	15.82	
1221	17,93	108	5,03	216	611	2,97	314	16.04	
				WOR'T Ito	LO WATER 2	INFL			
					1				

Total volume purged		
Sample appearance	climit	
Sample time	0803	
Sample date	11/16/22	

APPENDIX 5- Analytical Laboratory Reports

AMERICAN ELECTRIC POWER			Wate	er Ana	Ilysis Report			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 220297			Custom	er: Pirk	ey Power Stat	ion	Date	Reported: 02/15/2022
Customer Sample ID: A	AD-23				Customer De	scriptior	ו:	
Lab Number: 220297-	001				Preparation:			
Date Collected: 01/26	/2022 08:53				Date Receive	d: 01/2	8/2022 11:30	
Metals								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.040 mg/L	1	0.050	0.009	J1	GES	02/01/2022 15:20	EPA 200.8-1994, Rev. 5.4
Customer Sample ID: A	AD-34				Customer De	scriptior	ו:	
Lab Number: 220297-	-002				Preparation:			
Date Collected: 01/26	/2022 09:35				Date Receive	d: 01/2	8/2022 11:30	
Metals								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Calcium	42.6 mg/L	1	0.05	0.02		GES	02/01/2022 15:25	EPA 200.8-1994, Rev. 5.4
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	1720 mg/L	1	50	20	S 7	SDW	01/31/2022 12:18	SM 2540C-2011

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 220297 Report Verification **Customer: Pirkey Power Station**

Date Reported: 02/15/2022

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlingen

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. S7 - Sample did not achieve constant weight.

> Page 2 of 2 Pirkey Power Station 220297 Form REP-703, Rev. 3, 09/2020

_
σ
ō.
<u> </u>
C)
ā
×.
n
-
-
ā
<u> </u>
÷.
S CO
Ë.
63
$\mathbf{\nabla}$
line -
0
_
.=
15
\mathbf{U}

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Grovenort Ohio 41125				Ch	ain of	Custoc	Chain of Custody Record	rd (CCR)			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-838-4219)				n	Site 0	Site Contact:			Date:	For Lab Use Only: COC/Order #	
Project Name: Pirkey PP-Landfill Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 6 Ro	Turmarround utine (28 c	Analysis Turnaround Time (in Calendar Days)	lendar Da	vells)	250 mL bottle, pH<2, HNO3	250 mL bottle, pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) L bottles, pH<2, HNO3	22297	
Sampler(s): Matt Hamilton					alaiti				822-8		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix 6	ج ع بې ع Sampler(s) Ini	Boton	muioleO	SOT	8a-226, Ra	Sample Specific Notes	
AD-23	1/26/2022	853	υ	GW	+	×					
AD-34	1/26/2022	935	υ	GW	2		×	×			
					+			2			
					+						
					+						
Preservation lead- 1= re= 2# HC + 3= H2SOd+ 4=HNO3+ 5=NaOH+ 6= Other	ND3- 5=Na	OH: 6= O	her	- E=	F= filter in field	4	4	-	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.									
Special Instructions/QC Requirements & Comments:	Its:										
Relinquished by A. T.	Company:	L		Date/Time:		 Received by: 	py.			Date/Time:	
Relinquished by:	Company:	J.J.		Date/Time:	J M	Received by:	py.			Date/Time	10
Relinquished by:	Company:			Date/Time:	in.	Received	Received in Laboratory by	Allen	2	Date/Time 1/28/22 11/30 MM	
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ord for Coal	Combust	on Residua	I (CCR)	sampling -	Shreveport, I	3ev. 1, 1/10/17	0			

	WASTE SAMPLE RECEIPT FORM (IR#1)
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Putter	Number of Plastic Containers: 3
Opened By MSO	Number of Glass Containers:
	Number of Mercury Containers:
(IR Gun Ser# 210441568, Expir.5/27/20	// N or N/A Initial: A on ice / no ice
Was container in good condition? Y	
\sim	
	N Comments
	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ (24 hr)	or NO ₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out property? (Y)/ I	N Comments
Were samples labeled property? Y	N Comments
Were correct containers used?	N Comments
Was pH checked & Color Coding done	Y N or N/A Initial & Date:
pH paper (circle one): MQuant pH Ca	t 1.09535.0001 [OR] Lab Fat pH Cat # LRS -4801
- Was Add'I Preservative needed? Y	N If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y	N Comments (See Prep Book)
Was the customer contacted? If Y	es: Person Contacted:
Lab ID# 220297 Initia	al & Date & Time :
Logged by Con	nments:
Reviewed by Male	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

٠,

AMERICAN ELECTRIC POWER				er Analysis Re Reissued			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221989			Custom	er: Pirkey Power	Station	Date	e Reported: 12/27/2022
Customer Sample ID: A	D-2			Custome	r Description	า:	
Lab Number: 221989-0	001			Preparat	ion:		
Date Collected: 06/21/	/2022 09:49 EE	т		Date Ree	ceived: 06/2	24/2022 11:56 E	DT
Ion Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Quali	fiers Analyst	Analysis Date	Method
Bromide	0.32 mg/L	2	0.10	0.02	CRJ	07/06/2022 20:44	EPA 300.1 -1997, Rev. 1.0
Chloride	29.7 mg/L	10	0.2	0.1	CRJ	07/06/2022 20:18	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	07/06/2022 20:44	EPA 300.1-1997, Rev. 1.0
Sulfate	259 mg/L	10	2.0	0.3	CRJ	07/06/2022 20:18	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Quali	fiers Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	490 mg/L	1	50	20	SDW	06/27/2022 13:08	SM 2540C-2015
Customer Sample ID: A	D-3			Custome	r Description	ו:	
Lab Number: 221989-0	002			Preparat	ion:		
Date Collected: 06/21/	/2022 12:23 EC	т				24/2022 11:56 E	DT
Ion Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Quali	fiers Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	-	EPA 300.1 -1997, Rev. 1.0
Chloride	5.65 mg/L	2	0.04	0.02	CRJ	07/06/2022 19:53	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.04 mg/L	2	0.06	0.02 J1	CRJ	07/06/2022 19:53	EPA 300.1-1997, Rev. 1.0
Sulfate	21.2 mg/L	2	0.40	0.06	CRJ	07/06/2022 19:53	EPA 300.1-1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Quali	fiers Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	150 mg/L	1	50	20 P1, H2	SDW	06/29/2022 11:00	SM 2540C-2015

AMERICAN ELECTRIC POWER			Wate	er Analysis Repor <mark>Reissued</mark>	t		Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221989			Custom	er: Pirkey Power Sta	tion	Date	Reported: 12/27/2022
Customer Sample ID: A	\D-4			Customer De	escription	ו:	
Lab Number: 221989-	003			Preparation:			
Date Collected: 06/21	/2022 11:34 EC	т		Date Receive	ed: 06/2	24/2022 11:56 E	DT
Ion Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0
Chloride	3.92 mg/L	2	0.04	0.02	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.05 mg/L	2	0.06	0.02 J1	CRJ	07/06/2022 21:36	EPA 300.1-1997, Rev. 1.0
Sulfate	20.5 mg/L	2	0.40	0.06	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	160 mg/L	1	50	20	SDW	06/27/2022 13:15	SM 2540C-2015
Customer Sample ID: A	ND-7			Customer De	escriptior	ו:	
Lab Number: 221989-	004			Preparation:			
Date Collected: 06/21,	/2022 10:47 ED	т		Date Receive	ed: 06/2	24/2022 11:56 E	DT
Ion Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	3.56 mg/L	2	0.10	0.02	CRJ	07/06/2022 22:28	
Chloride	53.1 mg/L	10	0.2	0.1	CRJ	07/06/2022 22:02	
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	07/06/2022 22:28	,
Sulfate	71.1 mg/L	10	2.0	0.3	CRJ	07/06/2022 22:02	
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	290 mg/L	1	50	20	SDW	06/27/2022 13:15	SM 2540C-2015

AMERICAN ELECTRIC POWER			Wate		Ilysis Report ssued			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221989			Custom	er: Pirk	ey Power Stati	ion	Date	Reported: 12/27/2022
Customer Sample ID: AI	0-12				Customer De	scriptior	1:	
Lab Number: 221989-0	05				Preparation:			
Date Collected: 06/20/2	2022 09:52 EC	от			Date Receive	d: 06/2	4/2022 11:56 E	т
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.11 mg/L	2	0.10	0.02		CRJ	07/06/2022 23:19	EPA 300.1 - 1997, Rev. 1.0
Chloride	7.59 mg/L	2	0.04	0.02		CRJ	07/06/2022 23:19	EPA 300.1-1997, Rev. 1.0
Fluoride	0.09 mg/L	2	0.06	0.02		CRJ	07/06/2022 23:19	EPA 300.1-1997, Rev. 1.0
Sulfate	4.81 mg/L	2	0.40	0.06		CRJ	07/06/2022 23:19	EPA 300.1-1997, Rev. 1.0
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20		SDW	06/27/2022 08:30	SM 2540C-2015
Customer Sample ID: AI	0-13				Customer De	scriptior	1:	
Lab Number: 221989-0	06				Preparation:			
Date Collected: 06/20/2	2022 09:43 ED	от			Date Receive	d: 06/2	4/2022 11:56 E	т
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDI	Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.30 mg/L	2	0.10	0.02	- ata qualitora	CRJ	07/07/2022 03:12	
Chloride	54.5 mg/L	- 25	0.5	0.3		CRJ		EPA 300.1-1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02		CRJ		EPA 300.1 -1997, Rev. 1.0
Sulfate	138 mg/L	25	5.0	0.8		CRJ		EPA 300.1 -1997, Rev. 1.0
Wet Chemistry								
-		Dilution	ы	MDI	Data Qualifiana	Analyst	Analysis Data	
Parameter	Result Units	Dilution	RL	WDL	Data Qualifiers	Analyst	Analysis Date	Method
Parameter Alkalinity, as CaCO3	Result Units <5 mg/L	1	20		U1	MGK	06/28/2022 10:03	SM 2320B-2011

AMERICAN ELECTRIC POWER			Wate	er Analysis Repor <mark>Reissued</mark>	t		Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221	
Job ID: 221989			Custom	er: Pirkey Power Stat	tion	Date	Reported: 12/27/2022	
Customer Sample ID: A	D-17			Customer De	escription	ı:		
Lab Number: 221989-	007			Preparation:				
Date Collected: 06/21	/2022 11:40 EC	т		Date Receive	ed: 06/2	24/2022 11:56 E	DT	
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0	
Chloride	30.2 mg/L	2	0.04	0.02	CRJ	07/06/2022 23:45	EPA 300.1-1997, Rev. 1.0	
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0	
Sulfate	5.78 mg/L	2	0.40	0.06	CRJ	07/06/2022 23:45	EPA 300.1-1997, Rev. 1.0	
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011	
TDS, Filterable Residue	90 mg/L	1	50	20	SDW	06/27/2022 13:22	SM 2540C-2015	
Customer Sample ID: A	\D-18			Customer De	escription	ו:		
Lab Number: 221989-	008			Preparation:				
Date Collected: 06/21	/2022 09:17 EC	т		Date Receive	ed: 06/2	4/2022 11:56 E	DT	
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analvst	Analysis Date	Method	
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	07/07/2022 02:20		
Chloride	5.20 mg/L	2	0.04	0.02	CRJ		EPA 300.1 -1997, Rev. 1.0	
Fluoride	<0.02 mg/L	- 2	0.06	0.02 U1	CRJ		EPA 300.1 -1997, Rev. 1.0	
Sulfate	6.47 mg/L	2	0.40	0.06	CRJ		EPA 300.1 -1997, Rev. 1.0	
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011	
TDS, Filterable Residue	110 mg/L	1	50	20	SDW	06/27/2022 13:22	SM 2540C-2015	

AMERICAN ELECTRIC POWER			Wate	er Analysis Rep <mark>Reissued</mark>	ort		Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221989			Custom	er: Pirkey Power S	tation	Date	Reported: 12/27/2022
Customer Sample ID: A	D-22			Customer	Description	ו:	
Lab Number: 221989-	009			Preparatio	on:		
Date Collected: 06/20/	/2022 10:53 EC	т		Date Rece	eived: 06/2	24/2022 11:56 E	DT
Ion Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Qualifi	ers Analyst	Analysis Date	Method
Bromide	0.79 mg/L	2	0.10	0.02	CRJ	07/07/2022 07:57	EPA 300.1 -1997, Rev. 1.0
Chloride	107 mg/L	25	0.5	0.3	CRJ	07/07/2022 05:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.32 mg/L	2	0.06	0.02	CRJ	07/07/2022 07:57	EPA 300.1 -1997, Rev. 1.0
Sulfate	293 mg/L	25	5.0	0.8	CRJ	07/07/2022 05:47	EPA 300.1-1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifi	ers Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	580 mg/L	2	100	40	SDW	06/27/2022 08:48	SM 2540C-2015
Customer Sample ID: A	D-28			Customer	Description	ו:	
Lab Number: 221989-	010			Preparatio	on:		
Date Collected: 06/21,	/2022 10:56 ED	т		Date Rece	eived: 06/2	24/2022 11:56 E	DT
Ion Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Qualifi	ers Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	07/07/2022 04:04	
Chloride	4.36 mg/L	2	0.04	0.02	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.61 mg/L	2	0.06	0.02	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Sulfate	28.0 mg/L	2	0.40	0.06	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifi	ers Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20	SDW	06/27/2022 13:29	SM 2540C-2015

Province 344 Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27 Customer Sample ID: AD-30 Lab Number: 221989-011 Customer Description: Lab Number: 221989-011 Preparation: Date Received: 06/24/2022 11:56 EDT Voltage Volta	AMERICAN			Wate	er Analysis Repor	t		Dolan Chemical Laborato 4001 Bixby Roa Groveport, OH 4312
Customer Sample ID: AD-30 Customer Description: Preparation: Date Collected: 06/20/2022 12:29 EDT Date Received: 06/24/2022 11:56 EDT Date Collected: 06/20/2022 12:29 EDT Date Received: 06/24/2022 11:56 EDT Date Collected: 06/20/2022 12:29 EDT Date Received: 06/24/2022 11:56 EDT Con Chromatography Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method EMONOME On Group Colspan="5">On Chromatography Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Alkialinity, as CaCO3 < mg/L	POWER				Reissued			Phone: 614-836-422 Audinet: 210-422
Preparation:Date Collected: $06/20/2022 12:29$ EDTDate Received: $06/24/2022 11:56$ EDTDate Received: $06/24/2022 11:56$ EDTDate Received: $06/24/2022 11:56$ EDTBomide $0.34 mg/L20.100.02CRJ07/07/2022 04:56EPA 300.1-1997, Rev.Chloride0.66 mg/L20.060.02CRJ07/07/2022 04:56EPA 300.1-1997, Rev.Chloride0.66 mg/L20.060.02CRJ07/07/2022 04:56EPA 300.1-1997, Rev.Wet ChemistryParameterResult Units DilutionRLMUL Data QualifiersAnalystAnalyst Analysis DateMethodAlkalinity, as CaC03< 5 mg/L120 5 UIMGK66/28/2022 10:035M 200.2 - 021Customer Sample ID: AD-31Customer Description:Date Received: 06/28/2022 10:035M 200.1-1997, Rev.ParameterResult UnitsDilutionRLMDLDate Received: 06/28/2022 10:035M 200.22 10:035M 200.22 10:03$	Job ID: 221989			Custome	er: Pirkey Power Stat	tion	Date	Reported: 12/27/202
Date Collected: $06/20/2022 12:29 EDT$ Date Received: $06/24/2022 11:56 EDT$ Ion ChromatographyParameterResult UnitsDilutionRLMDLData QualifiersAnalystAnalysis DateMethodBromide $0.34 mg/L$ 2 0.00 0.02 CRJ $07/07/2022 04:56$ EPA 300.1-1997, Rev.Chloride $26.0 mg/L$ 2 0.04 0.02 CRJ $07/07/2022 04:56$ EPA 300.1-1997, Rev.Floride $26.0 mg/L$ 2 0.06 0.02 CRJ $07/07/2022 04:56$ EPA 300.1-1997, Rev.Sulfate $177 mg/L$ 10 2.0 0.3 CRJ $07/07/2022 04:56$ EPA 300.1-1997, Rev.Wet ChemistryParameterResult UnitsDilutionRLMDLData QualifiersAnalysisAnalysis DateMethodAlkalinity, as CaC03 $< 5 mg/L$ 1205U1MGK $06/28/2022 10:03$ SM 23208-2011TDS, Filterable Residue340 mg/L15020SDW $06/27/2022 09:01$ SM 2540C-2015Customer Sample ID: AD-31Lab Number: 221989-012Date Received: $06/24/2022 11:56 EDT$ Date Received: $06/24/2022 11:56 EDT$ Ion ChromatographyParameterResult UnitsDilutionRLMDLData QualifiersAnalysisDateMethodBromide $0.29 mg/L$ 5 0.15 0.05 CRI <td>Customer Sample ID: AD</td> <td>0-30</td> <td></td> <td></td> <td>Customer De</td> <td>escriptior</td> <td>ו:</td> <td></td>	Customer Sample ID: AD	0-30			Customer De	escriptior	ו:	
In Chromatography Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Analysis Date Method Bromide 0.34 mg/L 2 0.00 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Floride 26.0 mg/L 2 0.04 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Floride 0.06 mg/L 2 0.06 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Sulfate 177 mg/L 10 2.0 0.3 CRJ 07/07/2022 04:30 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Alkalinity, as CaC03 <5 mg/L	Lab Number: 221989-0	11			Preparation:			
Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Analysis Date Bromide 0.34 mg/L 2 0.10 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Chloride 26.0 mg/L 2 0.04 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Fluoride 0.06 mg/L 2 0.06 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Sulfate 177 mg/L 10 2.0 0.3 CRJ 07/07/2022 04:30 EPA 300.1-1997, Rev. Wet Chemistry 10 2.0 0.3 CRJ 07/07/2022 04:30 EPA 300.1-1997, Rev. Watchemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Alkalinity, as CaC03 <5 mg/L	Date Collected: 06/20/2	2022 12:29 EC	т		Date Receive	ed: 06/2	4/2022 11:56 E	DT
Bromide 0.34 mg/L 2 0.10 0.02 CRJ 07/07/2022 04:56 EPA 300.1 1997, Rev. Chloride 26.0 mg/L 2 0.04 0.02 CRJ 07/07/2022 04:56 EPA 300.1 1997, Rev. Fluoride 0.06 mg/L 2 0.06 0.02 CRJ 07/07/2022 04:56 EPA 300.1 1997, Rev. Sulfate 177 mg/L 10 2.0 0.3 CRJ 07/07/2022 04:56 EPA 300.1 1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Alkalinity, as CaC03 <5 mg/L	on Chromatography							
Chloride 26.0 mg/L 2 0.04 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Fluoride 0.06 mg/L 2 0.06 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Sulfate 177 mg/L 10 2.0 0.3 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Alkalinity, as CaC03 <5 mg/L	Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Fluoride 0.06 mg/L 2 0.06 0.02 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Sulfate 177 mg/L 10 2.0 0.3 CRJ 07/07/2022 04:56 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Alkalinity, as CaC03 <5 mg/L	Bromide	0.34 mg/L	2	0.10	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Sulfate 177 mg/L 10 2.0 0.3 CRJ 07/07/2022 04:30 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Atkalinity, as CaC03 <5 mg/L 1 20 5 U1 MGK 06/28/2022 10:03 SM 23208-2011 DS, Filterable Residue 340 mg/L 1 50 20 SDW 06/27/2022 09:01 SM 25406-2015 Customer Sample ID: AD-31 Customer Description: Lab Number: 221989-012 Preparation: Date Collected: 06/20/2022 11:43 EDT Date Received: 06/24/2022 11:56 EDT Ion Chromatography Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Bromide 0.29 mg/L 5 0.25 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Iouride 0.34 mg/L 5 0.15 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev.	Chloride	26.0 mg/L	2	0.04	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Analysis Date Method Alkalinity, as CaC03 <5 mg/L	Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysts Date Method Alkalinity, as CaC03 <5 mg/L	Sulfate	177 mg/L	10	2.0	0.3	CRJ	07/07/2022 04:30	EPA 300.1 -1997, Rev. 1.0
Alkalinity, as CaC03 <5 mg/L	Wet Chemistry							
TDS, Filterable Residue 340 mg/L 1 50 20 SDW 06/27/2022 09:01 SM 2540C-2015 Customer Sample ID: AD-31 E Customer Description: Preparation: Preparation: Date Collected: 06/20/2022 11:43 EDT Date Received: 06/24/2022 11:56 EDT Ion Chromatography Parameter Result Units Dilution RL MDL Data Qualifiers Analysi Analysis Date Method Bromide 0.29 mg/L 5 0.25 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Chloride 23.2 mg/L 5 0.10 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Sulfate 0.14 mg/L 5 0.15 0.05 J1 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Sulfate 89.0 mg/L 10 2.0 0.3 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Atkalinity, as CaC03 <5 mg/L 1 20 5 U1 </td <td>Parameter</td> <td>Result Units</td> <td>Dilution</td> <td>RL</td> <td>MDL Data Qualifiers</td> <td>Analyst</td> <td>Analysis Date</td> <td>Method</td>	Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Customer Sample ID: AD-31 Customer Description: Lab Number: 221989-012 Preparation: Preparation: Date Collected: 06/20/2022 11:43 EDT Date Received: 06/24/2022 11:56 EDT Date Received: 06/24/2022 11:56 EDT Ion Chromatography Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Bromide 0.29 mg/L 5 0.25 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Chloride 23.2 mg/L 5 0.10 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Sulfate 0.14 mg/L 5 0.15 0.05 CRJ 07/07/11/2022 15:51 EPA 300.1-1997, Rev. Sulfate 89.0 mg/L 10 2.0 0.3 CRJ 07/07/12022 06:13 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Alkalinity, as CaC03 <5 mg/L	Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
Preparation:Date Collected: 06/20/2022 11:43 EDTPreparation:Date Received: 06/24/2022 11:56 EDTIon ChromatographyParameterResult UnitsDilutionRLMDLData QualifiersAnalystAnalysis DateMethodBromide0.29mg/L50.250.05CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Chloride23.2mg/L50.150.05CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Fluoride0.14mg/L50.150.05J1CRJ07/07/2022 06:13EPA 300.1-1997, Rev.Sulfate89.0mg/L102.00.3CRJ07/07/2022 06:13EPA 300.1-1997, Rev.Wet ChemistryParameterResult UnitsDilutionRLMDLData QualifiersAnalysis DateMethodMethodAnalystAnalysis DateMethodAnalystAlkalinity, as CaC03<5	DS, Filterable Residue	340 mg/L	1	50	20	SDW	06/27/2022 09:01	SM 2540C-2015
Date Collected: 06/20/2022 11:43 EDTDate Received: 06/24/2022 11:56 EDTIon ChromatographyParameterResultUnitsDilutionRLMDLData QualifiersAnalystAnalysts DateMethodBromide0.29 mg/L50.250.05CRJ07/11/2022 15:51EPA 300.1 -1997, Rev.Chloride23.2 mg/L50.100.05CRJ07/11/2022 15:51EPA 300.1 -1997, Rev.Fluoride0.14 mg/L50.150.05J1CRJ07/11/2022 15:51EPA 300.1 -1997, Rev.Sulfate89.0 mg/L102.00.3CRJ07/07/2022 06:13EPA 300.1 -1997, Rev.Wet ChemistryParameterResultUnitsDilutionRLMDLData QualifiersAnalystAnalysts DateMethodAlkalinity, as CaC03<5 mg/L	Customer Sample ID: AD	0-31			Customer De	escriptior	ו:	
Ion Chromatography Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Bromide 0.29 mg/L 5 0.25 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Chloride 23.2 mg/L 5 0.10 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Fluoride 0.14 mg/L 5 0.15 0.05 J1 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Sulfate 89.0 mg/L 10 2.0 0.3 CRJ 07/07/2022 06:13 EPA 300.1-1997, Rev. Wet Chemistry 10 2.0 0.3 CRJ 07/07/2022 06:13 EPA 300.1-1997, Rev. Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Alkalinity, as CaCO3 <5 mg/L	Lab Number: 221989-0	12			Preparation:			
ParameterResultUnitsDilutionRLMDLData QualifiersAnalystAnalystsDateMethodBromide0.29 mg/L50.250.05CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Chloride23.2 mg/L50.100.05CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Fluoride0.14 mg/L50.150.05 J1CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Sulfate89.0 mg/L102.00.3CRJ07/07/2022 06:13EPA 300.1-1997, Rev.Wet ChemistryParameterResultUnitsDilutionRLMDLData QualifiersAnalystAnalysts DateMethodAlkalinity, as CaC03<5 mg/L	Date Collected: 06/20/2	2022 11:43 EC	т		Date Receive	ed: 06/2	.4/2022 11:56 E	DT
ParameterResultUnitsDilutionRLMDLData QualifiersAnalystAnalystsDateMethodBromide0.29 mg/L50.250.05CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Chloride23.2 mg/L50.100.05CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Fluoride0.14 mg/L50.150.05 J1CRJ07/11/2022 15:51EPA 300.1-1997, Rev.Sulfate89.0 mg/L102.00.3CRJ07/07/2022 06:13EPA 300.1-1997, Rev.Wet ChemistryParameterResultUnitsDilutionRLMDLData QualifiersAnalystAnalysts DateMethodAlkalinity, as CaC03<5 mg/L	on Chromatography							
Chloride 23.2 mg/L 5 0.10 0.05 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Fluoride 0.14 mg/L 5 0.15 0.05 J1 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Sulfate 89.0 mg/L 10 2.0 0.3 CRJ 07/07/2022 06:13 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Alkalinity, as CaC03 <5 mg/L		Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Fluoride 0.14 mg/L 5 0.15 0.05 J1 CRJ 07/11/2022 15:51 EPA 300.1-1997, Rev. Sulfate 89.0 mg/L 10 2.0 0.3 CRJ 07/07/2022 06:13 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Alkalinity, as CaC03 <5 mg/L	3romide	0.29 mg/L	5	0.25	0.05	CRJ	07/11/2022 15:51	EPA 300.1-1997, Rev. 1.0
Sulfate 89.0 mg/L 10 2.0 0.3 CRJ 07/07/2022 06:13 EPA 300.1-1997, Rev. Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Alkalinity, as CaC03 <5 mg/L 1 20 5 U1 MGK 06/28/2022 10:03 SM 2320B-2011	Chloride	23.2 mg/L	5	0.10	0.05	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry Parameter Result Units Dilution RL MDL Data Qualifiers Analysis Date Method Alkalinity, as CaC03 <5 mg/L	Fluoride	0.14 mg/L	5	0.15	0.05 J1	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Alkalinity, as CaCO3 <5 mg/L	Sulfate	89.0 mg/L	10	2.0	0.3	CRJ	07/07/2022 06:13	EPA 300.1 -1997, Rev. 1.0
Alkalinity, as CaCO3 <5 mg/L 1 20 5 U1 MGK 06/28/2022 10:03 SM 2320B-2011	Wet Chemistry							
	Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
	Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue 270 mg/L 1 50 20 SDW 06/27/2022 08:55 SM 2540C-2015	IDS, Filterable Residue	270 mg/L	1	50	20	SDW	06/27/2022 08:55	SM 2540C-2015

Job Comments:

Original report issued 7/29/2022. Report reissued with amended Matrix Spike precision calculations.

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221989 Report Verification **Customer: Pirkey Power Station**

Date Reported: 12/27/2022

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.
- H2 Sample analysis performed past holding time.

6861 CC Sample Specific Notes. For Lab Use Only: COC/Order #: Date/Time: Date/Time: Date: PH<2, HNO3 (six every L bottles, Three Ra-226, Ra-228 10th*) 1 L bottle, Cool, 0-6C TDS, Alkalinity Program: Coal Combustion Residuals (CCR) × × × × × × × × × × × × ÷ E' CI' 204' B^L Chain of Custody Record Field-filter 250 mL bottle, then pH<2, HNO3 Z Dissolved Mercury Received by Received by 250 mL bottle, pH<2, HNO3 Mercury 4 Site Contact: 100 Routine (28 days for Monitoring Wells) sleitini (s)neiqmeS F= filter in field # of --------6/23/22 Analysis Turnaround Time (in Calendar Days) •-------Date/Time: Date/Time: Matrix GW GW βW δ GW GW GW GW δV МQ ω QV Sample Type (C=Comp, G=Grab) ശ G c σ c c O o Ċ Ċ Ċ O Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Six 1L Bottles must be collected for Radium for every 10th sample. 1129 1043 1123 1040 Time 1034 849 947 852 843 817 953 956 Company. 6/21/2022 Sample 6/21/2022 6/21/2022 6/20/2022 6/21/2022 6/20/2022 6/20/2022 6/21/2022 6/20/2022 8/21/2022 6/21/2022 6/20/2022 Date Special Instructions/QC Requirements & Comments: Michael Ohlinger (614-836-4184) Matt Hamilton Kenny McDonald Contacts: Dave Conover (614-836-4219) Dolan Chemical Laboratory (DCL) Project Name: Pirkey PP Semi-Annual CCR Groveport, Ohio 43125 Leslie Fuerschbach Sample Identification 4001 Bixby Road 318-673-2744 AD-12 AD-18 AD-22 AD-13 AD-28 AD-3 AD-4 AD-7 AD-17 AD-30 AD-31 AD-2 Relinquished by: Relinquished by Contact Name: Contact Phone: Sampler(s)

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

3ºPm

0

Date/Time: 122

Received in Jaboratory by

Date/Time

Company:

Relinquished by:

ALT: WATER 8	3 WASTE SAMPLE RECEIPT FORM (IR#1)	
Package Type	PONY UPS FedEX USPS	
Cooler Box Bag Envelope	Other	
Plant/Customer Puney	Number of Plastic Containers: 2	
Opened By MG-K	Number of Glass Containers:	
	Number of Mercury Containers:	100 C 200 C
(IR Gun Ser# 210441568, Expir.5/274	2023) - If No, specify each deviation:	
Was container in good condition?	N Comments	
)/ N Comments	
	L If RUSH, who was notified?	
pH (15 min) Cr ⁺⁶ (pres) N (24 hr)	$O_2 \text{ or } NO_3 (48 \text{ hr})$ ortho-PO ₄ (48 hr) Hg-diss	(pres) (48 hr)
Was COC filled out properly?	N Comments	
Were samples labeled properly?	N Comments	
Were correct containers used?	N Comments	
	ne? (Y)N or N/A Initial & Date: MCK Le	
pH paper (circle one): MQuant pH lot HC90449	Cat 1.09535.0001 [OR] Lab rat pH Cat # LR Lot X000RWDG21	S -4801 V
- Was Add'l Preservative needed? `	Y (N) If Yes: By whom & when: (Se	e Prep Book)
Is sample filtration requested?	(Second Second S	∋e Prep Book)
Was the customer contacted?	If Yes: Person Contacted:	
Lab ID#_221989	Initial & Date & Time :	
Logged by	Comments:	
Reviewed by 190	·	
	······································	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

.

AEP- Dolan Chemical Laboratory

و در معدم مدر

Sample Receipt Form SOP-7102

Page 1 of 1

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

- ➤ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- **R2** Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

statement is true.			
Michael Ohilnger	Minul	Chemist	7/29/22
Name (printed)	Signature	Official Title	Pate

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Alkalinity Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name:	Pirkey PP Semi-Annual CCR
•	e: Michael Ohlinger
LRC Date: 7/29	
	Number: 221989
•	nber(s): QC2206187
r rep batch Nul	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
1	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Alkalinity Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2206187

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):	Part Carlo	
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
<u>S3</u>	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	· · ·
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.⁴
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	<u> </u>	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Alkalinity Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laborato
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Michael Ohlinger
LRC Date: 7/29/22
Laboratory Job Number: 221989
Prep Batch Number(s): QC2206187

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- **R1** Field chain-of-custody documentation
- **R2** Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- **R4** Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- **R5** Test reports/summary forms for blank samples
- **R6** Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- **R10** Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Timothy E. Arnold	Guith & Call	Chemist Principle	7/13/2022
Name (printed)	Signature	Official Title	Date

Ion Chromatography Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Timothy E. Arnold

LRC Date: 7/13/2022

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207051

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	1	Were ail samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soll and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	YES	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
-	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, 1	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, 1	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	1	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

aboratory Name: American Electric Power Dolan Chemical Laboratory	Laboratory
roject Name: Pirkey PP Semi-Annual CCR	
eviewer Name: Timothy E. Arnold	-
RC Date: 7/13/2022	
aboratory Job Number: 221989	

Prep Batch Number(s): QC2207051

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	1	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all Instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S 2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	1	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were Ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S 8	1	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
<u>S12</u>	O _{<i>l</i>} I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	0, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

 Laboratory Name:
 American Electric Power Dolan Chemical Laboratory

 Project Name:
 Pirkey PP Semi-Annual CCR

 Reviewer Name:
 Timothy E. Arnold

 LRC Date:
 7/13/2022

 Laboratory Job Number:
 221989

 Prep Batch Number(s):
 QC2207051

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

- This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- **R2 Sample identification cross-reference**
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- ▶ R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- **R10** Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Michael Ohlinger	Muhul	M.	Chemist	7/29/2	>
Name (printed)	Signature	- V	Official Title	Date	.

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name:	Pirkey PP	Semi-Annual	CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207061 & QC2207063

Item ¹	em ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	No	ER1
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	<u> </u>	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
1	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER2
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 221989

Prep Batch Number(s): _____QC2207061 & QC2207063

Item ¹	em ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
_	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ι	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
\$12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
\$15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:American Electric Power Dolan Chemical LaboratoryProject Name:Pirkey PP Semi-Annual CCRReviewer Name:Michael OhlingerLRC Date:7/29/22Laboratory Job Number:221989Prep Batch Number(s):QC2207061 & QC2207063

Exception Report No.	Description
ER1	Sample analysis performed past holding time for 221989-002.
ER2	The precision between duplicate results was above acceptance limits for the duplicate analyzed on 221989-002

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

AMERICAN ELECTRIC POWER				Reis	lysis Report <mark>sued</mark>			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221990			Custom	er: Pirke	ey Power Stati	on	Date	Reported: 12/27/2022
Customer Sample ID: A	D-8				Customer Des	scriptior	1:	
Lab Number: 221990-0	001				Preparation:			
Date Collected: 06/22/	⁄2022 13:16 El	т			Date Receive	d: 06/2	4/2022 12:07 E	DT
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.80 mg/L	2	0.10	0.02		CRJ	07/08/2022 06:33	EPA 300.1-1997, Rev. 1.0
Chloride	17.0 mg/L	2	0.04	0.02		CRJ	07/08/2022 06:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	2.8 5 mg/L	2	0.06	0.02		CRJ	07/08/2022 06:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	117 mg/L	10	2.0	0.3		CRJ	07/08/2022 06:07	EPA 300.1-1997, Rev. 1.0
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	270 mg/L	1	50	20		SDW	06/27/2022 13:29	SM 2540C-2015
Customer Sample ID: A	D-16				Customer Des	scriptior	1:	
Lab Number: 221990-	002				Preparation:			
Date Collected: 06/22/	⁄2022 11:05 EI	т			Date Receive	d: 06/2	4/2022 12:07 E	DT
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analvst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02		CRJ	07/08/2022 02:40	EPA 300.1 -1997, Rev. 1.0
Chloride	24.7 mg/L	2	0.04	0.02		CRJ	07/08/2022 02:40	
Fluoride	0.10 mg/L	2	0.06	0.02		CRJ	07/08/2022 02:40	
Sulfate	9.58 mg/L	2	0.40	0.06		CRJ		EPA 300.1-1997, Rev. 1.0
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20		SDW	06/27/2022 13:37	SM 2540C-2015

AMERICAN ELECTRIC POWER			Wate	er Analysis Reissuec	-		Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221990			Custom	er: Pirkey Pov	wer Station	Date	Reported: 12/27/2022
Customer Sample ID: A	D-23			Custo	omer Descriptio	on:	
Lab Number: 221990-0	003			Prep	aration:		
Date Collected: 06/22/	2022 12:17 EC	T		Date	Received: 06/	24/2022 12:07 E	DT
lon Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Q	ualifiers Analys	t Analysis Date	Method
Bromide	0.17 mg/L	2	0.10	0.02	CRJ	07/08/2022 03:06	EPA 300.1-1997, Rev. 1.0
Chloride	7.32 mg/L	2	0.04	0.02	CRJ	07/08/2022 03:06	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	07/08/2022 03:06	EPA 300.1 -1997, Rev. 1.0
Sulfate	9.52 mg/L	2	0.40	0.06	CRJ	07/08/2022 03:06	EPA 300.1-1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Q	ualifiers Analys	t Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20	SDW	06/27/2022 13:37	SM 2540C-2015
Customer Sample ID: A	D-27			Custo	omer Descriptio	on:	
Lab Number: 221990-004				Prep	aration:		
Date Collected: 06/22/	2022 12:57 ED	т				24/2022 12:07 E	DT
Ion Chromatography							
Parameter	Result Units	Dilution	RL	MDL Data Q	ualifiers Analys	t Analysis Date	Method
Bromide	0.26 mg/L	2	0.10	0.02	CRJ	07/08/2022 05:41	EPA 300.1 -1997, Rev. 1.0
Chloride	12.5 mg/L	2	0.04	0.02	CRJ	07/08/2022 05:41	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.22 mg/L	2	0.06	0.02	CRJ	07/08/2022 05:41	EPA 300.1-1997, Rev. 1.0
Sulfate	57.2 mg/L	2	0.40	0.06	CRJ	07/08/2022 05:41	EPA 300.1-1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Q	ualifiers Analys	t Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	210 mg/L	1	50	20	SDW	06/27/2022 14:10	SM 2540C-2015

AMERICAN ELECTRIC POWER					Reis	lysis Report ssued			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221990				Custom	er: Pirk	ey Power Stati	on	Date	Reported: 12/27/2022
Customer Sample ID: A	D-34					Customer De	scriptior	1:	
Lab Number: 221990-	005					Preparation:			
Date Collected: 06/22/	/2022 11:4	8 ED	т			Date Receive	d: 06/2	4/2022 12:07 E	DT
Ion Chromatography									
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.12 m	ng/L	5	0.25	0.05	J1	CRJ	07/08/2022 07:51	EPA 300.1 -1997, Rev. 1.0
Chloride	7.38 m	ng∕L	5	0.10	0.05		CRJ	07/08/2022 07:51	EPA 300.1 -1997, Rev. 1.0
Fluoride	1.20 m	ng/L	5	0.15	0.05		CRJ	07/08/2022 07:51	EPA 300.1 -1997, Rev. 1.0
Sulfate	1260 m	ng/L	50	10	2		CRJ	07/08/2022 07:25	EPA 300.1-1997, Rev. 1.0
Wet Chemistry									
Parameter	Result U	Inits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 m	ng∕L	1	20	5	U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	1750 m	ng∕L	1	50	20		SDW	06/27/2022 14:10	SM 25400-2015
Customer Sample ID: A	D-36					Customer De	scriptior	1:	
Lab Number: 221990-	006					Preparation:			
Date Collected: 06/22/	/2022 12:3	5 ED	т			Date Receive	d: 06/2	4/2022 12:07 E	DT
Ion Chromatography									
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.33 m	ng∕L	2	0.10	0.02	-	CRJ	07/08/2022 10:00	EPA 300.1-1997, Rev. 1.0
Chloride	10.1 m	-	2	0.04	0.02		CRJ	07/08/2022 10:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.09 m	ng/L	2	0.06	0.02		CRJ	07/08/2022 10:00	EPA 300.1 -1997, Rev. 1.0
Sulfate	5.00 m	_	2	0.40	0.06		CRJ	07/08/2022 10:00	EPA 300.1-1997, Rev. 1.0
Wet Chemistry									
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 m	ng∕L	1	20	5	U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	60 m	ng/L	1	50	20		SDW	06/27/2022 14:18	SM 25400-2015

AMERICAN	Water Analysis Report	Dolan Chemical Laboratory 4001 Bixby Road
ELECTRIC POWER [®]	Reissued	Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 221990	Customer: Pirkey Power Station	Date Reported: 12/27/2022
Customer Sample ID: Duplicate-3	Customer Description:	
Lab Number: 221990-007	Preparation:	
Date Collected: 06/22/2022 15:00 EDT	Date Received: 06/24/20	22 12:07 EDT
Ion Chromatography		

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.12 mg/L	5	0.25	0.05 J1	CRJ	07/08/2022 09:08	EPA 300.1-1997, Rev. 1.0
Chloride	7.47 mg/L	5	0.10	0.05	CRJ	07/08/2022 09:08	EPA 300.1 -1997, Rev. 1.0
Fluoride	1.19 mg/L	5	0.15	0.05	CRJ	07/08/2022 09:08	EPA 300.1-1997, Rev. 1.0
Sulfate	1290 mg/L	50	10	2	CRJ	07/08/2022 08:42	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	1770 mg/L	2	100	40	SDW	06/27/2022 14:18	SM 2540C-2015

221990

Job Comments:

Original report issued 7/29/2022. Report reissued with amended matrix spike precision calculations.

Report Verification

This report and the above data have been confirmed by the following analyst.

Muchael S. Ohlingen

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221990

Customer: Pirkey Power Station

Date Reported: 12/27/2022

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

_
Ū.
-
0
Q.
0
Č.
_
>
σ
Ō.
÷.
6
ns
Ō.
\mathbf{v}
÷
0
_
<u> </u>
ž
<u>.</u>
C.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				с Ч	ain o	of Cust	Chain of Custody Record	cord			
Contacts: Dave Conover (814-836-4184)				B	Sit	e Contact:	Site Contact:		Date:	For Lab Use Only: COC/Order #:	
Project Name Pirkey PP CCR - Landfill Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 6 Ro	Tumaround utine (28 d	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	endar Da	Vs) Vells)	250 bot HN	250 mL Field-filter bottle, bottle, bottle, bottle, hNO3 HNO3	Itter IL 1 L bottle, 8, Cool, 0-6C 33	Three (six every 10th") 1 L bottles, PH<2, HNO3	221990	
Sampler(s): Matt Hamilton Kenny McDonald	. —					sleij	atoniy	inity Br,	-228		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G≃Grab)	Matrix	Cont Cont Cont Cont Cont Cont Cont Cont	ini (s)reiqmeS	Dissolved Me	E, CI, SO4, F, CI, SO4,	Ra-226, Ra	Sample Specific Notes:	
AD-8	6/22/2022	1216						×			
AD-16	6/22/2022	1005	υ	GW	-			×			
AD-23	6/22/2022	1117	υ	GW	-			×	-		
AD-27	6/22/2022	1157	υ	GW	-			×			
AD-34	6/22/2022	1048	υ	GW	-	_		×			
AD-36	6/22/2022	1135	ს	GW	-	1000		×			
Duplicate - 3	6/22/2022	1400	υ	GW	-			×			
						-		_			
					+	-					
				1	+	+				-	
								_			
				-	-						
Preservation Used: 1= ICs, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 5= Other * Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.	Ter		nitter in neid				6		
Special Instructions/QC Requirements & Comments:	ents:										Τ
Relinquished by the Build	Company.	4		Date/Tim 6/23/	ime. 16 3/22 16	lbcc Rece	Received by			Date/Time,	
Relinquished by:	Company			Dette/Time	0	Rece	Received by			Date/Time:	
Relinquished by:	Company:			Date/Time	0	Recei	Received Matbuatory by:	ory by:	M	DateTime: / 74/2 19	9:07
				10007	Compliant	- Chrone		2		3	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

WATER & WA	ASTE SAMPLE RECEIPT FORM (IR#1)
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Puncey	_ Number of Plastic Containers:6
Opened By MG-K	_ Number of Glass Containers:
_	M Number of Mercury Containers:
	or N/A Initial: MULC (on ice) no ice
	- If No, specify each deviation:
	Comments
	Comments
	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or (24 hr)	NO₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly?	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done?	DN or N/A Initial & Date: MGK 6124122
lot HC904495	.09535.0001 [OR] Lab rat pH Cat # LRS -4801 V Lot X000RWDG21
- Was Add'l Preservative needed? Y	If Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y /	Comments (See Prep Book)
Was the customer contacted? If Yes	: Person Contacted:
Lab ID# <u>221990</u> Initial	& Date & Time :
Comm	nents:
Logged by	d0 - 0
Reviewed by	
() –	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- **R2** Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- **R6** Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- ▼ R10 Other problems or anomalies

X

The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Michael Ohilnger	Huy Chemist	7/29/22
Name (printed)	Signature Official Title	Date

Alkalinity Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Nat	ne: <u>American Electric Power Dolan Chemical Laboratory</u>
Project Name:	Pirkey PP CCR - Landfill
	Michael Ohlinger
LRC Date: 7/29	
Laboratory Job	Number: 221990
Prep Batch Nur	000000407

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)	İ	
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Alkalinity Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Na	me: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey PP CCR - Landfill
	e: Michael Ohlinger
LRC Date: 7/2	
Laboratory Jo	224222
Prep Batch Nu	000000407

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	Ι	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Alkalinity Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirl	key PP CCR - Landfill
Reviewer Name: _	
LRC Date: 7/29/22	
Laboratory Job Nu	004000
Prep Batch Numbe	

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

- This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- **R2** Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
 - R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- XR5Test reports/summary forms for blank samples
- **R6** Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- **R10** Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Timothy E. Arnold

Name (printed)

(Imale	10/1	shi
Signatur		6

Chemist Principle7/11/2022Official TitleDate

Table 1. Reportable Data.

Laboratory Nai	me: <u>American Electric Power Dolan Chemical Laboratory</u>
	Pirkey PP CCR - Landfill
-	Timothy E. Arnold
LRC Date: 7/11	1/2022
Laboratory Job	Number: 221990
Prep Batch Nur	nber(s): <u>QC2207069</u>

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	Yes	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5 _	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	l
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR - Landfill

Reviewer Name: Timothy E. Arnold

LRC Date: 7/11/2022

Laboratory Job Number: 221990

Prep Batch Number(s): QC2207069

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA]
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	<u>O, I</u>	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nan	ne: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey PP CCR - Landfill
Reviewer Name	: Timothy E. Arnold
LRC Date: 7/11	/2022
Laboratory Job	Number: 221990
Prep Batch Num	nber(s): <u>QC2207069</u>

Description
CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

x

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- **R2** R2 Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- **R10** Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

statement is true.		$\Lambda \Lambda =$	
Michael Ohlinger	Muhail (Chemist	7/29/22
Name (printed)	Signature	Official Title	Øate /

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name:	Pirkey PP CCR - Landfill
Project Name:	

Reviewer Name: Michael Ohlinger

LRC Date: 7/26/22

Laboratory Job Number: 221990

Prep Batch Number(s): <u>QC2207061, 2207062</u>

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
•	

Project Name:	Pirkey PP CCR - Landfill

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 221990

Prep Batch Number(s): QC2207061, 2207062

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:	ļ	
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
\$10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
-	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	key PP CCR - Landfill
Reviewer Name: <u>Name</u> : <u>Name</u>	lichael Ohlinger
LRC Date: 7/26/22	
Laboratory Job Nu	mber: 221990
Prep Batch Numbe	r(s): QC2207061, 2207062

Exception Report No.	Description	
- 		

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-2

Lab Number: 222015-001

Date Collected: 06/21/2022 09:49 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Arsenic	2.0 µg∕L	5	0.5	0.2	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Barium	17.5 µg/L	5	1.0	0.3	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Beryllium	0.85 µg/L	5	0.25	0.04	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Boron	3.26 mg/L	5	0.25	0.05	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.11 µg/L	5	0.10	0.02	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Calcium	3.4 mg/L	5	0.3	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.5 µg∕L	5	1.0	0.2 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Cobalt	25.7 μg/L	5	0.10	0.02	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Lead	0.6 µg/L	5	1.0	0.3 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0688 mg/L	5	0.0010	0.0003	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Magnesium	7.1 mg/L	5	0.5	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Mercury	244 ng/L	4	20	7	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Potassium	1.4 mg/L	5	0.5	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Selenium	2. 7 μg/L	5	2.5	0.5	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Sodium	111 mg/L	5	1.0	0.3 M1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.048 mg/L	5	0.010	0.002	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Thallium	0.3 µg/L	5	1.0	0.2 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Radiochemistry							

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.59 pCi/L	0.17	0.28	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.1 %					
Radium-228	1.28 pCi/L	0.17	0.52	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	87.8 %					

* The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-2

Lab Number: 222015-001-01

Date Collected: 06/21/2022 09:49 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Arsenic	1.6 µg/L	5	0.5	0.2	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Barium	17.8 µg/L	5	1.0	0.3	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.80 µg/L	5	0.25	0.04	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.11 µg/L	5	0.10	0.02	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.5 µg∕L	5	1.0	0.2 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Cobalt	25.4 μg/L	5	0.10	0.02	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Iron	0.13 mg/L	5	0.10	0.03	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Lead	0.7 µg/L	5	1.0	0.3 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0673 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Manganese	0.096 mg/L	5	0.005	0.001	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Selenium	2.2 µg/L	5	2.5	0.5 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-3

Lab Number: 222015-002

Date Collected: 06/21/2022 12:23 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.2 µg∕L	5	0.5	0.2 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Barium	55.6 µg/L	5	1.0	0.3	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.22 µg/L	5	0.25	0.04 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Boron	0.08 mg/L	5	0.25	0.05 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.02 µg/L	5	0.10	0.02 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Calcium	3.1 mg/L	5	0.3	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.3 µg∕L	5	1.0	0.2 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Cobalt	2.70 µg∕L	5	0.10	0.02	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg∕L	5	1.0	0.3 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0457 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Magnesium	1.4 mg/L	5	0.5	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg∕L	5	2.5	0.5 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Potassium	2.1 mg/L	5	0.5	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Sodium	7.5 mg/L	5	1.0	0.3	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.020 mg/L	5	0.010	0.002	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg∕L	5	1.0	0.2 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.04 pCi/L	0.23	0.29	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.2 %					
Radium-228	0.64 pCi/L	0.14	0.45	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.1 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-3

Lab Number: 222015-002-01

Date Collected: 06/21/2022 12:23 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.2 µg/L	5	0.5	0.2 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Barium	49.5 μg/L	5	1.0	0.3	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Beryllium	0.14 µg/L	5	0.25	0.04 J1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.02 µg/L	5	0.10	0.02 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Chromium	0.4 µg/L	5	1.0	0.2 J1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Cobalt	2.25 μg/L	5	0.10	0.02	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Iron	<0.03 mg/L	5	0.10	0.03 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg/L	5	1.0	0.3 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Lithium	0.0459 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Manganese	0.025 mg/L	5	0.005	0.001	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Selenium	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued Customer: Pirkey Power Station

Date Reported: 12/22/2022

Job ID: 222015

Customer Sample ID: AD-4

Lab Number: 222015-003

Date Collected: 06/21/2022 11:34 EDT

Customer Description:

Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter Re	ult L	Jnits	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony <0	.02 µ	Jg∕L	1	0.10	0.02 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Arsenic	.30 µ	Jg∕L	1	0.10	0.03	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Barium	.2 4 µ	Jg∕L	1	0.20	0.05	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Beryllium 0.	.07 μ	Jg∕L	1	0.050	0.007	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Boron 0.	20 n	ng/L	1	0.050	0.009 J1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Cadmium 0.	21 µ	Jg∕L	1	0.020	0.004	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Calcium	.51 n	ng/L	1	0.05	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Chromium C	.46 µ	Jg∕L	1	0.20	0.04	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Cobalt	.10 µ	Jg∕L	1	0.020	0.003	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Lead <0	.05 µ	Jg∕L	1	0.20	0.05 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Lithium 0.0	20 n	ng/L	1	0.00020	0.00005	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Magnesium (.76 n	ng/L	1	0.10	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Mercury	4 n	ıg∕L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 μ	Jg∕L	1	0.5	0.1 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Potassium	.21 n	ng/L	1	0.10	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Selenium <0	.09 µ	Jg∕L	1	0.50	0.09 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Sodium	.94 n	ng/L	1	0.20	0.05	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Strontium 0.0	.84 n	ng/L	1	0.0020	0.0004	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Thallium C	.09 µ	Jg∕L	1	0.20	0.04 J1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.66 pCi/L	0.18	0.26	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.3 %					
Radium-228	0.65 pCi/L	0.14	0.47	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.0 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-4

Lab Number: 222015-003-01

Date Collected: 06/21/2022 11:34 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Barium	104 µg/L	1	0.20	0.05	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0.226 µg/L	1	0.050	0.007	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.016 µg/L	1	0.020	0.004 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.20	0.04	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Cobalt	3 .12 μg/L	1	0.020	0.003	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Iron	0.019 mg/L	1	0.020	0.006 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Lead	0.14 µg/L	1	0.20	0.05 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0233 mg/L	1	0.00020	0.00005	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.0289 mg/L	1	0.0010	0.0002	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued Customer: Pirkey Power Station

Date Reported: 12/22/2022

Job ID: 222015

Customer Sample ID: AD-7

Lab Number: 222015-004

Date Collected: 06/21/2022 10:47 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Arsenic	1.3 µg/L	5	0.5	0.2	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Barium	58.7 μg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Beryllium	4.66 µg∕L	5	0.25	0.04	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Boron	6.13 mg/L	5	0.25	0.05	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.95 µg∕L	5	0.10	0.02	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Calcium	5.4 mg/L	5	0.3	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.4 µg∕L	5	1.0	0.2 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Cobalt	36.4 µg/L	5	0.10	0.02	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Lead	1.0 µg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.113 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Magnesium	8.9 mg/L	5	0.5	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Mercury	<400 ng/L	200	1000	400 U1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg∕L	5	2.5	0.5 U1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Potassium	3.2 mg/L	5	0.5	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Selenium	2.3 µg∕L	5	2.5	0.5 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Sodium	22.6 mg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Strontium	0.058 mg/L	5	0.010	0.002	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Thallium	0.2 µg/L	5	1.0	0.2 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.59 pCi/L	0.38	0.35	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	79.1 %					
Radium-228	2.23 pCi/L	0.16	0.46	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	84.4 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-7

Lab Number: 222015-004-01

Date Collected: 06/21/2022 10:47 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Arsenic	1.38 µg/L	1	0.10	0.03	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Barium	54.1 µg/L	1	0.20	0.05	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Beryllium	3.55 µg/L	1	0.050	0.007	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.972 µg/L	1	0.020	0.004	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.20	0.04	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Cobalt	35.4 µg/L	1	0.020	0.003	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Iron	0.324 mg/L	1	0.020	0.006	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Lead	1.06 µg/L	1	0.20	0.05	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.0887 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Manganese	0.142 mg/L	1	0.0010	0.0002	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Mercury	<20 ng/L	10	50	20 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 µg/L	1	0.5	0.1 J1	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.15 µg/L	1	0.50	0.09	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.21 µg/L	1	0.20	0.04	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-12

Lab Number: 222015-005

Date Collected: 06/20/2022 09:52 EDT

Customer Description: Preparation:

- - -

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter R	lesult Unit	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg∕∣	. 1	0.10	0.02 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08 µg∕	. 1	0.10	0.03 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Barium	24.2 µg/	. 1	0.20	0.05	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Beryllium	0.135 µg∕∣	. 1	0.050	0.007	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Boron	0.042 mg/	L 1	0.050	0.009 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg∕∣	. 1	0.020	0.004 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Calcium	0.32 mg/	L 1	0.05	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 µg∕	. 1	0.20	0.04	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Cobalt	1.35 µg/	. 1	0.020	0.003	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg∕	. 1	0.20	0.05 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Lithium 0.0)0949 mg/	L 1	0.00020	0.00005	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Magnesium	0.45 mg/	L 1	0.10	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/l	. 1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.53 mg/	L 1	0.10	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 µg/	. 1	0.50	0.09 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Sodium	5 .28 mg/	L 1	0.20	0.05	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Strontium 0	.0030 mg/	L 1	0.0020	0.0004	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg∕∣	. 1	0.20	0.04 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.51 pCi/L	0.16	0.28	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.1 %					
Radium-228	0.12 pCi/L	0.11	0.37	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	96.0 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-12

Lab Number: 222015-005-01

Date Collected: 06/20/2022 09:52 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Barium	24.4 µg/L	1	0.20	0.05	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.131 µg/L	1	0.050	0.007	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 µg/L	1	0.020	0.004 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.20	0.04	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Cobalt	1.30 µg/L	1	0.020	0.003	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Iron	0.006 mg/L	1	0.020	0.006 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Lead	0.07 µg/L	1	0.20	0.05 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.00918 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Manganese	0.0052 mg/L	1	0.0010	0.0002	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Selenium	0.12 µg/L	1	0.50	0.09 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg∕L	1	0.20	0.04 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-13

Lab Number: 222015-006

Date Collected: 06/20/2022 09:43 EDT

Customer Description: Preparation:

.....

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Arsenic	4.30 µg∕L	1	0.10	0.03	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Barium	41.4 µg/L	1	0.20	0.05	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Beryllium	0.409 µg/L	1	0.050	0.007	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Boron	0.075 mg/L	1	0.050	0.009	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Calcium	11.1 mg/L	1	0.05	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 µg/L	1	0.20	0.04	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Cobalt	56.2 μg/L	1	0.020	0.003 M1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Lithium	0.150 mg/L	1	0.00020	0.00005 M1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Magnesium	15.7 mg/L	1	0.10	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	1.1 µg/L	1	0.5	0.1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Potassium	5.19 mg/L	1	0.10	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Selenium	0.1 µg/L	1	0.50	0.09 J1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Sodium	21.4 mg/L	1	0.20	0.05	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Strontium	0.0509 mg/L	1	0.0020	0.0004	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.15 pCi/L	0.24	0.29	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.3 %					
Radium-228	1.07 pCi/L	0.14	0.45	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.1 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-13

Lab Number: 222015-006-01

Date Collected: 06/20/2022 09:43 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Arsenic	0.80 µg/L	1	0.10	0.03	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Barium	40.0 µg/L	1	0.20	0.05	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Beryllium	0.203 µg∕L	1	0.050	0.007	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Cadmium	0.005 µg/L	1	0.020	0.004 J1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 µg∕L	1	0.20	0.04	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Cobalt	55.8 µg/L	1	0.020	0.003	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Iron	47.8 mg/L	1	0.020	0.006	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.146 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Manganese	0.550 mg/L	1	0.0010	0.0002	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.8 µg/L	1	0.5	0.1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg∕L	1	0.20	0.04 J1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-17

Lab Number: 222015-007

Date Collected: 06/21/2022 11:40 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Arsenic	0.39 µg/L	1	0.10	0.03	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Barium	250 μg/L	1	0.20	0.05	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Beryllium	0.650 µg∕L	1	0.050	0.007	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Cadmium	0.063 µg/L	1	0.020	0.004	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Calcium	1.10 mg/L	1	0.05	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 µg/L	1	0.20	0.04	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Cobalt	12.2 µg/L	1	0.020	0.003	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Lead	0.13 µg/L	1	0.20	0.05 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0206 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Magnesium	4.35 mg/L	1	0.10	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Mercury	200 ng/L	100	500	200 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Potassium	1.11 mg/L	1	0.10	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Selenium	0.44 µg/L	1	0.50	0.09 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Sodium	8.53 mg/L	1	0.20	0.05	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.0206 mg/L	1	0.0020	0.0004	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg∕L	1	0.20	0.04 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	7.36 pCi/L	0.63	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.4 %					
Radium-228	4.60 pCi/L	0.17	0.41	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	94.6 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-17

Lab Number: 222015-007-01

Date Collected: 06/21/2022 11:40 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg∕L	1	0.10	0.02 U1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.17 µg/L	1	0.10	0.03	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Barium	245 μg/L	1	0.20	0.05	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.489 µg/L	1	0.050	0.007	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 µg∕L	1	0.20	0.04	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Cobalt	11.5 µg/L	1	0.020	0.003	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Iron	0.021 mg/L	1	0.020	0.006	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Lead	0.24 µg/L	1	0.20	0.05	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0198 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0377 mg/L	1	0.0010	0.0002	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.20 µg/L	1	0.50	0.09 J1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued Customer: Pirkey Power Station

Date Reported: 12/22/2022

Job ID: 222015

Customer Sample ID: AD-18

Lab Number: 222015-008

Date Collected: 06/21/2022 09:17 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter F	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30	µg/L	1	0.10	0.03	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Barium	79.3	µg/L	1	0.20	0.05	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Beryllium	0.073	µg/L	1	0.050	0.007	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Boron <	<0.009	mg/L	1	0.050	0.009 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012	µg/L	1	0.020	0.004 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Calcium	1.49	mg/L	1	0.05	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Chromium	0.47	µg/L	1	0.20	0.04	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Cobalt	0.790	µg/L	1	0.020	0.003	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Lead	0.11	µg/L	1	0.20	0.05 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Lithium 0	0.0108	mg/L	1	0.00020	0.00005	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Magnesium	0.30	mg/L	1	0.10	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Mercury	<7	ng/L	4	20	7 U1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Potassium	0.70	mg/L	1	0.10	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Selenium	0.14	µg/L	1	0.50	0.09 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Sodium	5.16	mg/L	1	0.20	0.05	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Strontium 0	0.0069	mg/L	1	0.0020	0.0004	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	µg/L	1	0.20	0.04 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.55 pCi/L	0.17	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.7 %					
Radium-228	0.18 pCi/L	0.17	0.58	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.3 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-18

Lab Number: 222015-008-01

Date Collected: 06/21/2022 09:17 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 µg/L	1	0.10	0.03 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Barium	31.8 µg/L	1	0.20	0.05	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Cobalt	0.237 µg/L	1	0.020	0.003	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Iron	0.024 mg/L	1	0.020	0.006	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Lead	0.07 µg/L	1	0.20	0.05 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0107 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.0008 mg/L	1	0.0010	0.0002 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Mercury	8 ng/L	4	20	7 J1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-22

Lab Number: 222015-009

Date Collected: 06/20/2022 10:53 EDT

Customer Description: Preparation:

Fieparation.

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Arsenic	3.02 µg∕L	1	0.10	0.03	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Barium	16.2 µg/L	1	0.20	0.05	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Beryllium	2.11 µg/L	1	0.050	0.007	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.587 µg/L	1	0.020	0.004	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Calcium	11.9 mg/L	1	0.05	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.66 µg∕L	1	0.20	0.04	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Cobalt	69.6 µg/L	1	0.020	0.003	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Lead	0.18 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Magnesium	15.6 mg/L	1	0.10	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Mercury	460 ng/L	10	50	20	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 µg/L	1	0.5	0.1 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Potassium	3.63 mg/L	1	0.10	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.01 µg/L	1	0.50	0.09	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Sodium	90.5 mg/L	1	0.20	0.05	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Strontium	0.0955 mg/L	1	0.0020	0.0004	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 µg/L	1	0.20	0.04 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.96 pCi/L	0.31	0.33	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.0 %					
Radium-228	1.99 pCi/L	0.19	0.58	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.5 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-22

Lab Number: 222015-009-01

Date Collected: 06/20/2022 10:53 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units E	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg∕L	1	0.10	0.02 U1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Arsenic	2.1 4 µg/L	1	0.10	0.03	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Barium	16.3 µg/L	1	0.20	0.05	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Beryllium	2.2 5 µg∕L	1	0.050	0.007	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.564 µg/L	1	0.020	0.004	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.20	0.04	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Cobalt	74.5 µg/L	1	0.020	0.003	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Iron	38.1 mg/L	1	0.020	0.006	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Lead	0.1 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.125 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.351 mg/L	1	0.0010	0.0002	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Selenium	2.13 µg/L	1	0.50	0.09	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 µg/L	1	0.20	0.04 J1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued Customer: Pirkey Power Station

Date Reported: 12/22/2022

Job ID: 222015

Customer Description:

Customer Sample ID: AD-28 Lab Number: 222015-010

Date Collected: 06/21/2022 10:56 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter Resu	t Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony <0.0	2 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Arsenic 0.1	4 µg∕L	1	0.10	0.03	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Barium 13)µg∕L	1	0.20	0.05	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Beryllium 0.46	3 µg∕L	1	0.050	0.007	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Boron 0.31	1 mg/L	1	0.050	0.009	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Cadmium 0.04	7 µg∕L	1	0.020	0.004	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Calcium 1.4	0 mg/L	1	0.05	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Chromium 0.4)µg∕L	1	0.20	0.04	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Cobalt 13.	3 µg∕L	1	0.020	0.003	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Lead 0.0	3 µg∕L	1	0.20	0.05 J1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Lithium 0.021	3 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Magnesium 2.9	5 mg/L	1	0.10	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Mercury	7 ng/L	1	5	2	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum <0.	1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Potassium 0.7	3 mg/L	1	0.10	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Selenium 0.1	5 µg∕L	1	0.50	0.09 J1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Sodium 6.8	4 mg/L	1	0.20	0.05	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Strontium 0.019	2 mg/L	1	0.0020	0.0004	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Thallium <0.0	4 µg∕L	1	0.20	0.04 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	5.02 pCi/L	0.51	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	85.4 %					
Radium-228	0.94 pCi/L	0.15	0.49	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.6 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-28

Lab Number: 222015-010-01

Date Collected: 06/21/2022 10:56 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Uni	ts Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/	L 1	0.10	0.02 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Arsenic	0.11 µg⁄	L 1	0.10	0.03	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Barium	131 µg⁄	L 1	0.20	0.05	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Beryllium	0.486 µg∕	L 1	0.050	0.007	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.054 µg∕	L 1	0.020	0.004	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 µg∕	L 1	0.20	0.04	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Cobalt	13.0 µg⁄	L 1	0.020	0.003	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Iron	0.070 mg	′L 1	0.020	0.006	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Lead	0.07 µg∕	L 1	0.20	0.05 J1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.0226 mg	ʻL 1	0.00020	0.00005	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Manganese	0.0530 mg	Έ 1	0.0010	0.0002	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/	L 1	5	2 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg⁄	L 1	0.5	0.1 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 µg/	L 1	0.50	0.09 J1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg∕	L 1	0.20	0.04 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-30

Lab Number: 222015-011

Date Collected: 06/20/2022 12:29 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Arsenic	0.23 µg/L	1	0.10	0.03	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Barium	106 µg/L	1	0.20	0.05	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Beryllium	0.089 µg/L	1	0.050	0.007	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Boron	2.49 mg/L	1	0.050	0.009	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.014 µg/L	1	0.020	0.004 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Calcium	0.75 mg/L	1	0.05	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 µg/L	1	0.20	0.04	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Cobalt	4.90 µg∕L	1	0.020	0.003	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0100 mg/L	1	0.00020	0.00005	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Magnesium	2.48 mg/L	1	0.10	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Mercury	14 ng/L	2	10	4	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Potassium	0.89 mg/L	1	0.10	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Selenium	0.34 µg/L	1	0.50	0.09 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Sodium	87.2 mg/L	1	0.20	0.05	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0114 mg/L	1	0.0020	0.0004	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.72 pCi/L	0.35	0.28	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.5 %					
Radium-228	0.99 pCi/L	0.15	0.47	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	91.7 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-30

Lab Number: 222015-011-01

Date Collected: 06/20/2022 12:29 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.10 µg/L	1	0.10	0.03	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Barium	90.4 µg∕L	1	0.20	0.05	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.092 µg/L	1	0.050	0.007	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.011 µg/L	1	0.020	0.004 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 µg/L	1	0.20	0.04	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Cobalt	4.45 µg∕L	1	0.020	0.003	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Iron	0.014 mg/L	1	0.020	0.006 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Lead	0.05 µg/L	1	0.20	0.05 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.00993 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Manganese	0.0194 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Mercury	6 ng/L	2	10	4 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Selenium	0.18 µg/L	1	0.50	0.09 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-31

Lab Number: 222015-012

Date Collected: 06/20/2022 11:43 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.42 µg/L	1	0.10	0.03	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Barium	34.1 µg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Beryllium	1.03 µg/L	5	0.25	0.04	GES	07/14/2022 13:04	EPA 200.8-1994, Rev. 5.4
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.071 µg/L	1	0.020	0.004	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Calcium	2.65 mg/L	1	0.05	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.59 µg/L	1	0.20	0.04	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Cobalt	9.61 µg/L	1	0.020	0.003	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Lead	0.35 µg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.0844 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:04	EPA 200.8-1994, Rev. 5.4
Magnesium	3.85 mg/L	1	0.10	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Mercury	89 ng/L	2	10	4	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Potassium	1.50 mg/L	1	0.10	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Selenium	0.33 µg/L	1	0.50	0.09 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Sodium	30.7 mg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0376 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	s Analyst	Analysis Date	Method
Radium-226	2.51 pCi/L	0.34	0.27	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.2 %					
Radium-228	2.09 pCi/L	0.15	0.42	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.8 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

.

Customer Sample ID: AD-31

Lab Number: 222015-012-01

Date Collected: 06/20/2022 11:43 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Arsenic	0.23 µg/L	1	0.10	0.03	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Barium	33.1 µg/L	1	0.20	0.05	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Beryllium	0.96 µg/L	5	0.25	0.04	GES	07/14/2022 13:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.50 µg/L	1	0.20	0.04	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Cobalt	9.49 µg∕L	1	0.020	0.003	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Iron	0.114 mg/L	1	0.020	0.006	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Lead	0.31 µg/L	1	0.20	0.05	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.0860 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:09	EPA 200.8-1994, Rev. 5.4
Manganese	0.0253 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Mercury	9 ng/L	1	5	2	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Selenium	0.18 µg/L	1	0.50	0.09 J1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg∕L	1	0.20	0.04 J1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued **Customer: Pirkey Power Station**

Date Reported: 12/22/2022

Job ID: 222015

Customer Description:

Customer Sample ID: AD-32 Lab Number: 222015-013

Date Collected: 06/20/2022 10:51 EDT

Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg∕L	1	0.10	0.02 U1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Arsenic	1.81 µg/L	1	0.10	0.03	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Barium	32.3 µg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Beryllium	3 .28 μg/L	5	0.25	0.04	GES	07/14/2022 13:14	EPA 200.8-1994, Rev. 5.4
Boron	0.909 mg/L	1	0.050	0.009	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.318 µg/L	1	0.020	0.004	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Calcium	7 .2 5 mg/L	1	0.05	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.68 µg/L	1	0.20	0.04	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Cobalt	27.2 μg/L	1	0.020	0.003	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Lead	0.43 µg∕L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0923 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:14	EPA 200.8-1994, Rev. 5.4
Magnesium	9.33 mg/L	1	0.10	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Mercury	2700 ng/L	100	500	200	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Potassium	3.05 mg/L	1	0.10	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Selenium	2.67 µg∕L	1	0.50	0.09	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Sodium	33.8 mg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.128 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Thallium	0.17 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	6.24 pCi/L	0.56	0.29	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	85.8 %					
Radium-228	7.63 pCi/L	0.23	0.55	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.7 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-32

Lab Number: 222015-013-01

Date Collected: 06/20/2022 10:51 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units D	oilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Arsenic	1.69 µg/L	1	0.10	0.03	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Barium	37.4 μg/L	1	0.20	0.05	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Beryllium	3.48 µg/L	5	0.25	0.04	GES	07/14/2022 13:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.342 µg/L	1	0.020	0.004	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 µg/L	1	0.20	0.04	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Cobalt	26.6 µg/L	1	0.020	0.003	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Iron	1.20 mg/L	1	0.020	0.006	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Lead	0.38 µg/L	1	0.20	0.05	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0952 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:19	EPA 200.8-1994, Rev. 5.4
Manganese	0.0517 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Mercury	80 ng/L	20	100	40 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Selenium	2. 57 µg/L	1	0.50	0.09	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.18 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: AD-33

Lab Number: 222015-014

Date Collected: 06/20/2022 11:37 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.04 µg/L	1	0.10	0.02 J1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Arsenic	1.19 µg/L	1	0.10	0.03	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Barium	42.0 µg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.939 µg/L	1	0.050	0.007	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Boron	0.093 mg/L	1	0.050	0.009	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0.039 µg/L	1	0.020	0.004	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Calcium	1.06 mg/L	1	0.05	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.64 µg/L	1	0.20	0.04	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Cobalt	7 .81 µg/L	1	0.020	0.003	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Lead	0.27 µg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0166 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Magnesium	3.11 mg/L	1	0.10	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Mercury	3000 ng/L	100	500	200	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Potassium	0.27 mg/L	1	0.10	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Selenium	1.27 µg/L	1	0.50	0.09	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Sodium	16.7 mg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0218 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.21 pCi/L	0.32	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.6 %					
Radium-228	1.16 pCi/L	0.14	0.42	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.0 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222015

Customer Sample ID: AD-33

Lab Number: 222015-014-01

Date Collected: 06/20/2022 11:37 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.72 µg/L	1	0.10	0.03	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Barium	41.3 µg/L	1	0.20	0.05	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.863 µg/L	1	0.050	0.007	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.038 µg/L	1	0.020	0.004	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.20	0.04	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Cobalt	7.29 µg∕L	1	0.020	0.003	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Iron	0.553 mg/L	1	0.020	0.006	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Lead	0.22 µg/L	1	0.20	0.05	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0183 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0059 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Mercury	410 ng/L	20	100	40	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.77 µg/L	1	0.50	0.09	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1

Lab Number: 222015-015

Date Collected: 06/20/2022 15:00 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Arsenic	4.50 µg∕L	1	0.10	0.03	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Barium	41.7 μg/L	1	0.20	0.05	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.427 µg∕L	1	0.050	0.007 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Boron	0.083 mg/L	1	0.050	0.009	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Calcium	11.6 mg/L	1	0.05	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg∕L	1	0.20	0.04	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Cobalt	61.1 µg/L	1	0.020	0.003 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.163 mg/L	1	0.00020	0.00005 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Magnesium	16.9 mg/L	1	0.10	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	1.1 µg/L	1	0.5	0.1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Potassium	5.48 mg/L	1	0.10	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.09 µg/L	1	0.50	0.09 J1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Sodium	23.3 mg/L	1	0.20	0.05 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.0519 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4

Job ID: 222015

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1

Lab Number: 222015-015-01

Date Collected: 06/20/2022 15:00 EDT

Customer Description: Preparation: Dissolved Date Received: 06/27/2022 14:08 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.84 µg/L	1	0.10	0.03	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Barium	39.6 µg/L	1	0.20	0.05	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0.203 µg/L	1	0.050	0.007	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg∕L	1	0.20	0.04	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Cobalt	57.9 µg/L	1	0.020	0.003	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Iron	50.0 mg/L	1	0.020	0.006	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.147 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.561 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.8 µg/L	1	0.5	0.1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Customer Sample ID: Equipment Blank Lab Number: 222015-016

Date Collected: 06/20/2022 11:13 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg/L	1	0.05	0.02 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.20	0.04	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Cobalt	0.013 µg/L	1	0.020	0.003 J1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005 mg/L	1	0.00020	0.00005 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02 mg/L	1	0.10	0.02 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02 mg/L	1	0.10	0.02 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05 mg/L	1	0.20	0.05 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004 mg/L	1	0.0020	0.0004 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4

222015 Job Comments:

Original report issued 8/9/2022. Report reissued with amended matrix spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 222015 Report Verification **Customer: Pirkey Power Station**

Date Reported: 12/22/2022

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

M1 - The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				-	Chair	n of C	Susto	ain of Custody Record	ord			
Groveport, Ohio 43125		0.00		Pro	Iram: (Soal Co	mbustio	Program: Coal Combustion Residuals (CCR)	Is (CCR)			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Ś	Site Contact:	8			Date:	:6	For Lab Use Only: COC/Order #:
Project Name: Pirkey PP CCR Contact Name: Leslie Fuerschbach	Anatysis -	Tumaround	Analysis Turmaround Time (in Calendar Days) C Dowing / Ange for Manile	elendar D	jys)				Three (six every 10th*) 1 L bottles, pH<2,	250 mL Glass bottle, HCL*,	250 mL Glass bottle, HCL*	Slatel
Contact Phone: 318-673-2744 Sampler(s): Matt Hamitton Kenny McDonald	2			л Э			, Ве, Са , Ц, Мg, , П, л2, ей	¥ 'IT '€∃ '0	-558	DH42	Aurous	
Sample Identification	Sample Date	Sample Time	Sample Type (C≖Comp, G≖Grab)	Matrix	Cont.	iini (s)neiqma2	Mo, Na, Pb, S Cd, Cr, Co, K Sb, As, Ba	Dissolved Sb Be, Cd, Cr, C Mn, Mo, Pb, S	вя-226, Ra	Mercury	M beviossiQ	Sample Specific Notes:
AD-2	6/21/2022	849	U	GW	7		×	×	×	×	×	
AD-3	6/21/2022	1123	U	GW	7		×	×	×	×	×	
AD-4	6/21/2022	1034	υ	GW	7		×	×	×	×	×	
AD-7	6/21/2022	947	U	GW	7		×	×	×	×	×	
AD-12	6/20/2022	852	9	GW	7		×	×	×	×	×	
AD-13	6/20/2022	843	U	GW	ç	-	×	×	×	×	×	
AD-17	6/21/2022	1040	g	GW	7		×	×	×	×	×	
AD-18	6/21/2022	817	U	GW	2		×	×	×	×	×	
AD-22	6/20/2022	953	υ	GW	2	-	×	×	×	×	×	
AD-28	6/21/2022	956	U	GW	~	-	×	×	×	×	×	
AD-30	6/20/2022	1129	თ	GW	7		×	×	×	×	×	
AD-31	6/20/2022	1043	U	GW	7		×	×	×	×	×	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Na	OH; 6= Ot	ther	; F= filter	Iter in field	pid	4	F4	4	2	F2	
 Six 1L Bottles must be collected for Radium for every 10th sample. 	every 10th	sample.										
Special Instructions/QC Requirements & Comments:	13:		Ĩ									
Relinquished of Ath Minch	Company	ac lo		Date/Time:	3/22	1600 R	Received by			é		Date/Time;
Relinquished by	Company.	1		Date/Time	e	α. Π	Received by					Date/Time:
Relinquished by:	Company.			Date/Time.	2	CZ.	eceived in	Received in Laboratory by	AAS an	Juch		Date/Time: Le(27/221:000M
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/1	rd for Coal	Combust	on Residua	I (CCR)	Samplin	3 - Shreve	sport, Rev	11/01/1				

Record
Custody
Chain of

Total Line Total Line <thtotal line<="" th=""> Total Line Total Li</thtotal>	Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125	-14			Prog	Chai	n of C coal Cor	ustoc mbustio	Chain of Custody Record gram: Coal Combustion Residuals (C	ord Is (CCR)			
Statute Statute </th <th></th> <th></th> <th></th> <th></th> <th>1</th> <th>0</th> <th>site Contac</th> <th>ų</th> <th></th> <th></th> <th>Dat</th> <th>ia</th> <th>81.62</th>					1	0	site Contac	ų			Dat	ia	81.62
Image: Standble	Project Name: Pirkey PP CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 6 Rou	Turmaround Jtine (28 da	l Time (in Ca lys for Monit	llendar D bring Wel	(s)	~ /		Field-fitter 250 mL bottle, then pH<2, HNO ₃	Three (six every 10th*) 1 L bottles, pH<2, HNO3	250 mL Glass bottle, HCL ^{**} , pH<2	250 mL Glass bottle, HCL ⁺ ,	510EEC
Image Sample Sample </td <td>Sampler(s): Matt Hamilton Kenny McDonald</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(, Li, Mg, I</td> <td> 'I'I '84 '0;</td> <td>*-528</td> <td></td> <td>Ainoje</td> <td></td>	Sampler(s): Matt Hamilton Kenny McDonald							(, Li, Mg, I	'I'I '84 '0;	*-528		Ainoje	
accorate 651 6 GW 7 X <thx< th=""> X <thx< td=""><td>Sample Identification</td><td>Sample Date</td><td>Sampte Time</td><td>Sample Type (C=Comp, G=Grab)</td><td></td><td># of Cont.</td><td></td><td>Cd, Cr, Co, P</td><td>Be, Cd, Cr, C</td><td>Ra-226, Ra</td><td>Мегсигу</td><td>M beviossiQ</td><td>Sample Specific Notes:</td></thx<></thx<>	Sample Identification	Sample Date	Sampte Time	Sample Type (C=Comp, G=Grab)		# of Cont.		Cd, Cr, Co, P	Be, Cd, Cr, C	Ra-226, Ra	Мегсигу	M beviossiQ	Sample Specific Notes:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AD-32	8/20/2022	951	9		2		×	×	×	×	×	
zacrosz 1400 C GW Z X <thx< th=""> X <thx< td=""><td>AD-33</td><td>6/20/2022</td><td>1037</td><td>ი</td><td>GW</td><td>7</td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td></td></thx<></thx<>	AD-33	6/20/2022	1037	ი	GW	7		×	×	×	×	×	
Totols G GW Z X X X Concest 1013 G GW Z X	Duplicate - 1	6/20/2022	1400	υ	GW	4		×	×		×	×	
Image: Second	Equipment Blank	8202022	1013	υ	GW	7		×			×		
Image: Second													
Imaniver Imani								2 - 23	g 12				
Imany Imany <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							+						
The interval of the int					1	t	+						
any bit bit bit bit bit bit bit 3: 5-NaOH; 6= Other 5 5 = fitter in field 4 5 5 5 5 ay 10th sample. many bit fitter in field 4 5 5 5 5 any bit fitter in field 4 5 5 5 5 5 any bit fitter in field 4 5 5 5 5 5 any bit fitter in field 4 5 5 5 5 5 any bit fitter in field 4 5 5 5 5 5 any bit fitter in field 4 5 5 5 5 5 any bit fitter in field fitter in field 5 5 5 5 5 analy bit fitter in field fitter in field 6 6 6 6 6 analy bit fitter in fi						1							
3: 5-NaOH: 6= Other : F= filter in field 4 F4 4 2 F2 sry 10th sample. ary 10th sample. mpany						Ħ				Π			
3; 5-NaOH; 6= Other ; F= fitter in field 4 F4 4 2 F2 ery 10th sample. ry 10th sample. mpany mpany mpany Date/Time: Date/Time: Date/Time: npany													
Promote Date/Time: Date/Time: mpany: Date/Time: Date/Time: mpany: Date/Time: Date/Time: mpany: Date/Time: Date/Time:	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=H	INO3; 5=Na	OH; 6= Ot	her	; Fafi	lter in fi	eld	4	F4	4	2	F2	
mpany Date/Time Date/Time mpany Date/Time Date/Time mpany Date/Time Date/Time mpany Date/Time Date/Time	 Six 1L Bottles must be collected for Radium for 	every 10th	sample.										
M Company Date/Time: Date/Time: Date/Time: Company: Company: Date/Time: Received by Company: Date/Time: Received by	Special Instructions/QC Requirements & Commen	超											
Company: Date/Time: Received by: Date/Time: Company: Date/Time: Received in Laboratory with the second of the second	A MIL	Company	2		Date/Tin	201	1600 Re	ceived by				7	Date/Time:
Company: Date/Time Received in Laboratory we concerned of 27/22	Relinquished by:	Company:			Date/Tim	ē	and and and and and and and and and and	ceived by:	142				Date/Time:
	Relinquished by	Company:		8 =	Date/Tin	e e	Re	ceived in I	aboratory	1			

Package Type Delivery Type Box Bag Envelope PONY UPS FedEX USPS Other		STE SAMPLE RECEIPT FORM (IR#1)
Other	Package Type	Delivery Type
Plant/Customer Image: Container of Plastic Containers:	Cooler Box Bag Envelope	PONY UPS FedEX USPS
Opened By		Other
Date/Time 6/27/22 1.00 pm Number of Mercury Containers: 31 Were all temperatures within 0-6°C? Y / N o N// Initial:on ice (no ice) (IR Gun Ser# 210441568, Expir.5/27/2023) - If No, specify each deviation: on ice (no ice) Was container in good condition Y N N Comments	Plant/Customer Prhey	Number of Plastic Containers:
Were all temperatures within 0-6°C? Y / N or N/A Initial:on ice (no ice) (IR Gun Ser# 210441568, Expir.5/27/2023) - If No, specify each deviation: Was container in good condition Y N Comments Was Chain of Custody received? Y / N Comments Was Chain of Custody received? Y / N Comments If RUSH, who was notified? PH (15 min) Cr ⁴⁶ (pres) NO2 or NO3 (48 hr) ortho-PO4 (48 hr) Hg-diss (pres) Was COC filled out properly? Y N Comments	Opened By JAB JDB JWB	Number of Glass Containers:
(IR Gun Ser# 210441568, Expir.5/27/2023) - If No, specify each deviation: Was container in good condition Y N Comments Was Chain of Custody received? Y N Comments Requested turnaround: Refuested turnaround: If RUSH, who was notified? pH (15 min) Cr ⁴⁶ (pres) NO2 or NO3 (48 hr) ortho-PO4 (48 hr) Hg-diss (pres) Was COC filled out properly? Y N Comments (48 hr) Was COC filled out properly? Y N Comments (48 hr) Were samples labeled properly? Y N Comments (48 hr) Were correct containers used? Y N comments (48 hr) Was pH checked & Color Coding done Y N or N/A Initial & Date: TWR L (2 H 2 Z) pH paper (circle one): MQuant pH Cat 1.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21 - Was Add'I Preservative needed? Y N Comments (See Prep Book) Is sample filtration requested? Y N Comments (See Prep Book) Was the customer contacted? If Yes: Pers	Date/Time 6/27/22 1:00pm	Number of Mercury Containers: 31
Was container in good condition Y N Comments Was Chain of Custody received? Y N Comments Requested turnaround: Not comments	Were all temperatures within 0-6°C? Y/N	or N/A Initial:on ice / no ice
Was Chain of Custody received: Y N Comments	(IR Gun Ser# 210441568, Expir.5/27/2023)	- If No, specify each deviation:
Requested turnaround: Keuting If RUSH, who was notified? pH (15 min) Cr ⁺⁶ (pres) NO2 or NO3 (48 hr) ortho-PO4 (48 hr) Hg-diss (pres) Was COC filled out properly? Y N Comments (48 hr) Were samples labeled properly? Y N Comments (48 hr) Were correct containers used? Y N Comments (48 hr) Was pH checked & Color Coding done Y N or N/A Initial & Date: JWB L(2)/22 pH paper (circle one): MQuant pH Cat 1.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21 - Was Add'I Preservative needed? Y N f Yes: By whom & when: (See Prep Book) Is sample filtration requested? Y N Comments (See Prep Book) Was the customer contacted? If Yes: Person Contacted: (See Prep Book)	Was container in good condition (Y) N	Comments
Requested turnaround: Yetting If RUSH, who was notified? pH (15 min) Cr ⁺⁶ (pres) NO2 or NO3 (48 hr) ortho-PO4 (48 hr) Hg-diss (pres) Was COC filled out properly? Y N Comments (48 hr) Were samples labeled properly? Y N Comments (48 hr) Were correct containers used? Y N Comments (48 hr) Was pH checked & Color Coding done Y N or N/A Initial & Date: JWB L(2)/22 pH paper (circle one): MQuant pH Cat 1.09535.0001 [0R] Lab rat pH Cat # LRS -4801 Lot X000RWDG21 - Was Add'I Preservative needed? Y N f Yes: By whom & when: (See Prep Book) Is sample filtration requested? Y N Comments (See Prep Book) Was the customer contacted? If Yes: Person Contacted: (See Prep Book)	Was Chain of Custody received? Y/ N	Comments
(24 hr) (48 hr) Was COC filled out properly? Y N Comments Were samples labeled properly? Y N Comments Were correct containers used? Y N Comments Was pH checked & Color Coding done Y N or N/A Initial & Date: JWB L [2][22] pH paper (circle one): MQuant pH Cat 1.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Iot HC904495 Iot HC904495 Iot Y Nor N/A See Prep Book) Is sample filtration requested? Y N Comments (See Prep Book) Was the customer contacted? If Yes: Person Contacted:		
Were samples labeled properly? Y N Comments Were correct containers used? Y N Comments Was pH checked & Color Coding done Y N or N/A Initial & Date: JWB L(22/22) pH paper (circle one): MQuant pH Cat 1.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21 - Was Add'l Preservative needed? Y N f Yes: By whom & when:		
Were correct containers used? Y N Comments Was pH checked & Color Coding done Y N or N/A Initial & Date: JWB 6/27/22 pH paper (circle one): MQuant pH Cat 1.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Iot HC904495	Was COC filled out properly? (Y)N	Comments
Was pH checked & Color Coding done Y N or N/A Initial & Date: JWB 6/27/22 pH paper (circle one): MQuant pH Cat 1.09535.0001	Were samples labeled properly? Y N	Comments
pH paper (circle one): MQuant pH Cat 1.09535.0001 ORI Lab rat pH Cat # LRS -4801 - Was Add'I Preservative needed? Y N If Yes: By whom & when: (See Prep Book) Is sample filtration requested? Y N Comments	Were correct containers used? (Y)N	Comments
- Was Add'l Preservative needed? Y N If Yes: By whom & when:(See Prep Book) Is sample filtration requested? Y N Comments(See Prep Book) Was the customer contacted? If Yes: Person Contacted:	Was pH checked & Color Coding done Y	N or N/A Initial & Date: JWB 6/27/22
Is sample filtration requested? Y N Comments	INT HEQUAAQ5	
Was the customer contacted? If Yes: Person Contacted:	- Was Add'l Preservative needed? Y N	f Yes: By whom & when: (See Prep Book)
	Is sample filtration requested? Y $\left(N \right)$	Comments (See Prep Book)
Lattick D. Date 9 Theory	Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Lab ID# Initial &	& Date & Time :
Logged by	Comme	ents:
Mes	Men	
		······································

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- XR2Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \mathbf{X} R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Jonathan Barnhill	Jonathan Bounhill	Lab Supervisor	12-12-2022
Name (printed)	Signature	Official Title	Date

ICP-MS Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: _

Reviewer Name: Jonathan Barnhill

LRC Date: 12-12-2022

Laboratory Job Number: 222015

Prep Batch Number(s): ______PB22070101 PB2207151 QC2207105 QC2207151

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?		
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	Ι	Were appropriate type(s) of blanks analyzed?	Yes	
	Ι	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR). ³	Exception Report No.4
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	Ι	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	Ι	Were all COCs included in the LCS?	Yes	
	Ι	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NO	ER3
	Ι	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	Ι	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power</u> Dolan Chemical Laboratory

Project Name: _

Reviewer Name: Jonathan Barnhill

LRC Date: 12-12-2022

Laboratory Job Number: 222015

Prep Batch Number(s): ______PB22070101 PB2207151 QC2207105 QC2207151

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	Ι	Was the ICAL curve verified for each analyte?	Yes	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	Yes	
	Ι	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12-12-2022

Laboratory Job Number: 222015

Prep Batch Number(s): ______PB22070101 PB2207151 QC2207105 QC2207151

Exception Report No.	Description	
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.	
ER2	CCB acceptance criteria is CCB<2.2*MDL.	
ER3	Matrix Spike failure for Na on sample 222015-001	
	Matrix Spike failure for Co Li on sample 222015-006	
	Matrix Spike failure for Ca Li Mg Na Co K on sample 222015-015	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

NA.

R4

- ➤ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- **R2** Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
 - Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- ⋉ R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha T. Palmer	Tam Talmes	Chemical Technician, Principal	07/07/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: ______American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	1
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	<u> </u>	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes, No	ER1
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	8 I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	<u> </u>	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: <u>American Electric</u> Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Exception Report No.	Description
ER1	PB22062804 the RPD was slightly above 25%

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- XR2Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \mathbf{X} R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Sunita Timsina	Timbina	Chemist Associate	07/07/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Nam	e: <u>American Electric Power Dolan Chemical Laboratory</u>
Project Name: _	Pirkey Power Station
Reviewer Name:	Sunita Timsina
LRC Date: 07/07	7/2022
Laboratory Job 1	Number: <u>222015</u>
	ber(s): PB22062806

Item ¹			Result (Yes, No, NA, NR). ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?	Yes	
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	Ι	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR). ³	Exception Report No.4
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	Ι	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	Ι	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	Ι	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	N/A	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	N/A	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	N/A	
R9	0, I	Method quantitation limits (MQLs):		
	Ι	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062806

Item ¹			Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	NA	
	Ι	Were percent differences for each analyte within the method-required QC limits?	NA	
	Ι	Was the ICAL curve verified for each analyte?	NA	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	Ι	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹ Analytes ² Descripti		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	Ι	NA		
S7	0	Tentatively identified compounds (TICs):		
	Ι	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ι	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	NA	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	Ι	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports. Laboratory Name: American Electric Power Dolan Chemical Laboratory Project Name: Pirkey Power Station Reviewer Name: Sunita Timsina LRC Date: 07/07/2022 Laboratory Job Number: 222015 Prep Batch Number(s): PB22062806

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

NA

x

R4

x	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data
	(which includes the reportable data identified on this page), Table 2, Supporting Data, and
	Table 3, Exception Reports.

- R1 Field chain-of-custody documentation
- R2 Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
 - Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates

x	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix
---	----	---

- \mathbf{X} R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Susann Sulzmann	Susann Sultmann	Senior Chemist	08-03-2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Item ¹ Analytes ²		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	1	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹ Analytes		Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	<u> </u>	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	177.
	I	Was the LCSD RPD within QC limits?	yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?		
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	1	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name:	American	Electric	Power	Dolan	Chemical	Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.⁴	
S6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
S7	0	Tentatively identified compounds (TICs):			
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions			
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	0, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	0, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	0, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	0, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	O, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):			
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Table 3. Exception Reports.

 Laboratory Name:
 American Electric Power Dolan Chemical Laboratory

 Project Name:
 Pirkey Power

 Reviewer Name:
 Susann Sulzmann

 LRC Date:
 8-03-2022

 Laboratory Job Number:
 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Exception Report No.	Description								
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>								

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

AMERICAN
ELECTRIC
POWER®

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/27/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222016

Customer Sample ID: AD-8

Lab Number: 222016-001

Date Collected: 06/22/2022 13:16 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	1.04 mg/L	1	0.050	0.009	GES	07/12/2022 21:48	EPA 200.8-1994, Rev. 5.4
Calcium	37.2 mg/L	1	0.05	0.02 M1	GES	07/12/2022 21:48	EPA 200.8-1994, Rev. 5.4
Magnesium	3.73 mg/L	1	0.10	0.02	GES	07/12/2022 21:48	EPA 200.8-1994, Rev. 5.4
Potassium	0.69 mg/L	1	0.10	0.02	GES	07/12/2022 21:48	EPA 200.8-1994, Rev. 5.4
Sodium	12.4 mg/L	1	0.20	0.05 M1	GES	07/12/2022 21:48	EPA 200.8-1994, Rev. 5.4
Strontium	0.208 mg/L	1	0.0020	0.0004 M1	GES	07/12/2022 21:48	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-16

Lab Number: 222016-002

Date Collected: 06/22/2022 11:05 EDT

Customer Description:

Preparation:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	07/12/2022 22:04	EPA 200.8-1994, Rev. 5.4
Calcium	1.80 mg/L	1	0.05	0.02	GES	07/12/2022 22:04	EPA 200.8-1994, Rev. 5.4
Magnesium	2.17 mg/L	1	0.10	0.02	GES	07/12/2022 22:04	EPA 200.8-1994, Rev. 5.4
Potassium	0.91 mg/L	1	0.10	0.02	GES	07/12/2022 22:04	EPA 200.8-1994, Rev. 5.4
Sodium	13.8 mg/L	1	0.20	0.05	GES	07/12/2022 22:04	EPA 200.8-1994, Rev. 5.4
Strontium	0.0171 mg/L	1	0.0020	0.0004	GES	07/12/2022 22:04	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-23 Lab Number: 222016-003

Date Collected: 06/22/2022 12:17 EDT

Customer Description:

Preparation:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.057 mg/L	1	0.050	0.009	GES	07/12/2022 22:09	EPA 200.8-1994, Rev. 5.4
Calcium	0.25 mg/L	1	0.05	0.02	GES	07/12/2022 22:09	EPA 200.8-1994, Rev. 5.4
Magnesium	0 .21 mg/L	1	0.10	0.02	GES	07/12/2022 22:09	EPA 200.8-1994, Rev. 5.4
Potassium	2.67 mg/L	1	0.10	0.02	GES	07/12/2022 22:09	EPA 200.8-1994, Rev. 5.4
Sodium	2.72 mg/L	1	0.20	0.05	GES	07/12/2022 22:09	EPA 200.8-1994, Rev. 5.4
Strontium	0.0025 mg/L	1	0.0020	0.0004	GES	07/12/2022 22:09	EPA 200.8-1994, Rev. 5.4

AMERICAN
ELECTRIC
POWER®

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/27/2022

Reissued

Customer: Pirkey Power Station

Job ID: 222016

Customer Sample ID: AD-27

Lab Number: 222016-004

Date Collected: 06/22/2022 12:57 EDT

Preparation:

Customer Description:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	07/12/2022 22:14	EPA 200.8-1994, Rev. 5.4
Calcium	3.88 mg/L	1	0.05	0.02	GES	07/12/2022 22:14	EPA 200.8-1994, Rev. 5.4
Magnesium	5.41 mg/L	1	0.10	0.02	GES	07/12/2022 22:14	EPA 200.8-1994, Rev. 5.4
Potassium	2.10 mg/L	1	0.10	0.02	GES	07/12/2022 22:14	EPA 200.8-1994, Rev. 5.4
Sodium	7.65 mg/L	1	0.20	0.05	GES	07/12/2022 22:14	EPA 200.8-1994, Rev. 5.4
Strontium	0.0590 mg/L	1	0.0020	0.0004	GES	07/12/2022 22:14	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-34

Lab Number: 222016-005

Date Collected: 06/22/2022 11:48 EDT

Customer Description:

Preparation:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.066 mg/L	1	0.050	0.009	GES	07/12/2022 22:19	EPA 200.8-1994, Rev. 5.4
Calcium	45.8 mg/L	1	0.05	0.02	GES	07/12/2022 22:19	EPA 200.8-1994, Rev. 5.4
Magnesium	38.6 mg/L	1	0.10	0.02	GES	07/12/2022 22:19	EPA 200.8-1994, Rev. 5.4
Potassium	7.51 mg/L	1	0.10	0.02	GES	07/12/2022 22:19	EPA 200.8-1994, Rev. 5.4
Sodium	16.2 mg/L	1	0.20	0.05	GES	07/12/2022 22:19	EPA 200.8-1994, Rev. 5.4
Strontium	0.491 mg/L	1	0.0020	0.0004	GES	07/12/2022 22:19	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-36 Lab Number: 222016-006

Date Collected: 06/22/2022 12:35 EDT

Customer Description:

Preparation:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.059 mg/L	1	0.050	0.009	GES	07/12/2022 22:24	EPA 200.8-1994, Rev. 5.4
Calcium	0.38 mg/L	1	0.05	0.02	GES	07/12/2022 22:24	EPA 200.8-1994, Rev. 5.4
Magnesium	1.69 mg/L	1	0.10	0.02	GES	07/12/2022 22:24	EPA 200.8-1994, Rev. 5.4
Potassium	1.46 mg/L	1	0.10	0.02	GES	07/12/2022 22:24	EPA 200.8-1994, Rev. 5.4
Sodium	5 .2 5 mg/L	1	0.20	0.05	GES	07/12/2022 22:24	EPA 200.8-1994, Rev. 5.4
Strontium	0.0068 mg/L	1	0.0020	0.0004	GES	07/12/2022 22:24	EPA 200.8-1994, Rev. 5.4

AMERICAN
ELECTRIC
POWER®

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/27/2022

Job ID: 222016 Customer: Pirkey Power Station

Customer Sample ID: Duplicate-3

Lab Number: 222016-007

Date Collected: 06/22/2022 15:00 EDT

Customer Description: Preparation:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.067 mg/L	1	0.050	0.009	GES	07/12/2022 22:29	EPA 200.8-1994, Rev. 5.4
Calcium	47.0 mg/L	1	0.05	0.02	GES	07/12/2022 22:29	EPA 200.8-1994, Rev. 5.4
Magnesium	39.4 mg/L	1	0.10	0.02	GES	07/12/2022 22:29	EPA 200.8-1994, Rev. 5.4
Potassium	7.57 mg/L	1	0.10	0.02	GES	07/12/2022 22:29	EPA 200.8-1994, Rev. 5.4
Sodium	16.6 mg/L	1	0.20	0.05	GES	07/12/2022 22:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.489 mg/L	1	0.0020	0.0004	GES	07/12/2022 22:29	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: Equipment Blank

Lab Number: 222016-008

Date Collected: 06/22/2022 11:24 EDT

Customer Description:

Preparation:

Date Received: 06/27/2022 13:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	07/12/2022 22:34	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg/L	1	0.05	0.02 U1	GES	07/12/2022 22:34	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02 mg/L	1	0.10	0.02 U1	GES	07/12/2022 22:34	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02 mg/L	1	0.10	0.02 U1	GES	07/12/2022 22:34	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05 mg/L	1	0.20	0.05 U1	GES	07/12/2022 22:34	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004 mg/L	1	0.0020	0.0004 U1	GES	07/12/2022 22:34	EPA 200.8-1994, Rev. 5.4

222016

Job Comments:

Original report issued 7/29/2022. Report reissued with amended matrix spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 222016 Report Verification **Customer: Pirkey Power Station**

Date Reported: 12/27/2022

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

M1 - The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

U1 - Not detected at or above method detection limit (MDL).

Groveport, Ohio 43125				Program	Iram: (Coal Coi	nbustic	: Coal Combustion Residuals (CCR)	Is (CCR)				
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)				1	S	Site Contact:	ų			Date:	:0	COC/Order #:	For Lab Use Only: sr#:
Project Name: Pirkey PP CCR-Landfill Contact Name: Leslie Fuerschbach Contact Phone: 318-573-2744	Anatysis 6 Rou	โนเmarounc trine (28 d≋	Anatysis Turmaround Time (in Calendar Days) & Routine (28 days for Monitoring Weils)	atendar D oring Wel	s)	N -	250 mL bottle, pH<2, HNO ₃	Field-fitter 250 mL bottle, then pH<2, HNO ₃	Three (six every 10th*) 1 L bottles, PH<2, HNO3	125 mL PTFE lined bottle, HCL ^{**} , pH<2	Flaid Fittered 125 mL PTFE lined bottle, HCL*, pH<2	04	222016
Sampler(s): Matt Hamilton Kenny McDonald						eleiti		se, Cd, Mo,			ผ่าวมอ		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	ni (a)neiqma2	B, Ca, K, Mg	26, 56, 12 26, 56, 18, 84, 5 36, 76, 11 26, 11	Ra-226, Ra	Mercury	M beviossiQ		Sample Specific Notes.
AD-8	6/22/2022	1216	თ	GW	-		×						
AD-16	6/22/2022	1005	υ	GW	-		×						
AD-23	6/22/2022	1117	თ	GW	-		×						
AD-27	6/22/2022	1157	თ	GW	-		×						
AD-34	6/22/2022	1048	ე	GW	-		×						
AD-36	6/22/2022	1135	υ	GW	-		×						
Duplicate - 3	6/22/2022	1400	9	GW	-		×		0				
Equipment Blank	6/22/2022	1024	υ	GW	-		×						
						1							
Preservation Used: 1= Ice. 2= HCI; 3= H2SO4: 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Na	OH: 6= 0	her	; F= filter i	tter in field	pia	4	F4	4	2	2		
 Six 1L Bottles must be collected for Radium for every 10th sample 	every 10th	sample.							Ċ.				
Special Instructions/QC Requirements & Comments:						8							
Relinquished by any any any any any any any any any an	Company	-		Date/Time		16 R	Received by			1	ß	Date/Time	
Relinquished by:	Company			Date/Time:	ē	æ	Received by:	5				Date/Time:	
Relinquished by:	Company			Date/Time:	9	ž	eceived in	Received in Laboratory M	1 1	2		Date/Time:	Date/Time: 2/27 ('On DM

WATER & WASTE SAMPLE RECEIPT FORM (IR#1)

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer_Puhery	Number of Plastic Containers:
Opened By JAB JDB JWB	_ Number of Glass Containers:
Date/Time 6/27/22 1:00pm	Number of Mercury Containers:
-	o N/A Initial:on ice / no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	- If No, specify each deviation:
Was container in good condition (Y) N	Comments
Was Chain of Custody received (Y) N	Comments
Requested turnaround: Koutine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or (24 hr)	NO₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? Y N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done Y	N or N/A Initial & Date: JWB 6/27/22
pH paper (circle one): MQuant pH Cat 1 lot HC904495	.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y N	If Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book
Was the customer contacted? If Yes	: Person Contacted:
Lab ID#2220(6 Initial 8	& Date & Time :
Logged byComm	nents:
Reviewed by Myb	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- XR2Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes:
 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard(b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- \mathbb{R}_{4} R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

■ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \times R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Jonathan Barnhill	Jonathan Bounkill	Lab Supervisor	12-12-2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: _

Reviewer Name: Jonathan Barnhill

LRC Date: 12-12-2022

Laboratory Job Number: 222016

Prep Batch Number(s): PB22070101 QC2207105

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	Ι	Were appropriate type(s) of blanks analyzed?	Yes	
	Ι	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	Ι	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	Ι	Were all COCs included in the LCS?	Yes	
	Ι	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	Ι	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	Ι	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
_	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power</u> Dolan Chemical Laboratory

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12-12-2022

Laboratory Job Number: 222016

Prep Batch Number(s): PB22070101 QC2207105

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	Ι	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.⁴
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: <u>American Electric</u> Power Dolan Chemical Laboratory

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12-12-2022

Laboratory Job Number: 222016

Prep Batch Number(s): PB22070101 QC2207105

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Matrix Spike failed for Ca Na Sr on sample 222016-001

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

AMERICAN ELECTRIC			Water Analysis Report				Dolan Chemical Laborator 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4223	
POWER				Reissued			Audinet: 210-4221	
Job ID: 222847			Custom	er: Pirkey Power Stat	ion	Date	Reported: 12/30/2022	
Customer Sample ID: AD)-3			Customer De	scriptior	n: TG-32		
Lab Number: 222847-0	01			Preparation:				
Date Collected: 08/30/2	2022 11:50 EC	от		Date Receive	d: 09/0	1/2022 10:30 E	DT	
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
TDS, Filterable Residue	170 mg/L	1	50	20	SDW	09/01/2022 12:04	SM 25400-2015	
Customer Sample ID: AI)-23			Customer De	scriptior	1: TG-32		
Lab Number: 222847-0	02			Preparation:				
Date Collected: 08/30/2	2022 11:08 E	от		Date Receive	d: 09/0	1/2022 10:30 E	DT	
Metals								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Boron	0.032 mg/L	1	0.050	0.009 J1	GES	09/06/2022 18:11	EPA 200.8-1994, Rev. 5.4	
Customer Sample ID: AI	0-34			Customer De	scriptior	n: TG-32		
Lab Number: 222847-003				Preparation:				
Date Collected: 08/30/2022 09:36 EDT				Date Receive	d: 09/0	1/2022 10:30 E	DT	
Metals								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Calcium	46.0 mg/L	1	0.05	0.02	GES	09/06/2022 18:16	EPA 200.8-1994, Rev. 5.4	
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
TDS, Filterable Residue	1650 mg/L	2	100	40	SDW	09/01/2022 12:10	SM 2540C-2015	
Customer Sample ID: AI	0-36			Customer De	scriptior	n: TG-32		
Lab Number: 222847-0	04		Preparation:					
Date Collected: 08/30/2	2022 10:05 E	от	Date Received: 09/01/2022 10:30 EDT				DT	
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Chloride	10.3 mg/L	2	0.04	0.02	CRJ	09/07/2022 13:58	EPA 300.1 -1997, Rev. 1.0	
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	09/07/2022 13:58	EPA 300.1 -1997, Rev. 1.0	
Sulfate	3.00 mg/L	2	0.40	0.06	CRJ	09/07/2022 13:58	EPA 300.1-1997, Rev. 1.0	
Metals								
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Calcium	0.28 mg/L	1	0.05	0.02	GES	09/06/2022 18:21	EPA 200.8-1994, Rev. 5.4	

Reissued

Customer: Pirkey Power Station

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/30/2022

Job ID: 222847

222847 Job Comments:

Original report issued 9/27/2022. Report reissued with amended matrix spike precision calculations.

Report Verification

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Record
Custody
Chain of

Dotan Chemical Laboratory (DCL) 401 Birby Road Groweport, Ohio 41125 Contacts: Michael Onlinger (614-635-4184) Project Name: Prikey - CCR Donation Entropy - CCR Contact Phone: Sampler (5): Kenny McDonald Contact Phone: 318-423-3805 Sampler (5): Kenny McDonald Sampler (5): Kenny McDonald Sample Identification Sample Identification Broucci 318-423-3805 Sample Identification Sample Contact Phone: 318-423-3805 Sample Identification Broucci Broucci Sample Identification Broucci AD-33 Broucci Sample Identification Broucci AD-33 Broucci AD-34 Broucci AD-35 Broucci AD-36 Broucci AD-36 Broucci AD-36 Broucci AD-36 Broucci AD-37 Broucci AD-38 Broucci AD-38 Broucci Six IL Bordes must be collected for Radium for every 10th sample.

ASP WATER & WASTE SAMPLE RECEIPT FORM (Temp Gun 1)

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS Fode USPS
	Other
Plant/Customer Pirkty	
Opened By MGK	Number of Glass Containers:
	-
Date/Time 9/1/22 10:30 AM	Number of Mercury Containers:
Were all temperatures within 0-6°C?()/N	or N/A Initial: MGK on ice / no
ice (IR Gun Ser# 221368900, Expir. 3/22/2	
Was container in good condition? () / N	Comments
	Comments
Requested turnaround:	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly?	Comments
Were correct containers used? YN	Comments
Was pH checked & Color Coding done Y	N or N/A Initial & Date: M(rtr 9/1/22
<i>pH paper (circle one)</i> : MQuant,PN1.09535.0001,L0	DT# HC904495 [OR] Lab Rat,PN4801,LOT# X000RWDG2
Was Add'l Preservative needed? Y /N If Y	es: By whom & when: (See Prep Book)
Is sample filtration requested? Y / $ otin V$	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 222847 Initial &	Date & Time :
Logged by <u>~~~~</u>	nts:
Reviewed by MGC	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- ✗R2Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes:
 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard(b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \times R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Jonathan Barnhill	Jonathan Bounkill	Lab Supervisor	9/21/2022
Name (printed)	Signature	Official Title	Date

ICP-MS Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 9/21/2022

Laboratory Job Number: 222847

Prep Batch Number(s): PB22090601 QC2209029

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?	Yes	
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	Ι	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	Ι	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	Ι	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NR	
	I	Were MS/MSD RPDs within laboratory QC limits?	NR	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

ICP-MS Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power</u> Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 9/21/2022

Laboratory Job Number: 222847

Prep Batch Number(s): PB22090601 QC2209029

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	Ι	Was the ICAL curve verified for each analyte?	Yes	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	Ι	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.⁴
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

ICP-MS Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: <u>American Electric</u> Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 9/21/2022

Laboratory Job Number: _____222847

Prep Batch Number(s): PB22090601 QC2209029

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

This data package consists of:

	I	0	
X	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.		
X	Rı	Field chain-of-custody documentation	
X	R2	Sample identification cross-reference	
×	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) 	
×	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits	
X	R5	Test reports/summary forms for blank samples	
X	R6	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits	
×	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits 	
X	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates 	
x	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix	
x	R10	Other problems or anomalies	
x	The E	xception Report for every item for which the result is "No" or "NR" (Not Reviewed)	
	<u>.</u>		

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

statement is true.	1-1.1			
Timothy E Arnold	Owing E Culel	Chemist Prin	9/8/2022	_
Name (printed)	Signature	Official Title	Date	•

Table 1. Reportable Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pir	key
Reviewer Name:	Timothy E Arnold
LRC Date: 9/8/202	22
Laboratory Job Nu	imber: 222847
Prep Batch Numbe	er(s): QC2209040

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	:
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	0, I	Test reports/summary forms for blank samples		
	Ι	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	1

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: _____Timothy E Arnold

LRC Date: 9/8/2022

Laboratory Job Number: 222847

Prep Batch Number(s): QC2209040

Item ¹			Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	Ι	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	Ι	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
\$3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	× 1	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹ Analytes ²		Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation				
	I	Did dual column confirmation results meet the method-required QC?	NA			
S7	0	Tentatively identified compounds (TICs):				
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA			
S 8	I	Interference Check Sample (ICS) results:				
	I	Were percent recoveries within method QC limits?	NA			
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions				
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA			
S10	0, I	Method detection limit (MDL) studies				
÷.	I	Was a MDL study performed for each reported analyte?	Yes			
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes			
S11	0, I	Proficiency test reports:				
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes			
S12	0, I	Standards documentation				
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes			
S13	0, I	Compound/analyte identification procedures				
	I	Are the procedures for compound/analyte identification documented?	Yes			
S14	0, I	Demonstration of analyst competency (DOC)				
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes			
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes			
\$15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)				
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes			
S16	0, I	Laboratory standard operating procedures (SOPs):				
	I	Are laboratory SOPs current and on file for each method performed?	Yes			

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pir	
Reviewer Name:	Timothy E Arnold
LRC Date: 9/8/202	
Laboratory Job Nu	umber: 222847
Prep Batch Numb	er(s): QC2209040

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

¹NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

This data package consists of:

NA

R4

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- ▼ R1 Field chain-of-custody documentation
- **R2** Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
 - Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- **R6** Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - (a) Samples associated with the MS/MSD clearly identified
 - (b) MS/MSD spiking amounts
 - (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
 - (d) Calculated %Rs and relative percent differences (RPDs)
 - (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release

statement is true.		1 -	
Michael Ohlinger	_ Muhael O	Chemist	9/6/22
Name (printed)	Signature	Official Title	Date

TDS Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name	American Electric Power Dolan Chemical Laboratory
Project Name: W	elsh PBAP
Reviewer Name:	
LRC Date: 9/6/202	22
Laboratory Job N	
	er(s): QC2209024

Item ¹			Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

TDS Laboratory Review Checklist

Table 2. Supporting Data.

American	Electric	Power	Dolan	Chemical	Laboratory
,	American	American Electric	American Electric Power	American Electric Power Dolan	American Electric Power Dolan Chemical

Project Name: Welsh PBAP

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 222847

Prep Batch Number(s): QC2209024

Item ¹	Item ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S 1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	NA	
	Ι	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	Ι	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
\$15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

TDS Laboratory Review Checklist

Table 3. Exception Reports.

 Laboratory Name:
 American Electric Power Dolan Chemical Laboratory

 Project Name:
 Welsh PBAP

 Reviewer Name:
 Michael Ohlinger

 LRC Date:
 9/6/2022

 Laboratory Job Number:
 222847

 Prep Batch Number(s):
 QC2209024

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

AMERICAN ELECTRIC POWER					Rei	Ilysis Report		Data	Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221	
Job ID: 223647				Custom	er: Pirk	ey Power Stat			Reported: 12/22/2022	
Customer Sample ID: A	D-2					Customer De	n: TG-32			
Lab Number: 223647-0	001			Preparation:						
Date Collected: 11/15/	/2022 11:	05 ES	бТ			Date Receive	d: 11/1	.8/2022 10:20 E	ST	
Ion Chromatography										
Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method	
Bromide	0.37	mg/L	2	0.10	0.02		CRJ	11/30/2022 14:27	EPA 300.1 -1997, Rev. 1.0	
Chloride	30.5	mg/L	2	0.04	0.02		CRJ	11/30/2022 14:27	EPA 300.1 -1997, Rev. 1.0	
Fluoride	0.21	mg/L	2	0.06	0.02		CRJ	11/30/2022 14:27	EPA 300.1-1997, Rev. 1.0	
Sulfate	259	mg/L	10	2.0	0.3		CRJ	11/30/2022 13:54	EPA 300.1 -1997, Rev. 1.0	
Wet Chemistry										
Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5	mg/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011	
TDS, Filterable Residue	480	mg/L	1	50	20		SDW	11/20/2022 10:00	SM 2540C-2015	
Customer Sample ID: A	D-3					Customer De	scriptior	n: TG-32		
Lab Number: 223647-0	002					Preparation:				
Date Collected: 11/16/	/2022 12:	45 ES	бт			Date Receive	d: 11/1	.8/2022 10:20 E	ST	
Ion Chromatography										
Parameter	Result	Unite	Dilution	RL	мы	Data Oualifiers	Δnalvst	Analysis Date	Method	
Bromide		mg/L	2	0.10	0.02		CRJ	11/30/2022 13:21		
Chloride		mg/L	2	0.04	0.02		CRJ		EPA 300.1 -1997, Rev. 1.0	
Fluoride		mg/L	2	0.06	0.02		CRJ		EPA 300.1 -1997, Rev. 1.0	
Sulfate		mg/L	2	0.40	0.02		CRJ		EPA 300.1 -1997, Rev. 1.0	
Wet Chemistry										
Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	29	mg/L	1	20	5		MGK	11/21/2022 10:18	SM 2320B-2011	
TDS, Filterable Residue	160	mg/L	1	50	20		SDW	11/20/2022 10:05	SM 2540C-2015	

AMERICAN ELECTRIC POWER				Reis	lysis Report sued ey Power Stati		Date	Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221		
			Custom		-		Reported: 12/22/2022			
Customer Sample ID: AI					Customer De	: 1G-32				
Lab Number: 223647-0	03		Preparation:							
Date Collected: 11/16/	2022 12:32 ES	БТ			Date Receive	d: 11/1	8/2022 10:20 E	ST		
Ion Chromatography										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Bromide	0.19 mg/L	2	0.10	0.02		CRJ	11/30/2022 15:33	EPA 300.1-1997, Rev. 1.0		
Chloride	4.14 mg/L	2	0.04	0.02		CRJ	11/30/2022 15:33	EPA 300.1-1997, Rev. 1.0		
Fluoride	<0.02 mg/L	2	0.06	0.02	U1	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0		
Sulfate	16.6 mg/L	2	0.40	0.06		CRJ	11/30/2022 15:33	EPA 300.1-1997, Rev. 1.0		
Wet Chemistry										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011		
TDS, Filterable Residue	130 mg/L	1	50	20		SDW	11/20/2022 10:10	SM 2540C-2015		
Customer Sample ID: AI)-7				Customer De	scription	:: TG-32			
Lab Number: 223647-0	04				Preparation:					
Date Collected: 11/16/	2022 10:10 Es	т			Date Receive	d: 11/1	8/2022 10:20 E	ST		
Ion Chromatography										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Bromide	4.29 mg/L	2	0.10	0.02	•	CRJ	11/30/2022 17:45			
Chloride	69.7 mg/L	10	0.2	0.1		CRJ	12/01/2022 08:54	EPA 300.1-1997, Rev. 1.0		
Fluoride	0.23 mg/L	2	0.06	0.02		CRJ	11/30/2022 17:45			
Sulfate	60.5 mg/L	2	0.40	0.06		CRJ	11/30/2022 17:45	EPA 300.1 -1997, Rev. 1.0		
Wet Chemistry										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011		

AMERICAN ELECTRIC POWER			Wate		lysis Report <mark>ssued</mark>			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221		
Job ID: 223647			Custom	er: Pirk	ey Power Stati	Date	Reported: 12/22/2022			
Customer Sample ID: A	D-12				Customer De	n: TG-32				
Lab Number: 223647-	005		Preparation:							
Date Collected: 11/15/	БТ			Date Receive	d: 11/1	8/2022 10:20 E	ST			
Ion Chromatography										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Bromide	0.14 mg/L	2	0.10	0.02		CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0		
Chloride	8.03 mg/L	2	0.04	0.02		CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0		
Fluoride	0.08 mg/L	2	0.06	0.02		CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0		
Sulfate	3.39 mg/L	2	0.40	0.06		CRJ	11/30/2022 18:17	EPA 300.1-1997, Rev. 1.0		
Wet Chemistry										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011		
TDS, Filterable Residue	70 mg/L	1	50	20		SDW	11/20/2022 10:15	SM 2540C-2015		
Customer Sample ID: A	D-13				Customer De	scriptior	n: TG-32			
Lab Number: 223647-	006				Preparation:					
Date Collected: 11/15/	⁄2022 09:21 ES	бт			Date Receive	d: 11/1	8/2022 10:20 E	ST		
Ion Chromatography										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analvst	Analysis Date	Method		
Bromide	0.23 mg/L	2	0.10	0.02	•	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0		
Chloride	41.3 mg/L	2	0.04	0.02		CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0		
Fluoride	0.36 mg/L	2	0.06	0.02		CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0		
Sulfate	69.6 mg/L	2	0.40	0.06		CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0		
Wet Chemistry										
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	66 mg/L	1	20	5		MGK	11/21/2022 10:18	SM 2320B-2011		
TDS, Filterable Residue	260 mg/L	1	50	20		SDW	11/20/2022 10:15	SM 2540C-2015		

AMERICAN ELECTRIC POWER Job ID: 223647					er Analysis Repor Reissued er: Pirkey Power Sta		Date	Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221			
Customer Sample ID: Al	D-17				Customer De	n: TG-32					
Lab Number: 223647-0	07			Preparation:							
Date Collected: 11/16/	2022 11:	58 ES	БТ	Date Received: 11/18/2022 10:20 EST							
Ion Chromatography											
Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Bromide	0.20	mg/L	2	0.10	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0			
Chloride	35.0	mg/L	2	0.04	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0			
Fluoride	0.26	mg/L	2	0.06	0.02	CRJ	11/30/2022 18:50	EPA 300.1-1997, Rev. 1.0			
Sulfate	2.91	mg/L	2	0.40	0.06	CRJ	11/30/2022 18:50	EPA 300.1-1997, Rev. 1.0			
Wet Chemistry											
Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Alkalinity, as CaCO3	<5	mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011			
TDS, Filterable Residue	80	mg/L	1	50	20	SDW	11/20/2022 10:23	SM 2540C-2015			
Customer Sample ID: AI	D-18				Customer De	escriptior	n: TG-32				
Lab Number: 223647-0	08				Preparation:						
Date Collected: 11/16/	2022 11::	13 ES	БТ		Date Receiv	ed: 11/1	.8/2022 10:20 E	ST			
Ion Chromatography											
Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Bromide	0.04	mg/L	2	0.10	0.02 J1	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0			
Chloride	4.94	mg/L	2	0.04	0.02	CRJ	11/30/2022 19:56	EPA 300.1-1997, Rev. 1.0			
Fluoride	<0.02	mg/L	2	0.06	0.02 U1	CRJ	11/30/2022 19:56	EPA 300.1-1997, Rev. 1.0			
Sulfate	6.55	mg/L	2	0.40	0.06	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0			
Wet Chemistry											
Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Alkalinity, as CaCO3	<5	mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011			
TDS, Filterable Residue	90	mg/L	1	50	20	SDW	11/20/2022 10:23	SM 2540C-2015			

AMERICAN ELECTRIC POWER			Wate	er Analysis Repor Reissued		Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221				
Job ID: 223647			Custom	er: Pirkey Power Sta	Date	Date Reported: 12/22/2022				
Customer Sample ID: A	D-22			Customer De	ו: TG-32					
Lab Number: 223647-	009		Preparation:							
Date Collected: 11/14	/2022 12:31	EST		Date Receiv	ed: 11/1	.8/2022 10:20 E	ST			
Ion Chromatography										
Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Bromide	0.79 mg/	L 2	0.10	0.02	CRJ	11/30/2022 23:47	EPA 300.1-1997, Rev. 1.0			
Chloride	101 mg/	L 25	0.5	0.3	CRJ	11/30/2022 23:14	EPA 300.1-1997, Rev. 1.0			
Fluoride	0.28 mg/	L 2	0.06	0.02	CRJ	11/30/2022 23:47	EPA 300.1-1997, Rev. 1.0			
Sulfate	251 mg⁄	L 25	5.0	0.8	CRJ	11/30/2022 23:14	EPA 300.1-1997, Rev. 1.0			
Wet Chemistry										
Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Alkalinity, as CaCO3	<5 mg/	L 1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011			
TDS, Filterable Residue	570 mg/	L 1	50	20	SDW	11/20/2022 10:29	SM 2540C-2015			
Customer Sample ID: A	D-28			Customer De	escriptior	ו: TG-32				
Lab Number: 223647-	010			Preparation	:					
Date Collected: 11/16	/2022 09:48	EST		Date Receiv	ed: 11/1	.8/2022 10:20 E	ST			
Ion Chromatography										
Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Bromide	0.07 mg/	L 2	0.10	0.02 J1	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0			
Chloride	4.96 mg/	L 2	0.04	0.02	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0			
Fluoride	0.48 mg	L 2	0.06	0.02	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0			
Sulfate	23.3 mg/	L 2	0.40	0.06	CRJ	12/01/2022 00:53	EPA 300.1-1997, Rev. 1.0			
Wet Chemistry										
Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method			
Alkalinity, as CaCO3	<5 mg/	L 1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011			
TDS, Filterable Residue	80 mg/	L 1	50	20	SDW	11/20/2022 10:29				

AMERICAN ELECTRIC POWER				Rei	lysis Report ssued			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221	
Job ID: 223647			Custom	er: Pirk	ey Power Stat	ion	Date	Reported: 12/22/2022	
Customer Sample ID: A	D-30				Customer De	scriptior	n: TG-32		
Lab Number: 223647-0	011		Preparation:						
Date Collected: 11/16/	2022 10:46 ES	т			Date Receive	d: 11/1	.8/2022 10:20 E	ST	
Ion Chromatography									
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method	
Bromide	0.37 mg/L	2	0.10	0.02		CRJ	12/01/2022 01:58	EPA 300.1-1997, Rev. 1.0	
Chloride	27.4 mg/L	2	0.04	0.02		CRJ	12/01/2022 01:58	EPA 300.1 -1997, Rev. 1.0	
Fluoride	0.07 mg/L	2	0.06	0.02		CRJ	12/01/2022 01:58	EPA 300.1-1997, Rev. 1.0	
Sulfate	177 mg/L	10	2.0	0.3		CRJ	12/01/2022 01:25	EPA 300.1-1997, Rev. 1.0	
Wet Chemistry									
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011	
TDS, Filterable Residue	340 mg/L	1	50	20		SDW	11/20/2022 10:35	SM 2540C-2015	
Customer Sample ID: A	D-31				Customer De	scriptior	n: TG-32		
Lab Number: 223647-0	012				Preparation:				
Date Collected: 11/15/	2022 11:02 ES	т			Date Receive	d: 11/1	.8/2022 10:20 E	ST	
Ion Chromatography									
Parameter	Result Units	Dilution	RL	MDI	Data Qualifiers	Analyst	Analysis Date	Method	
Bromide	0.35 mg/L	2	0.10	0.02		CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0	
Chloride	24.3 mg/L	2	0.10	0.02		CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0	
Fluoride	24.3 mg/L 0.14 mg/L	2	0.04	0.02		CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0	
Sulfate	79.1 mg/L	2	0.40	0.02		CRJ	12/01/2022 03:04 12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0	
Wet Chemistry									
Parameter	Result Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011	
TDS, Filterable Residue	250 mg/L	1	50	20		SDW	11/20/2022 10:35	SM 2540C-2015	

AMERICAN ELECTRIC POWER	Wate		lysis Report ssued		Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221						
Job ID: 223647				Custom	er: Pirk	ey Power Stati	Date	Reported: 12/22/2022			
Customer Sample ID: Al	D-32					Customer De	scriptior	n: TG-32			
Lab Number: 223647-0)13			Preparation:							
Date Collected: 11/15/2022 10:03 EST						-	d: 11/1	8/2022 10:20 E	ST		
Ion Chromatography											
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Bromide	2.58 m	g/L	2	0.10	0.02		CRJ	12/01/2022 05:49	EPA 300.1-1997, Rev. 1.0		
Chloride	22.7 m	g/L	2	0.04	0.02		CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0		
Fluoride	0.49 m	g/L	2	0.06	0.02		CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0		
Sulfate	244 m	g/L	25	5.0	0.8		CRJ	12/01/2022 05:16	EPA 300.1 -1997, Rev. 1.0		
Wet Chemistry											
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	<5 m	g/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011		
TDS, Filterable Residue	450 m	g/L	1	50	20		SDW	11/20/2022 10:40	SM 2540C-2015		
Customer Sample ID: Al	D-33					Customer De	scriptior	n: TG-32			
Lab Number: 223647-0)14					Preparation:					
Date Collected: 11/15/	2022 12:06	6 ES	г			Date Receive	d: 11/1	8/2022 10:20 E	ST		
Ion Chromatography											
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Bromide	0.25 m	g/L	2	0.10	0.02	-	CRJ	12/01/2022 06:55	EPA 300.1-1997, Rev. 1.0		
Chloride	9.18 m	ŭ	2	0.04	0.02		CRJ	12/01/2022 06:55	,		
Fluoride	0.16 m	-	2	0.06	0.02		CRJ	12/01/2022 06:55	EPA 300.1-1997, Rev. 1.0		
Sulfate	42.7 m		2	0.40	0.06		CRJ	12/01/2022 06:55	,		
Wet Chemistry											
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	<5 m	g/L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011		
TDS, Filterable Residue	140 m	g/L	1	50	20		SDW	11/20/2022 10:40	SM 2540C-2015		

AMERICAN ELECTRIC POWER	Water Analysis Report Reissued	Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 223647	Customer: Pirkey Power Station	Date Reported: 12/22/2022
Customer Sample ID: Duplicate - 2	Customer Description: TG-3	32
Lab Number: 223647-015	Preparation:	
Date Collected: 11/15/2022 15:00 EST	Date Received: 11/18/20	22 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Chloride	41.3 mg/L	2	0.04	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.36 mg/L	2	0.06	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	70.2 mg/L	2	0.40	0.06	CRJ	12/01/2022 04:10	EPA 300.1-1997, Rev. 1.0
Wet Chemistry							

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	65 mg/L	1	20	5	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	270 mg/L	1	50	20	SDW	11/20/2022 10:47	SM 2540C-2015

223647

Job Comments:

Original report issued 12/21/22. Report reissued without P1 flag for alkalinity as sample and duplicate results < RL.

Report Verification

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223647

Customer: Pirkey Power Station

Date Reported: 12/22/2022

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-419) Project Name: Pirkey PP Semi-Annual CCR Contact Name: Lessile Fuerschbach Contact Phone: 318-673-2744			-	Program.	1: Coal C	ombustion	Coal Combustion Residuals (CCR)	(CCR)			
*				1	Site C	Site Contact:			Date:	For Lab Use Only: COC/Order #:	nhr
	nælysis Tu G Rot	imaround ⁻ Jtine (28	Anetysts Turnaround Time (in Calendar Days) G Routine (28 days for Monitori	endar Da	atysis Turnaround Time (in Calendar Days) G Routine (28 days for Monitoring Wells)	250 mL bottle, pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) 1 L bottles, pH<2, HNO3	223647	
Sampler(s): Matt Harniton Kenny McDonald					sleit		թւշուծ	, Br, linity	822-6		
San Sample Identification Di	Sample Date	Sample (Time	Sample Type (C∞Comp, G≊Grab)	Matrix	ج عشمال المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المال من المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي الم من المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي المالي الم	Wercury	M bevtossiQ	E, CI, SO4	ка-226, Ra	Sample Specific Notes	lotes
	11/15/2022	1005	υ	MO	1			×			
	11/16/2022	1145	υ	ВW	-			×			
AD-4 11/16	11/16/2022	1132	υ	ß	-			×			
AD-7	11/16/2022	910	σ	GW	-			×			
AD-12 11/16	11/15/2022	1058	U	GW	-			×			
	11/15/2022	821	υ	GW	+			×			
AD-17 11/16	11/16/2022	1058	υ	GW	-			×			
AD-18 11/16	11/16/2022	1013	U	GW	-			×			
AD-22 AD-22	11/14/2022	1131	U	GW	-			×			
AD-28 11/16	11/16/2022	848	υ	GW	-			×			
AD-30 11/16	11/16/2022	946	v	δ	-			×			
AD-31 AD-31	11/15/2022	1002	e	GW	-			×			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	3; 5=NaO	H; 6= Oth		. F= fi	.; F= filter in field	4	F4	1	4		
Six 1L Bottles must be collected for Radium for every 10th sample.	ery 10th s	ample.									
Special Instructions/GC Requirements & Comments: 76	$\widetilde{\gamma}$	TG-32 reeded	edet								
Relinquished by: A 2 and	Company	91		Date/Time:	·), !}~	Received by:	by:			Date/Time	
	Company:	-		Date/Time		Received by:	by:			Date/Time:	
Relinquished by Com	Company ⁻			Date/Time:	ài	Reperted	Repetred in Laboratory by	Cen		Date Time 10,200 M	1 th

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohlo 43125	7/21-2		-	Ch	ain c	of Cus	stody ustion R	Chain of Custody Record	d ccR)			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)				•	is	te Contac	÷	Site Contact:		Date:		For Lab Use Only: COC/Order #:
Project Name: Pirk ey PP CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 1 6 Rou	lumaround tine (28 da	Analysis Turmaround Time (In Calendar Days) G Routine (28 days for Monitoring Wells)	endar Da ring Well	(s) (s)	N 2	250 mL bottle, PH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th") 1 L bottles, pH<2, HNO3		
Sam plers Matt Hamilton Kenny McDonald						\$lāl?		ercury	, se , Br,	-528		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont	ini (a)tetqma2	Mercury	M bevlossiQ	F, CI, SO4, TDS, Alkal	8a-226, Ra		Sample Specific Notes:
AD-32	11/15/2022	1	U	ß	-				×			
AD-33	11/15/2022	1106	σ	GW	-				×			
Dupticate - 2	11/15/2022	1400	υ	GW	-				×			
				-								
				1	+							
					┢					_		
					+						+	
					1						╉	
				T	+							
Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Nai	OH; 6= Ot	her	. F= fi	; F= filter in field	bia	4	1	+	4		
 Six 1L Bottles must be collected for Radium for every 10th sample. 	every 10th	sample.										
Special Instructions/QC Requirements & Comments:	its:				e.							
16	TG-32 Acded	Acd	Ca									
Relinquished by Rath And	Company: E. e. lo			Date/Time:	<u>م</u> مح		Received by					Date/Time:
Relinquished by:	Company	P		Date/Time	6	Re	Received by				2	Date/Time:
Relinquished by:	Company		Ī	Date/Time:	6	er Br	Convocin 1	Received in Laboratory by:	APL			Date/18/22 10,30Am
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	rd for Coal	Combusti	on Residua	I (CCR)	Samplin	g - Shrev	eport, Rev	1, 1/10/17				

the second second second second second second second second second second second second second second second se	Sample Receipt Form Rev.7, 10 28 20
WATER & WA	STE SAMPLE RECEIPT FORM (Temp Gun 1)
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
Puhers	Other
Plant/Customer	Number of Plastic Containers:5
Opened By MSD	Number of Glass Containers:
Date/Time 1111822 10:20HW	Number of Mercury Containers:
Were all temperatures within 0-6°C?	or N/A Initial: AB on ice / no
ice (IR Gun Ser# 221368900, Expir. 3/22/24	024) - If No, specify each deviation:
Was container in good condition?(Y)/ N	Comments
Was Chain of Custody received? Y/ N	Comments
Requested turnaround: Routine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	NO₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? (Y)/ N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: 913111822
pH paper (circle one): MQuant,PN1.09535.0001,L0	DT# HC904495OR] Lab Rat, PN4801, LOT# X000RWDG21
Was Add'l Preservative needed? Y /N If Y	es: By whom & when: (See Prep Book)
Is sample filtration requested? Y /	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# Initial &	Date & Time :
Logged by MSD	AD 4 Bottle same Sup 11:33 COC 1132
Reviewed by	
\bigcup —	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory San

1

Sample Receipt Form SOP-7102

Page 1 of 1

Form SOP-7102

This data package consists of:

х	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data
	(which includes the reportable data identified on this page), Table 2, Supporting Data, and
	Table 3, Exception Reports.

- ▼ R1 Field chain-of-custody documentation
- R2 Sample identification cross-reference
- **R**₃ Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- R10 Other problems or anomalies

X

The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true

statement is true.		A	
Timothy E Arnold	_ Currely E Churchy	Prin Chemist	12/21/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Nar	me: <u>American Electric Power Dolan Chemical Laboratory</u>
Project Name:	Pirkey PP Semi-Annual CCR
Reviewer Name	Timothy E Arnold
LRC Date:	21/2022
Laboratory Job	Number: 223647
	nber(s): <u>QC2212004</u>

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
·	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?	Yes	
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	<u> </u>	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	Ι	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		ļ
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name:	Pirkey P	P Semi-Annual	CCR
r rojoet runner			

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2212004

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	Ι	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		·
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
<u>S3</u>	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
-	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	em ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	^N NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ι	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Laboratory Nai	me: <u>American Electric Power Dolan Chemical Laboratory</u>
Project Name:	Pirkey PP Semi-Annual CCR
	E: Timothy E Arnold
LRC Date: 12/2	21/2022
	Number: 223647
	mber(s): <u>QC2212004</u>

Exception Report No.	Description				
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>				

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable). NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

This data package consists of:

X	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.					
×	R1	Field chain-of-custody documentation				
×	R2	Sample identification cross-reference				
X	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) 				
NA	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits				
×	R5	Test reports/summary forms for blank samples				
X	R6	 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits 				
X	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits 				
x	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates 				
X	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix				
x	R 10	Other problems or anomalies				
×	The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)					

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release

statement is true.			1 .
Michael Ohlinger	Muhail	Chemist	12/20/22
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory N	ame: <u>American Electric Power Dolan Chemical Laboratory</u>
Project Name	Pirkey CCR
Reviewer Nar	ne: Michael Ohlinger
LRC Date: 12	
Laboratory Jo	ob Number: <u>223647</u>
	umber(s): <u>QC2211231</u>

Item ¹	Analytes ²	Description		Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	_
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	<u> </u>	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	1	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	Ι	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	L
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name:	American	Electric	Power	Dolan	Chemic	al Laborator	Ŋ
•						the second second second second second second second second second second second second second second second se	the second second

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 223647

Prep Batch Number(s): QC2211231

Item ¹	m ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
-	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	m ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		1
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		ļ
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
\$12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Laboratory Nan	ne: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey CCR
Reviewer Name	Michael Ohlinger
LRC Date: <u>12/2</u>	0/2022
10 P	Number: 223647
Prep Batch Nun	nber(s): QC2211231

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

^{*} Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

This data package consists of:

X

x	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data
	(which includes the reportable data identified on this page), Table 2, Supporting Data, and
	Table 3, Exception Reports.

- Image: R1Field chain-of-custody documentation
- Image: R2Sample identification cross-reference
- **R**₃ Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- **R10** Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

statement is true.	1=// 1	$\cap //$	
Michael Ohilnger	Muhay	Chemist	12/22/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Nan	American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey PP CCR
Reviewer Name	Michael Ohlinger
LRC Date: 12/2	
Laboratory Job	Number: 223647
Prep Batch Num	ber(s): QC2211194

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	-
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	Ι	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER1
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory N	Name: American Electric Power Dolan Chemical Laboratory
Project Name	e: Pirkey PP CCR
Reviewer Na	me: Michael Ohlinger
LRC Date: 1	
Laboratory J	0000.47
Prep Batch N	Tumber(s): QC2211194

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S1	0, I	Initial calibration (ICAL)			
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA		
	I	Were percent RSDs or correlation coefficient criteria met?	NA		
	I	Was the number of standards recommended in the method used for all analytes?	NA		
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes		
	I	Are ICAL data available for all instruments used?	NA		
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
	I	Was the CCV analyzed at the method-required frequency?	Yes		
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes		
	Ι	Was the ICAL curve verified for each analyte?	Yes		
	I	Was the absolute value of the analyte concentration in the inorganic CCB $<$ MDL?	No	ER2	
<u>S</u> 3	0	Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	NA		
	Ι	Were ion abundance data within the method-required QC limits?	NA		
S4	0	Internal standards (IS):			
	I	Were IS area counts and retention times within the method-required QC limits?	NA		
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)			
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes		
	I	Were data associated with manual integrations flagged on the raw data?	NA		

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	Ι	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ι	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		[
	I	Was a MDL study performed for each reported analyte?	Yes	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Laboratory	Name: American Electric Power Dolan Chemical Laboratory
Project Nan	ne: Pirkey PP CCR
	ame: Michael Ohlinger
LRC Date:	
	Job Number: 223647
	Number(s): QC2211194

Exception Report No.	Description
ER1	The RPD between duplicate results > acceptance limits, not flagged as results < MQL
ER2	CCB acceptance criteria is CCB<0.5*MQL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

 ² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).
 ³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

AMERICAN ELECTRIC POWER			Water Analysis Report Reissued					Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221		
Job ID: 223649			Custon	ner: Pirkey	/ Power Stati	on	Date	Reported: 12/22/2022		
Customer Sample ID: A	D-8			C	Customer Des	scriptior	n: TG-32			
Lab Number: 223649-	001			F	Preparation:					
Date Collected: 11/14/	/2022 11:07	EST		0	Date Receive	d: 11/1	.8/2022 10:20 E	ST		
Ion Chromatography										
Parameter	Result Un	ts Dilution	RL	MDL D	ata Qualifiers	Analyst	Analysis Date	Method		
Bromide	1.11 mg	/L 2	0.10	0.02		CRJ	12/01/2022 21:00	EPA 300.1 -1997, Rev. 1.0		
Chloride	23.1 mg	/L 2	0.04	0.02		CRJ	12/01/2022 21:00	EPA 300.1 -1997, Rev. 1.0		
Fluoride	2.04 mg	/L 2	0.06	0.02		CRJ	12/01/2022 21:00	EPA 300.1 -1997, Rev. 1.0		
Sulfate	119 mg	/L 10	2.0	0.3		CRJ	12/01/2022 20:27	EPA 300.1-1997, Rev. 1.0		
Wet Chemistry										
Parameter	Result Un	ts Dilution	n RL	MDL Da	ata Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	<5 mg	/L 1	20	5 U1	1	MGK	11/21/2022 10:18	SM 2320B-2011		
TDS, Filterable Residue	240 mg	/L 1	50	20		SDW	11/20/2022 10:47	SM 2540C-2015		
Customer Sample ID: A	D-16			C	Customer Des	scriptior	n: TG-32			
Lab Number: 223649-	002		Preparation:							
Date Collected: 11/14/	/2022 11:55	EST	Date Received: 11/18/2022 10:20 EST				ST			
Ion Chromatography										
Parameter	Result Un	ts Dilution	RL	MDL D	ata Qualifiers	Analyst	Analysis Date	Method		
Bromide	0.17 mg			0.02		CRJ	12/01/2022 19:54	EPA 300.1 -1997, Rev. 1.0		
Chloride	25.2 mg	/L 2	0.04	0.02		CRJ	12/01/2022 19:54	EPA 300.1-1997, Rev. 1.0		
Fluoride	0.07 mg		0.06	0.02		CRJ	12/01/2022 19:54	EPA 300 1 -1997, Rev. 1.0		
Sulfate	6.68 mg		0.40	0.06		CRJ	12/01/2022 19:54	EPA 300.1-1997, Rev. 1.0		
Wet Chemistry										
Parameter	Result Un	ts Dilution	n RL	MDL D	ata Qualifiers	Analyst	Analysis Date	Method		
Alkalinity, as CaCO3	<5 mg	/L 1	20	5 U1	-	MGK	11/21/2022 10:18	SM 2320B-2011		
TDS, Filterable Residue	90 mg	/L 1	50	20		SDW	11/20/2022 10:54	SM 2540C-2015		

AMERICAN ELECTRIC POWER				er Analysia Reissue	ed			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 223649			Custom	er: Pirkey P	ower Static	on	Date	Reported: 12/22/2022
Customer Sample ID: A	D-23			Cus	stomer Des	cription	: TG-32	
Lab Number: 223649-	003			Pre	paration:			
Date Collected: 11/14	/2022 12:02 ES	т		Dat	te Received	l: 11/1	8/2022 10:20 E	ST
Ion Chromatography								
Parameter	Result Units	Dilution	RL	MDL Data	Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02		CRJ	12/01/2022 22:06	EPA 300.1 -1997, Rev. 1.0
Chloride	7.49 mg/L	2	0.04	0.02		CRJ	12/01/2022 22:06	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02		CRJ	12/01/2022 22:06	EPA 300.1 -1997, Rev. 1.0
Sulfate	8.03 mg/L	2	0.40	0.06		CRJ	12/01/2022 22:06	EPA 300.1-1997, Rev. 1.0
Wet Chemistry								
Parameter	Result Units	Dilution	RL	MDL Data	Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1		MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20		SDW	11/20/2022 10:54	SM 2540C-2015
Customer Sample ID: A	ustomer Sample ID: AD-27 Customer Description: TG-32							
Lab Number: 223649-		Pre	paration:					
Date Collected: 11/14/2022 12:49 EST				Date Received: 11/18/2022 10:20 EST				ST
lon Chromotography								
Ion Chromatography Parameter	Result Units	Dilution	RL	MDL Data	Qualifiers	Analyst	Analysis Data	Method
Bromide	0.30 mg/L	Dilution 2	0.10	0.02	•	CRJ	Analysis Date 12/01/2022 22:39	EPA 300.1 -1997, Rev. 1.0
Chloride	12.7 mg/L	2	0.10	0.02		CRJ	12/01/2022 22:39	EPA 300.1 - 1997, Rev. 1.0
Fluoride	0.20 mg/L	2	0.04	0.02		CRJ	12/01/2022 22:39	EPA 300.1-1997, Rev. 1.0
Sulfate	59.4 mg/L	2	0.08	0.02		CRJ	12/01/2022 22:39 12/01/2022 22:39	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0
Wet Chemistry	······································	_				-	, , , , , ,	· · · · · · · · · · · · · · · · · · ·
Parameter	Result Units	Dilution	RL	MDI Data	Qualifiers	Analvet	Analysis Date	Method
Alkalinity, as CaCO3	<pre></pre>	1	20	5 U1	-	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	180 mg/L	1	20 50	20		SDW	11/20/2022 10:18	
100, Interable Residue	TOO HIG/ L	Т	50	20		3077	II/ 20/ 2022 II:00	Jiii 20400-2010

AMERICAN ELECTRIC POWER				Wate		Ilysis Report <mark>ssued</mark>			Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221
Job ID: 223649				Custom	er: Pirk	ey Power Stat	ion	Date	Reported: 12/22/2022
Customer Sample ID: A)-34					Customer De	scriptior	n: TG-32	
Lab Number: 223649-0	05					Preparation:			
Date Collected: 11/14/2	2022 09:19	9 ES	т	Date Received: 11/18/2022 10:20 EST					
Ion Chromatography									
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.15 m	ng/L	2	0.10	0.02		CRJ	12/02/2022 00:50	EPA 300.1 -1997, Rev. 1.0
Chloride	7.47 m	ıg∕L	2	0.04	0.02		CRJ	12/02/2022 00:50	EPA 300.1-1997, Rev. 1.0
Fluoride	0.44 m	ıg∕L	2	0.06	0.02		CRJ	12/02/2022 00:50	EPA 300.1 -1997, Rev. 1.0
Sulfate	1250 m	ıg∕L	50	10	2		CRJ	12/01/2022 23:12	EPA 300.1-1997, Rev. 1.0
Wet Chemistry									
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 m	ng∕L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	1720 m	ng/L	1	50	20		SDW	11/20/2022 11:00	SM 2540C-2015
Customer Sample ID: AI	Customer Sample ID: AD-36 Customer Description: TG-32								
ab Number: 223649-006 Preparation:									
Date Collected: 11/14/2	2022 10:28	8 ES	т			•	d: 11/1	8/2022 10:20 E	ST
Ion Chromatography									
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.38 m	ng∕L	2	0.10	0.02		CRJ	12/02/2022 02:29	EPA 300.1-1997, Rev. 1.0
Chloride	11.1 m	-	2	0.04	0.02		CRJ	12/02/2022 02:29	EPA 300.1-1997, Rev. 1.0
Fluoride	0.07 m	<u> </u>	2	0.06	0.02		CRJ	12/02/2022 02:29	EPA 300.1-1997, Rev. 1.0
Sulfate	2.93 m	-	2	0.40	0.06		CRJ	12/02/2022 02:29	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry									
Parameter	Result U	nits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 m	ıg∕L	1	20	5	U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	50 m	ng/L	1	50	20		SDW	11/20/2022 11:27	SM 2540C-2015

AMERICAN
ELECTRIC
POWER

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223649	Customer: Pirkey Power Station	Date Reported: 12/22/2022
Customer Sample ID: Landfill Duplicate	Customer Description: TG-32	
Lab Number: 223649-007	Preparation:	
Date Collected: 11/14/2022 15:00 EST	Date Received: 11/18/2022 10	0:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.38 mg/L	2	0.10	0.02	CRJ	12/02/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Chloride	11.1 mg/L	2	0.04	0.02	CRJ	12/02/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.08 mg/L	2	0.06	0.02	CRJ	12/02/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	7.38 mg/L	2	0.40	0.06	CRJ	12/02/2022 01:23	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	50 mg/L	1	50	20	SDW	11/20/2022 11:32	SM 2540C-2015

223649

Job Comments:

Original report issued 12/21/22. Report reissued without P1 flag for alkalinity as sample and duplicate results < RL.

Report Verification

This report and the above data have been confirmed by the following analyst.

Muchael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Job ID: 223649

Customer: Pirkey Power Station

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

Page 5 of 5 Pirkey Power Station 223649 Form REP-703, Rev. 3, 09/2020

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				ភ	ain c	Chain of Custody Record	ody Re	cord			
Groveport, Unio 43125 Michael Ohlinger (614-836-4184) Contacts:				rograr	Sit	oal Compust Site Contact:	ION Kesia	Program: Coal Combustion Residuals (CCR) Site Contact:	Date:		For Lab Use Only:
Dave Conover (614-836-4219)	_								_		COC/Order #
Project Name: Pirkey PP CCR - Landfill Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 1 6 Rou	'umaround Jiine (28 d	Analysis Turmaround Time (in Catendar Days) G Routine (28 days for Monitoring Wells)	endar Da vitoring V	ys) Vells)	250 mL bottle, pH<2, HNO3	mL Field-filter 250 mL bottle, 2, then pH<2, 1NO3	ilter nL 1 L bottle, e, Cool, 0-6C 33	Three (six every form) L bottles, pH<2, HNO3		64×22
Sampler(s): Matt Hamilton Kenny McDonald						sielti	ercury		822-6		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix 0	tt of Cont.	Mercury Sampler(s) In	M bevlossiQ	E, CI, SO4 F, CI, SO4	Ra-226, Ra		Sample Specific Notes:
AD-8	11/14/2022	1007		GW	-			×			
AD-16	11/14/2022	1055	υ	GW	-			×			
AD-23	11/14/2022	1102	υ	GW	-			×			
AD-27	11/14/2022	1149	υ	GW				×			
AD-34	11/14/2022	819	υ	GW	٣			×			
AD-36	11/14/2022	928	U	GW	-			×			
Landfill Duplicate	11/14/2022	1400	υ	ß	-			×			
				-		+	+	+		1	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Six 1L Bottles must be collected for Radium for every 10th sample.	HNO3; 5=Na	OH; 6= Ot sample.	her	. F= fi	; F= filter in field	•		-	4		
Special Instructions/QC Requirements & Comments:				•							
	10	$\tilde{\sim}$	6-32 Acc	dec							
Relinquished by: Ref.	Company:	s.t		Date/Time:	~	3œ Receiv	Received by:				Date/Time:
Relinquished by	Company	Ļ		Date/Time	U	Receiv	Received by:	8			Date/Time:
Relinquished by:	Company			Date/Time:	100	Res .	Received in Liboratory by	Inv by ALL	14/		DaterTime: 11/2/20 10:20 AoM
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ord for Coal	Combusti	on Residua	I (CCR)	Sampling	g - Shrevepo	rt, Rev. 1, 1/	10/17			

EXCELLENCE	Sample Receipt Fentti - Rev. 7, 10 28 20
WATER & WA	STE SAMPLE RECEIPT FORM (Temp Gun 1)
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer TURLY	Number of Plastic Containers:
Opened By MSO	Number of Glass Containers:
Date/Time 11/18/22 10:20AM	Number of Mercury Containers:
Were all temperatures within 0-6°C?	
ice (IR Gun Ser# 221368900, Expir. 3/22/20	
Was container in good condition?(Y) / N	Comments
Was Chain of Custody received? () / N	Comments
	If RUSH, who was notified?
	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? Y/ N	Comments
Were samples labeled properly? (\hat{Y}) N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: AB 11/18/22-
pH paper (circle one): MQuant,PN1.09535.0001,L0	DT# HC904495 [OR] Lab Rat, PN4801, LOT# X000RWDG21
Was Add'l Preservative needed? Y N If Y	es: By whom & when: (See Prep Book)
Is sample filtration requested? Y $I(N)$	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#_223649 Initial &	Date & Time :
Comme Logged by <u>MSO</u>	nts:
Reviewed by AB	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory Samp

*:-

Sample Receipt Form SOP-7102

Page Lof L

Form SOP-7102

This data package consists of:

X

R4

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- **R2** R2 Sample identification cross-reference
- **R**₃ Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
 - Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- **R6** Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates

X	R9	List of method quantitatio	n limits (MQLs) for eac	ch analyte for each method and matrix
---	----	----------------------------	-------------------------	---------------------------------------

- × R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release

statement is true.			
Timothy E Arnold	Multy C/rill	Chemist Prin	12/21/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory N	Name: American Electric Power Dolan Chemical Laboratory
Project Nam	e: Pirkey PP CCR-Landfill
Reviewer Na	me: Timothy E Arnold
LRC Date: _1	
Laboratory J	ob Number: 223649
Prep Batch N	0.00010000

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):	2.1	
-	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name:	Pirkey PP	CCR-Landfill

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223649

Prep Batch Number(s): <u>QC2212023</u>

Item ¹	em ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
-	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	tem ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		ļ
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Laboratory	Name: American Electric Power Dolan Chemical Laboratory
Project Nan	ne: Pirkey PP CCR-Landfill
	ame: Timothy E Arnold
LRC Date:	12/21/2022
107	Job Number: 223649
Prep Batch	Number(s):

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

^{*} Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

This data package consists of:

NA

×	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data
	(which includes the reportable data identified on this page), Table 2, Supporting Data, and
	Table 3, Exception Reports.

- R1 Field chain-of-custody documentation
- R2 Sample identification cross-reference
- **R**₃ Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
 - R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates

R9 List of method quantitation limits (MQLs) for each analyte for each method and m	X] R9	List of method	quantitation	limits (MOLs) for each anal	vte for each	method and ma	trix
---	---	------	----------------	--------------	--------------	-----------------	--------------	---------------	------

- R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

statement is true.		D// ·	
Michael Ohlinger	7 while (huy Chemist	12/20/22
Name (printed)	Signature	Official Title	Date '
		V	

Table 1. Reportable Data.

Laboratory	Name: <u>American Electric Power Dolan Chemical Laboratory</u>
Project Na	me: Pirkey CCR - Landfill
	Jame: Michael Ohlinger
	12/20/2022
	Job Number: 223649
Prep Batch	Number(s): QC2211231

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	Ι	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Nan	ne: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey CCR - Landfill
Reviewer Name	Michael Ohlinger
LRC Date: $\frac{4/5/2}{2}$	
Laboratory Job	Number: 223649
	nber(s): QC2211231

Item ¹	tem ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S 1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
\$ 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
\$3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	2
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Laboratory N	ame: American Electric Power Dolan Chemical Laboratory
Project Name	: Pirkey CCR - Landfill
Reviewer Nar	ne: Michael Ohlinger
LRC Date: 12	
Laboratory Jo	bb Number: 223649
Prep Batch N	umber(s): QC2211231

Description

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable). ³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

This data package consists of:

NA

x	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data
	(which includes the reportable data identified on this page), Table 2, Supporting Data, and
	Table 3, Exception Reports.

- XR1Field chain-of-custody documentation
- R2 Sample identification cross-reference
- **R3** Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
 - R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates

X	R9	List of method o	uantitation limit	s (MQLs) for ea	ch analyte for	each method and r	natrix
---	----	------------------	-------------------	-----------------	----------------	-------------------	--------

- R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

statement is true.		-10//	
Michael Ohilnger	Muhul	Chemist	12/22/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Na	me: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey PP CCR Landfill
Reviewer Nam	e: Michael Ohlinger
LRC Date: 12/	
Laboratory Jo	b Number: 223649
Prep Batch Nu	mber(s): QC2211194

Item ¹	em ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	Ι	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER1
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Alkalinity Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Na	me: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey PP CCR Landfill
	e: Michael Ohlinger
LRC Date: 12/	
Laboratory Jo	b Number: 223649
Prep Batch Nu	mber(s): <u>QC2211194</u>

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	-
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S 6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
S7	0	Tentatively identified compounds (TICs):			
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA	Ť.	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions			
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	0, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	0, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	0, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	0, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	0, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	ų	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):			
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes		

Alkalinity Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory	Name: American Electric Power Dolan Chemical Laboratory
	me: Pirkey PP CCR Landfill
	Jame: Michael Ohlinger
	12/22/2022
	Job Number: 223649
Prep Batch	Number(s): QC2211194

Exception Report No.	Description
ER1	The RPD between duplicate results > acceptance limits, not flagged as results < MQL.
ER2	CCB acceptance criteria is CCB<0.5*MQL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Job ID: 223668Customer: Pirkey Power StationCustomer Sample ID: AD-8Customer Descrit

Lab Number: 223668-001

Date Collected: 11/14/2022 11:07 EST

Customer Description: Preparation:

Date Received: 11/21/2022 12:00 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	1.03 mg/L	1	0.050	0.009	GES	11/30/2022 22:11	EPA 200.8-1994, Rev. 5.4
Calcium	17.9 mg/L	1	0.05	0.02	GES	11/30/2022 22:11	EPA 200.8-1994, Rev. 5.4
Magnesium	2.28 mg/L	1	0.10	0.02	GES	11/30/2022 22:11	EPA 200.8-1994, Rev. 5.4
Potassium	0.61 mg/L	1	0.10	0.02	GES	11/30/2022 22:11	EPA 200.8-1994, Rev. 5.4
Sodium	11.6 mg/L	1	0.20	0.05	GES	11/30/2022 22:11	EPA 200.8-1994, Rev. 5.4
Strontium	0.115 mg/L	1	0.0020	0.0004	GES	11/30/2022 22:11	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-16

Lab Number: 223668-002

Date Collected: 11/14/2022 11:55 EST

Customer Description:

Preparation:

Date Received: 11/21/2022 12:00 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.024 mg/L	1	0.050	0.009 J1	GES	11/30/2022 22:27	EPA 200.8-1994, Rev. 5.4
Calcium	0.91 mg/L	1	0.05	0.02	GES	11/30/2022 22:27	EPA 200.8-1994, Rev. 5.4
Magnesium	1.78 mg/L	1	0.10	0.02	GES	11/30/2022 22:27	EPA 200.8-1994, Rev. 5.4
Potassium	1.33 mg/L	1	0.10	0.02	GES	11/30/2022 22:27	EPA 200.8-1994, Rev. 5.4
Sodium	12. 7 mg/L	1	0.20	0.05	GES	11/30/2022 22:27	EPA 200.8-1994, Rev. 5.4
Strontium	0.0104 mg/L	1	0.0020	0.0004	GES	11/30/2022 22:27	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-23

Lab Number: 223668-003

Date Collected: 11/14/2022 12:02 EST

Customer Description:

Preparation:

Date Received: 11/21/2022 12:00 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.078 mg/L	1	0.050	0.009	GES	11/30/2022 22:32	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 mg/L	1	0.05	0.02	GES	11/30/2022 22:32	EPA 200.8-1994, Rev. 5.4
Magnesium	0.25 mg/L	1	0.10	0.02	GES	11/30/2022 22:32	EPA 200.8-1994, Rev. 5.4
Potassium	2.8 5 mg/L	1	0.10	0.02	GES	11/30/2022 22:32	EPA 200.8-1994, Rev. 5.4
Sodium	2.72 mg/L	1	0.20	0.05	GES	11/30/2022 22:32	EPA 200.8-1994, Rev. 5.4
Strontium	0.0035 mg/L	1	0.0020	0.0004	GES	11/30/2022 22:32	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Job ID: 223668Customer: Pirkey Power StationCustomer Sample ID: AD-27Customer Descrit

Lab Number: 223668-004

Date Collected: 11/14/2022 12:49 EST

Customer Description: Preparation:

Date Received: 11/21/2022 12:00 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.034 mg/L	1	0.050	0.009 J1	GES	11/30/2022 22:37	EPA 200.8-1994, Rev. 5.4
Calcium	3.79 mg/L	1	0.05	0.02	GES	11/30/2022 22:37	EPA 200.8-1994, Rev. 5.4
Magnesium	5.09 mg/L	1	0.10	0.02	GES	11/30/2022 22:37	EPA 200.8-1994, Rev. 5.4
Potassium	2.16 mg/L	1	0.10	0.02	GES	11/30/2022 22:37	EPA 200.8-1994, Rev. 5.4
Sodium	7.57 mg/L	1	0.20	0.05	GES	11/30/2022 22:37	EPA 200.8-1994, Rev. 5.4
Strontium	0.0613 mg/L	1	0.0020	0.0004	GES	11/30/2022 22:37	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-34

Lab Number: 223668-005

Date Collected: 11/14/2022 09:19 EST

Customer Description:

Preparation:

Date Received: 11/21/2022 12:00 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.067 mg/L	1	0.050	0.009	GES	11/30/2022 22:42	EPA 200.8-1994, Rev. 5.4
Calcium	44.6 mg/L	1	0.05	0.02	GES	11/30/2022 22:42	EPA 200.8-1994, Rev. 5.4
Magnesium	39.2 mg/L	1	0.10	0.02	GES	11/30/2022 22:42	EPA 200.8-1994, Rev. 5.4
Potassium	7 .91 mg/L	1	0.10	0.02	GES	11/30/2022 22:42	EPA 200.8-1994, Rev. 5.4
Sodium	15.1 mg/L	1	0.20	0.05	GES	11/30/2022 22:42	EPA 200.8-1994, Rev. 5.4
Strontium	0.4 81 mg/L	1	0.0020	0.0004	GES	11/30/2022 22:42	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-36

Lab Number: 223668-006

Date Collected: 11/14/2022 10:28 EST

Customer Description:

Preparation:

Date Received: 11/21/2022 12:00 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.068 mg/L	1	0.050	0.009	GES	11/30/2022 22:47	EPA 200.8-1994, Rev. 5.4
Calcium	0.28 mg/L	1	0.05	0.02	GES	11/30/2022 22:47	EPA 200.8-1994, Rev. 5.4
Magnesium	1.60 mg/L	1	0.10	0.02	GES	11/30/2022 22:47	EPA 200.8-1994, Rev. 5.4
Potassium	1.64 mg/L	1	0.10	0.02	GES	11/30/2022 22:47	EPA 200.8-1994, Rev. 5.4
Sodium	5.27 mg/L	1	0.20	0.05	GES	11/30/2022 22:47	EPA 200.8-1994, Rev. 5.4
Strontium	0.0060 mg/L	1	0.0020	0.0004	GES	11/30/2022 22:47	EPA 200.8-1994, Rev. 5.4

Customer: Pirkey Power Station

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 12/22/2022

Job ID: 223668 Customer Sample ID: Landfill Duplicate Lab Number: 223668-007

Date Collected: 11/14/2022 15:00 EST

Customer Description: Preparation:

Date Received: 11/21/2022 12:00 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.068 mg/L	1	0.050	0.009	GES	11/30/2022 22:52	EPA 200.8-1994, Rev. 5.4
Calcium	0.28 mg/L	1	0.05	0.02	GES	11/30/2022 22:52	EPA 200.8-1994, Rev. 5.4
Magnesium	1.57 mg/L	1	0.10	0.02	GES	11/30/2022 22:52	EPA 200.8-1994, Rev. 5.4
Potassium	1.62 mg/L	1	0.10	0.02	GES	11/30/2022 22:52	EPA 200.8-1994, Rev. 5.4
Sodium	5.16 mg/L	1	0.20	0.05	GES	11/30/2022 22:52	EPA 200.8-1994, Rev. 5.4
Strontium	0.0059 mg/L	1	0.0020	0.0004	GES	11/30/2022 22:52	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: Equipment Blank - Landfill Lab Number: 223668-008

Date Collected: 11/14/2022 12:19 EST

Customer Description:

Preparation:

Date Received: 11/21/2022 12:00 EST

Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
mg/L	1	0.050	0.009 U1	GES	11/30/2022 22:57	EPA 200.8-1994, Rev. 5.4
mg/L	1	0.05	0.02 U1	GES	11/30/2022 22:57	EPA 200.8-1994, Rev. 5.4
mg/L	1	0.10	0.02 U1	GES	11/30/2022 22:57	EPA 200.8-1994, Rev. 5.4
mg/L	1	0.10	0.02 U1	GES	11/30/2022 22:57	EPA 200.8-1994, Rev. 5.4
mg/L	1	0.20	0.05 U1	GES	11/30/2022 22:57	EPA 200.8-1994, Rev. 5.4
mg/L	1	0.0020	0.0004 U1	GES	11/30/2022 22:57	EPA 200.8-1994, Rev. 5.4
	Units D mg/L mg/L mg/L mg/L mg/L	mg/L 1 mg/L 1 mg/L 1 mg/L 1 mg/L 1	mg/L 1 0.050 mg/L 1 0.05 mg/L 1 0.10 mg/L 1 0.10 mg/L 1 0.20	mg/L 1 0.050 0.009 U1 mg/L 1 0.05 0.02 U1 mg/L 1 0.10 0.02 U1 mg/L 1 0.10 0.02 U1 mg/L 1 0.10 0.02 U1 mg/L 1 0.20 0.05 U1	mg/L 1 0.050 0.009 U1 GES mg/L 1 0.05 0.02 U1 GES mg/L 1 0.10 0.02 U1 GES mg/L 1 0.10 0.02 U1 GES mg/L 1 0.10 0.02 U1 GES mg/L 1 0.20 0.05 U1 GES	mg/L 1 0.050 0.009 U1 GES 11/30/2022 22:57 mg/L 1 0.05 0.02 U1 GES 11/30/2022 22:57 mg/L 1 0.10 0.02 U1 GES 11/30/2022 22:57 mg/L 1 0.10 0.02 U1 GES 11/30/2022 22:57 mg/L 1 0.10 0.02 U1 GES 11/30/2022 22:57 mg/L 1 0.20 0.05 U1 GES 11/30/2022 22:57

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223668 Report Verification **Customer: Pirkey Power Station**

Date Reported: 12/22/2022

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. U1 - Not detected at or above method detection limit (MDL).

4001 Bixby Road Groveport, Ohio 43125				Proc	nam: C	gram: Coal Combustion Residuals (C	hbustion	Program: Coal Combustion Residuals (CCR)	ls (CCR)			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					<u>.</u>	Site Contact:				Date:	ä	For Lab Use Only: COC/Order #:
Project Name: Pirkey PP CCR-Landfill Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 6 Rc	Tumaroun	Analysis Tumaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	alendar D. Snitoring	ays) Wells)	<u> </u>	250 mL bottle, pH<2, HNO ₃	Field-filter 250 mL bottle, then pH<2, HNO ₃	Three (six every 10th*) 1 L bottles, pH<2, HNO3	125 mL PTFE lined bottle, HCL ^{**} , pH<2	Field Filtered 126 mL PTFE lined bottle, HCL", pH<2	223668
Sampler(s): Matt Hamitton Kenny McDonald						alaiti	1	,bጋ ,e8	1-558		ercury	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	cont of Cont of	ni (s)neiqmað	B, Ca, K, Mg.	Sb, As, Ba, E Cr, Co, Fe, M Pb, Se, TL	Ra-226, Ra	Мегсигу	M bevioseiQ	Sample Specific Notes
AD-8	11/14/2022	1007	υ	GW	÷		×					
AD-16	11/14/2022	1055	U	GW	-		×					
AD-23	11/14/2022	1102	b	GW	-		×					
AD-27	11/14/2022	1149	S	GW	-		×					
AD-34	11/14/2022	819	υ	GW	-	_	×	11 - 5.11 - 5.				
AD-36	11/14/2022	928	υ	GW	-		×					
Landfill Ouplicate	11/14/2022	1400	υ	GW	-		×					
Equipment Blank - Landfill	11/14/2022	1119	υ	gv	-		×					
	_					-						
						-	1.	:		,	•	
Preservation Used: 1= ice, 2= HCI; 3= H2SO4; 4=HNO3; 5-NaOH; 6= Other * Six 1L Bottles must be collected for Radium for every 10th sample.	4=HNO3; 5=Na for every 10th	sample.	ther	₩ ₩ •••	F= Hitter in held	D	•	2	,	•	•	
Special Instructions/QC Requirements & Comments.			2010	4				-				
	0	ñ	16-32 needed	ed								
Relinquished by: But Kingha	Company:	Fit		Date/Time	-22	Rec	Received by				5	Date/Time
Relinquished by	Company:	p		Date/Time	Je:	Же	Received by:		5			Date/Time
Relinquished by:	Company			Date/Time	e	Re	Ceinedig	Received in Laboration by	A.	1		Date/Time./26 12.200

AEP WATER & W	ASTE SAMPLE RECEIPT FORM (IR#1)
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS (FedEX) USPS
	Other
Plant/Customer RY-Pirkty	Number of Plastic Containers:
Opened By MGK	Number of Glass Containers:
1753	4
Date/Time 11/21/22 12:00PM	Number of Mercury Containers:
	N or N/A Initial:on ice / no ice
(IR Gun Ser# 210441568, Expir.5/27/202	
Was container in good condition? (Y) / N	Comments
	Comments
Requested turnaround:	If RUSH, who was notified?
pH (15 min) Cr ⁴⁶ (pres) NO ₂ ((24 hr)	or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled property? (7)/ N	Comments
Were correct containers used?	
Was pH checked & Color Coding done?	YN or N/A initial & Date: Mb-k 11/21/22
phi paper (circle one); MQuant pH Cat	1.09535.0001 (OR) Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y	N) If Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y L	N Comments (See Prep Book)
Was the customer contacted? If Y	es: Person Contacted:
Lab ID# Initi	al & Date & Time :
Logged by	nments:
Reviewed by AH	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

÷.,

1. A

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- X
 R2
 Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes:
 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard(b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- \mathbb{R}_{4} R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

■ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \times R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Jonathan Barnhill	Jonathan Barnhill	Lab Supervisor	12/14/2022
Name (printed)	Signature	Official Title	Date

ICP-MS Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12/14/2022

Laboratory Job Number: 223668

Prep Batch Number(s): PB22112207 QC2212035

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?		
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	Ι	Were appropriate type(s) of blanks analyzed?	Yes	
	Ι	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	Ι	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	Ι	Were all COCs included in the LCS?	Yes	
	Ι	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	Ι	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

ICP-MS Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power</u> Dolan Chemical Laboratory

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12/14/2022

Laboratory Job Number: 223668

Prep Batch Number(s): PB22112207 QC2212035

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	Ι	Was the ICAL curve verified for each analyte?	Yes	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.⁴
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

ICP-MS Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: <u>American Electric</u> Power Dolan Chemical Laboratory

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12/14/2022

Laboratory Job Number: 223668

Prep Batch Number(s): PB22112207 QC2212035

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-2

Lab Number: 223664-001

Date Collected: 11/15/2022 11:05 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Un	ts Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg⁄	L 1	0.10	0.02 U1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Arsenic	0.40 µg∕	L 1	0.10	0.03	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Barium	16.8 µg⁄	L 1	0.20	0.05	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Beryllium	0.561 µg∕	L 1	0.050	0.007	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Boron	2.83 mg	/L 1	0.050	0.009	GES	11/30/2022 13:58	EPA 200 8-1994, Rev. 5.4
Cadmium	0.086 µg∕	L 1	0.020	0.004	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Calcium	2.80 mg	/L 1	0.05	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Chromium	0.43 µg∕	L 1	0.20	0.04	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Cobalt	19.6 µg⁄	L 1	0.020	0.003	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Lead	0.60 µg∕	L 1	0.20	0.05	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Lithium	0.0556 mg	/L 1	0.00020	0.00005	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Magnesium	5.23 mg	/L 1	0.10	0.02	GES	11/30/2022 13:58	EPA 200 8-1994, Rev. 5.4
Mercury	58 ng⁄	L 2	10	4	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg∕	L 1	0.5	0.1 U1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Potassium	1.43 mg	/L 1	0.10	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Selenium	1.28 µg⁄	L 1	0.50	0.09	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Sodium	90.6 mg	/L 1	0.20	0.05 M1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Strontium	0.0408 mg	/L 1	0.0020	0.0004	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Thallium	0.11 µg⁄	L 1	0.20	0.04 J1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Radiochemistry							
Parameter	Result Lin	te I	INC*(+/-)	MDA* Data Qualifiers	∆nalvst	Analysis Date	Method

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.40 pCi/L	0.12	0.23	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	77 .9 %					
Radium-228	1.01 pCi/L	0.13	0.39	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.0 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 01/23/2023

Reissued

Customer: Pirkey Power Station

Job ID: 223664

Customer Sample ID: AD-2

Lab Number: 223664-001-01

Date Collected: 11/15/2022 11:05 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.41 µg/L	1	0.10	0.03	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Barium	16.8 µg/L	1	0.20	0.05	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.559 µg/L	1	0.050	0.007	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.090 µg/L	1	0.020	0.004	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.20	0.04	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Cobalt	19.9 µg/L	1	0.020	0.003	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Iron	0.257 mg/L	1	0.020	0.006	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Lead	0.60 µg/L	1	0.20	0.05	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.0554 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Manganese	0.0853 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Selenium	1.30 µg/L	1	0.50	0.09	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Thallium	0.13 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-3

Lab Number: 223664-002

Date Collected: 11/16/2022 12:45 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter F	Result U	Jnits	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µ	ıg∕L	1	0.10	0.02 U1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Arsenic	1.22 μ	ıg∕L	1	0.10	0.03	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Barium	63.7 μ	ıg∕L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.186 µ	ıg∕L	1	0.050	0.007	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Boron	0.063 n	ng/L	1	0.050	0.009	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 μ	ıg∕L	1	0.020	0.004 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Calcium	5.05 n	ng/L	1	0.05	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 µ	ıg∕L	1	0.20	0.04	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Cobalt	7.40 μ	ıg∕L	1	0.020	0.003	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Lead	0.31 μ	ıg∕L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Lithium C).0837 n	ng/L	1	0.00020	0.00005	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Magnesium	4.15 n	ng/L	1	0.10	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 n	ıg∕L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	ıg∕L	1	0.5	0.1 U1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Potassium	3.44 n	ng/L	1	0.10	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Selenium	0.09 µ	ıg∕L	1	0.50	0.09 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Sodium	12.3 n	ng/L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Strontium 0	0.0380 n	ng/L	1	0.0020	0.0004	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µ	ıg∕L	1	0.20	0.04 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.72 pCi/L	0.14	0.20	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.9 %					
Radium-228	0.79 pCi/L	0.11	0.36	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	99.5 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 01/23/2023

Reissued

Customer: Pirkey Power Station

Job ID: 223664

Customer Sample ID: AD-3

Lab Number: 223664-002-01

Date Collected: 11/16/2022 00:45 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg∕L	1	0.10	0.02 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.91 µg/L	1	0.10	0.03	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Barium	61.6 µg/L	1	0.20	0.05	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.139 µg/L	1	0.050	0.007	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg∕L	1	0.20	0.04	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Cobalt	7 .92 µg∕L	1	0.020	0.003	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Iron	9.45 mg/L	1	0.020	0.006	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0933 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Manganese	0.115 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-4

Lab Number: 223664-003

Date Collected: 11/16/2022 12:32 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 µg/L	1	0.10	0.03	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Barium	128 µg/L	1	0.20	0.05	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.195 µg/L	1	0.050	0.007	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.009 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.019 µg/L	1	0.020	0.004 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Calcium	2.25 mg/L	1	0.05	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 µg/L	1	0.20	0.04	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Cobalt	3.00 µg∕L	1	0.020	0.003	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0212 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Magnesium	0.55 mg/L	1	0.10	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Potassium	2.15 mg/L	1	0.10	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Sodium	6.41 mg/L	1	0.20	0.05	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.0183 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.40 pCi/L	0.10	0.17	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	96. 5 %					
Radium-228	-0.01 pCi/L	0.13	0.46	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.2 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 01/23/2023

Reissued

Customer: Pirkey Power Station

Job ID: 223664

Customer Sample ID: AD-4

Lab Number: 223664-003-01

Date Collected: 11/16/2022 12:32 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0.13 µg/L	1	0.10	0.03	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Barium	128 µg/L	1	0.20	0.05	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.197 µg/L	1	0.050	0.007	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 µg/L	1	0.20	0.04	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Cobalt	2.98 µg/L	1	0.020	0.003	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Iron	2.40 mg/L	1	0.020	0.006	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0215 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Manganese	0.0291 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.1 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-7

Lab Number: 223664-004

Date Collected: 11/16/2022 10:10 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Arsenic	0.43 µg∕L	1	0.10	0.03	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Barium	55.2 μg/L	1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Beryllium	2.49 µg∕L	1	0.050	0.007	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Boron	9.38 mg/L	1	0.050	0.009	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.880 µg∕L	1	0.020	0.004	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Calcium	5.20 mg/L	1	0.05	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg∕L	1	0.20	0.04	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Cobalt	3 1.8 µg/L	1	0.020	0.003	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Lead	0.27 µg∕L	1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Magnesium	8.2 5 mg/L	1	0.10	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Mercury	37 ng/L	1	5	2	JAB	12/05/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Potassium	3.50 mg/L	1	0.10	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Selenium	1.49 µg/L	1	0.50	0.09	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Sodium	32.3 mg/L	1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Strontium	0.0575 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.65 pCi/L	0.21	0.20	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.9 %					
Radium-228	2.48 pCi/L	0.15	0.41	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	98.0 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Date Reported: 01/23/2023

Reissued

Customer: Pirkey Power Station

Job ID: 223664

Customer Sample ID: AD-7

Lab Number: 223664-004-01

Date Collected: 11/16/2022 10:10 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units D	oilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Arsenic	0.43 µg/L	1	0.10	0.03	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Barium	54.5 µg/L	1	0.20	0.05	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Beryllium	2.55 µg∕L	1	0.050	0.007	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.879 µg/L	1	0.020	0.004	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Cobalt	31.8 µg/L	1	0.020	0.003	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Iron	10.8 mg/L	1	0.020	0.006	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Lead	0.23 µg/L	1	0.20	0.05	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Manganese	0.157 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	12/05/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Selenium	1.53 µg/L	1	0.50	0.09	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.17 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-12

Lab Number: 223664-005

Date Collected: 11/15/2022 11:58 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter Re	ult l	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony <0	.02 µ	µg/L	1	0.10	0.02 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Arsenic	.06 µ	µg/L	1	0.10	0.03 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Barium	0.6 µ	µg/L	1	0.20	0.05	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Beryllium 0.	L53 µ	µg/L	1	0.050	0.007	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Boron 0.) 1 3 r	mg/L	1	0.050	0.009 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Cadmium 0.)07 µ	µg/L	1	0.020	0.004 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Calcium (.36 r	mg/L	1	0.05	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Chromium	.45 µ	µg/L	1	0.20	0.04	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Cobalt	.59 µ	µg/L	1	0.020	0.003	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Lead (.08 µ	µg/L	1	0.20	0.05 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Lithium 0.0	L 1 9 r	mg/L	1	0.00020	0.00005	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Magnesium (.54 r	mg/L	1	0.10	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Mercury	<2 r	ng∕L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 µ	µg/L	1	0.5	0.1 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Potassium	.81 r	mg/L	1	0.10	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Selenium (.23 µ	µg/L	1	0.50	0.09 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Sodium	. 83 r	mg/L	1	0.20	0.05	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Strontium 0.0)35 r	mg/L	1	0.0020	0.0004	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Thallium <0	.04 µ	µg/L	1	0.20	0.04 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.72 pCi/L	0.15	0.19 P1	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	102 %					
Radium-228	0.74 pCi/L	0.14	0.44	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.6 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-12

Lab Number: 223664-005-01

Date Collected: 11/15/2022 11:58 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 µg/L	1	0.10	0.03 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Barium	30.0 µg∕L	1	0.20	0.05	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.149 µg/L	1	0.050	0.007	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Cobalt	1.59 µg/L	1	0.020	0.003	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Iron	<0.006 mg/L	1	0.020	0.006 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.0116 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Manganese	0.0061 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Selenium	0.28 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-13

Lab Number: 223664-006

Date Collected: 11/15/2022 09:21 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Arsenic	1.62 µg/L	1	0.10	0.03	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Barium	44.2 μg/L	1	0.20	0.05	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Beryllium	0.131 µg/L	1	0.050	0.007	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Boron	0.095 mg/L	1	0.050	0.009	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Calcium	8. 57 mg/L	1	0.05	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg∕L	1	0.20	0.04	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Cobalt	45.9 µg∕L	1	0.020	0.003	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.141 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Magnesium	12.4 mg/L	1	0.10	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Potassium	5.16 mg/L	1	0.10	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Sodium	16.3 mg/L	1	0.20	0.05	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Strontium	0.0402 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.55 pCi/L	0.26	0.35	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	84.9 %					
Radium-228	-0.86 pCi/L	0.14	0.50	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	102 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-13

Lab Number: 223664-006-01

Date Collected: 11/15/2022 09:21 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Arsenic	1.43 µg/L	1	0.10	0.03	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Barium	44.7 μg/L	1	0.20	0.05	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Beryllium	0.116 µg/L	1	0.050	0.007	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 µg/L	1	0.20	0.04	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Cobalt	47.2 μg/L	1	0.020	0.003	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Iron	39.9 mg/L	5	0.10	0.03	GES	12/05/2022 09:18	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Lithium	0.140 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Manganese	0.428 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-17

Lab Number: 223664-007

Date Collected: 11/16/2022 11:58 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.13 µg/L	1	0.10	0.03	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Barium	276 µg/L	1	0.20	0.05	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Beryllium	0.662 µg∕L	1	0.050	0.007	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Boron	0.026 mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Calcium	1.23 mg/L	1	0.05	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.37 µg/L	1	0.20	0.04	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Cobalt	12 .7 µg/L	1	0.020	0.003	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Lead	0.16 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.0267 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Magnesium	4.53 mg/L	1	0.10	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Mercury	400 ng/L	100	500	200 J1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Potassium	1.40 mg/L	1	0.10	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Selenium	0.36 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Sodium	9.35 mg/L	1	0.20	0.05	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0231 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg∕L	1	0.20	0.04 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.34 pCi/L	0.33	0.23	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	101 %					
Radium-228	3.41 pCi/L	0.19	0.52	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.3 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-17

Lab Number: 223664-007-01

Date Collected: 11/16/2022 11:58 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Arsenic	0.12 µg/L	1	0.10	0.03	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Barium	273 µg/L	1	0.20	0.05	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Beryllium	0.648 µg/L	1	0.050	0.007	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Cadmium	0.053 µg/L	1	0.020	0.004	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 µg/L	1	0.20	0.04	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Cobalt	12.3 µg/L	1	0.020	0.003	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Iron	0.269 mg/L	1	0.020	0.006	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Lead	0.16 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.0262 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Manganese	0.0545 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Selenium	0.30 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-18

Lab Number: 223664-008

Date Collected: 11/16/2022 11:13 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Arsenic	0.25 µg∕L	1	0.10	0.03	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Barium	77.4 µg∕L	1	0.20	0.05	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Beryllium	0.071 µg/L	1	0.050	0.007	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Boron	0.011 mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 µg∕L	1	0.020	0.004 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Calcium	0.19 mg/L	1	0.05	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Chromium	0.54 µg∕L	1	0.20	0.04	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Cobalt	0.723 µg/L	1	0.020	0.003	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Lithium	0.0125 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Magnesium	0.27 mg/L	1	0.10	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Mercury	18 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Potassium	0.73 mg/L	1	0.10	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Selenium	0.12 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Sodium	5.46 mg/L	1	0.20	0.05	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Strontium	0.0040 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1 pCi/L	0.18	0.21	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	103 %					
Radium-228	0.61 pCi/L	0.12	0.39	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.6 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-18

Lab Number: 223664-008-01

Date Collected: 11/16/2022 11:13 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Barium	77.2 μg/L	1	0.20	0.05	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Beryllium	0.069 µg/L	1	0.050	0.007	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.20	0.04	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Cobalt	0.719 µg/L	1	0.020	0.003	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Iron	0.060 mg/L	1	0.020	0.006	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Lithium	0.0127 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Manganese	0.0028 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-22

Lab Number: 223664-009

Date Collected: 11/14/2022 12:31 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter Re	ult	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony <0	.02	µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Arsenic	.40	µg/L	1	0.10	0.03	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Barium	0.8	µg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Beryllium	.16	µg/L	1	0.050	0.007	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Boron 0.	021	mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Cadmium 0.	94	µg/L	1	0.020	0.004	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Calcium 1	0.5	mg/L	1	0.05	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Chromium	.47	µg/L	1	0.20	0.04	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Cobalt 6	0.3	µg/L	1	0.020	0.003	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Lead C	.22	µg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Lithium 0.0	905	mg/L	1	0.00020	0.00005	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Magnesium 1	5.1	mg/L	1	0.10	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Mercury	10	ng/L	10	50	20	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1	µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Potassium	.37	mg/L	1	0.10	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Selenium	.93	µg/L	1	0.50	0.09	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Sodium 8	3.9	mg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Strontium 0.0	398	mg/L	1	0.0020	0.0004	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Thallium C	.14	µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.96 pCi/L	0.21	0.31	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	76.7 %					
Radium-228	1.74 pCi/L	0.18	0.53	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	88.6 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-22

Lab Number: 223664-009-01

Date Collected: 11/14/2022 12:31 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Arsenic	1.28 µg/L	1	0.10	0.03	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Barium	20.5 µg/L	1	0.20	0.05	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Beryllium	2.04 µg/L	1	0.050	0.007	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Cadmium	0.503 µg/L	1	0.020	0.004	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Chromium	0.46 µg/L	1	0.20	0.04	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Cobalt	60.0 µg/L	1	0.020	0.003	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Iron	29.8 mg/L	1	0.020	0.006	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Lithium	0.0883 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Manganese	0.295 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Mercury	51 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Selenium	2.06 µg/L	1	0.50	0.09	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Thallium	0.13 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-28

Lab Number: 223664-010

Date Collected: 11/16/2022 09:48 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.10 µg/L	1	0.10	0.03	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Barium	125 µg/L	1	0.20	0.05	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.459 µg/L	1	0.050	0.007	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Boron	0.334 mg/L	1	0.050	0.009	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Cadmium	0.046 µg/L	1	0.020	0.004	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Calcium	1.34 mg/l	1	0.05	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.54 µg∕L	1	0.20	0.04	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Cobalt	11.8 µg/L	1	0.020	0.003	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Lead	0.15 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.0270 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Magnesium	2.76 mg/L	1	0.10	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Mercury	8 ng/L	1	5	2	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Potassium	0.85 mg/L	1	0.10	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Sodium	6.45 mg/L	1	0.20	0.05	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.0182 mg/l	1	0.0020	0.0004	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.79 pCi/L	0.35	0.26	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.0 %					
Radium-228	1.36 pCi/L	0.13	0.39	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	96.6 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-28

Lab Number: 223664-010-01

Date Collected: 11/16/2022 09:48 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Dil	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Barium	128 µg/L	1	0.20	0.05	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Beryllium	0.447 µg/L	1	0.050	0.007	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Cadmium	0.045 µg/L	1	0.020	0.004	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 µg∕L	1	0.20	0.04	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Cobalt	11.8 µg/L	1	0.020	0.003	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Iron	0.493 mg/L	1	0.020	0.006	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Lithium	0.0267 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Manganese	0.0556 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Selenium	0.17 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-30

Lab Number: 223664-011

Date Collected: 11/16/2022 10:46 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.16 µg/L	1	0.10	0.03	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Barium	89.4 μg/L	1	0.20	0.05	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.108 µg/L	1	0.050	0.007	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Boron	2.8 6 mg/L	1	0.050	0.009	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.013 µg/L	1	0.020	0.004 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Calcium	0.71 mg/L	1	0.05	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.55 µg/L	1	0.20	0.04	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Cobalt	4.8 6 μg/L	1	0.020	0.003	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Magnesium	2.58 mg/L	1	0.10	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Mercury	17 ng/L	2	10	4	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Potassium	1.01 mg/L	1	0.10	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Sodium	94.0 mg/L	1	0.20	0.05 M1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Strontium	0.0113 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.75 pCi/L	0.16	0.23	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	96. 5 %					
Radium-228	0.77 pCi/L	0.14	0.46	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.5 %					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-30

Lab Number: 223664-011-01

Date Collected: 11/16/2022 10:46 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.14 µg/L	1	0.10	0.03	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Barium	79.7 μg/L	1	0.20	0.05	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.108 µg/L	1	0.050	0.007	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.50 µg/L	1	0.20	0.04	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Cobalt	4.76 µg∕L	1	0.020	0.003	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Iron	0.033 mg/L	1	0.020	0.006	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Manganese	0.0215 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Mercury	<4 ng/L	2	10	4 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.37 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-31

Lab Number: 223664-012

Date Collected: 11/15/2022 11:02 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Barium	35.8 µg∕L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.863 µg/L	1	0.050	0.007	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Boron	0.035 mg/L	1	0.050	0.009 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.066 µg∕L	1	0.020	0.004	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Calcium	2.63 mg/L	1	0.05	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.74 µg/L	1	0.20	0.04	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Cobalt	9.41 µg/L	1	0.020	0.003	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Lead	0.34 µg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0681 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Magnesium	3.94 mg/L	1	0.10	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Mercury	610 ng/L	10	50	20	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Potassium	1.67 mg/L	1	0.10	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Selenium	0.38 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Sodium	30.6 mg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Strontium	0.0388 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.05 pCi/L	0.18	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.4 %					
Radium-228	2.76 pCi/L	0.18	0.50	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	94.8 %					

* The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-31

Lab Number: 223664-012-01

Date Collected: 11/15/2022 11:02 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Arsenic	0.20 µg/L	1	0.10	0.03	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Barium	35.7 µg/L	1	0.20	0.05	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Beryllium	0.868 µg/L	1	0.050	0.007	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.065 µg/L	1	0.020	0.004	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 µg/L	1	0.20	0.04	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Cobalt	9.60 µg/L	1	0.020	0.003	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Iron	0.113 mg/L	1	0.020	0.006	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Lead	0.27 µg/L	1	0.20	0.05	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.0694 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Manganese	0.0262 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 µg∕L	1	0.50	0.09 J1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg∕L	1	0.20	0.04 J1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-32

Lab Number: 223664-013

Date Collected: 11/15/2022 10:03 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Arsenic	1.73 µg/L	1	0.10	0.03	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Barium	24.4 µg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Beryllium	3.77 μg/L	1	0.050	0.007	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Boron	1.26 mg/L	1	0.050	0.009	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.404 µg/L	1	0.020	0.004	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Calcium	12.0 mg/L	1	0.05	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.82 µg/L	1	0.20	0.04	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Cobalt	34.8 µg/L	1	0.020	0.003	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Lead	0.66 µg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.0812 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Magnesium	12.3 mg/L	1	0.10	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Mercury	1500 ng/L	100	500	200	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Potassium	3.76 mg/L	1	0.10	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Selenium	5.95 µg∕L	1	0.50	0.09	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Sodium	48.7 mg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Strontium	0.219 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.24 µg/L	1	0.20	0.04	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.26 pCi/L	0.21	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery Radium-228	86.8 % 4.02 pCi/L	0.19	0.46	TTP	12/27/2022 14:41	SW-846 9320-2014. Rev. 1.0
	• •	0.19	0.40	115	12/21/2022 14:41	SW-848 9320-2014, Rev. 1.0
Carrier Recovery	90.0 %					

* The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-32

Lab Number: 223664-013-01

Date Collected: 11/15/2022 10:03 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Arsenic	1.57 µg/L	1	0.10	0.03	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Barium	23.9 µg/L	1	0.20	0.05	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Beryllium	3.79 µg/L	1	0.050	0.007	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.409 µg/L	1	0.020	0.004	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.67 µg∕L	1	0.20	0.04	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Cobalt	34.9 µg/L	1	0.020	0.003	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Iron	2.03 mg/L	1	0.020	0.006	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Lead	0.59 µg/L	1	0.20	0.05	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.0809 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.0661 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Mercury	20 ng/L	2	10	4	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Selenium	5.88 µg/L	1	0.50	0.09	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 µg/L	1	0.20	0.04	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-33

Lab Number: 223664-014

Date Collected: 11/15/2022 12:06 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Metals

Parameter Res	ult Un	its Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony <0	02 µg	/L	1	0.10	0.02 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Arsenic 0	37 µg	/L	1	0.10	0.03	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Barium 4).4 µg	/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Beryllium 0.9	45 µg	/L	1	0.050	0.007	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Boron 0.0	86 mg	ţ∕L	1	0.050	0.009	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Cadmium 0.0	38 µg	/L	1	0.020	0.004	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Calcium 0	90 mg	ţ∕L	1	0.05	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Chromium 0	44 µg	/L	1	0.20	0.04	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Cobalt 6	83 µg	/L	1	0.020	0.003	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Lead 0	22 µg	/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Lithium 0.02	85 mg	;/L	1	0.00020	0.00005	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Magnesium 2	64 mg	;/L	1	0.10	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Mercury 59	00 ng,	/L	100	500	200	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum <).1 µg	/L	1	0.5	0.1 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Potassium 0	28 mg	;/L	1	0.10	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Selenium 0	96 µg	/L	1	0.50	0.09	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Sodium 1	1.9 mg	€∕L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Strontium 0.02	01 mg	ţ∕L	1	0.0020	0.0004	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Thallium <0	04 µg	/L	1	0.20	0.04 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.68 pCi/L	0.30	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.9 %					
Radium-228	0.98 pCi/L	0.13	0.40	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	99.2 %					

* The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: AD-33

Lab Number: 223664-014-01

Date Collected: 11/15/2022 12:06 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg∕L	1	0.10	0.02 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.29 µg∕L	1	0.10	0.03	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Barium	48.7 µg/L	1	0.20	0.05	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Beryllium	0.936 µg/L	1	0.050	0.007	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.035 µg/L	1	0.020	0.004	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.32 µg∕L	1	0.20	0.04	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Cobalt	6.65 µg/L	1	0.020	0.003	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Iron	0.009 mg/L	1	0.020	0.006 J1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Lead	0.22 µg/L	1	0.20	0.05	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.0182 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Manganese	0.0054 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Mercury	47 ng/L	1	5	2	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Selenium	0.91 µg/L	1	0.50	0.09	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: Duplicate - 2

Lab Number: 223664-015

Date Collected: 11/15/2022 15:00 EST

Customer Description: TG-32 Preparation:

Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Arsenic	1.69 µg/L	1	0.10	0.03	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Barium	45.3 µg∕L	1	0.20	0.05	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Beryllium	0.129 µg/L	1	0.050	0.007	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Boron	0.061 mg/L	1	0.050	0.009	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Calcium	8.71 mg/L	1	0.05	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 µg∕L	1	0.20	0.04	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cobalt	46.5 µg∕L	1	0.020	0.003	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.139 mg/L	1	0.00020	0.00005	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Magnesium	12.6 mg/L	1	0.10	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 µg∕L	1	0.5	0.1 J1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Potassium	5.32 mg/L	1	0.10	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Sodium	16.4 mg/L	1	0.20	0.05	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0419 mg/L	1	0.0020	0.0004	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: Duplicate - 2

Lab Number: 223664-015-01

Date Collected: 11/15/2022 15:00 EST

Customer Description: TG-32 Preparation: Dissolved Date Received: 11/21/2022 12:30 EST

Parameter	Result Units Dilu	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Arsenic	1.44 µg/L	1	0.10	0.03	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Barium	45.2 µg/L	1	0.20	0.05	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Beryllium	0.115 µg/L	1	0.050	0.007	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 µg/L	1	0.20	0.04	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Cobalt	46.3 µg/L	1	0.020	0.003	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Iron	39.7 mg/L	5	0.10	0.03	GES	12/05/2022 09:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.140 mg/L	1	0.00020	0.00005	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Manganese	0.420 mg/L	1	0.0010	0.0002	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4

Job ID: 223664

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station

Date Reported: 01/23/2023

Customer Sample ID: Equipment Blank

Lab Number: 223664-016

Date Collected: 11/16/2022 11:22 EST

Customer Description: TG-32 Preparation: Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg/L	1	0.05	0.02 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 µg∕L	1	0.20	0.04	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Cobalt	0.143 µg/L	1	0.020	0.003	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005 mg/L	1	0.00020	0.00005 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02 mg/L	1	0.10	0.02 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 µg∕L	1	0.5	0.1 J1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02 mg/L	1	0.10	0.02 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05 mg/L	1	0.20	0.05 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004 mg/L	1	0.0020	0.0004 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4

223664 Job Comments:

Original report issued 12/29/22. Report reissued with boron added to TM on 1/23/23.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223664 Report Verification **Customer: Pirkey Power Station**

Date Reported: 01/23/2023

This report and the above data have been confirmed by the following analyst.

Muhael S. Ohlinger

Michael Ohlinger, Chemist Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

M1 - The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

P1 - The precision between duplicate results was above acceptance limits.

Page 32 of 32 Pirkey Power Station 223664 Form REP-703, Rev. 3, 09/2020

Record
Custody
Chain of

Groveport, Ohlo 43125 Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219) Project Name: Pitkey PP CCR Contact Name: Leslie Fuerschbach An				Prog	ram: C	Inder Combi	Program: Coal Combination Residuals (CCR)	iale (CCR)			
rer (614-836-4184) (614-836-4219) chbach						Udi CUINA	ANIONY INNO	1.22 010			
chbach					ž	Site Contact:			Date:	ä	For Lab Use Only: COC/Order #:
Contact Phone: 318-673-2744	nalysis Tu © Routi	umaround ine (28 da)	Analysis Turmaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	endar Da ing Well:	, 73)	250 mL bottle, pH<2, HNO ₃	nL Field-fitter 250 mL 6, bottle, then 2, pH<2, HNO ₃	Three (six every 10th*) n 1 L bottles, pH<2, HNO3	250 mL Glass bottle, HCL ^{**} , pH<2	250 mL Glass bottle, HCL [™] , pH<2	223664
Aatt						8, 86, Ca (, Li, Mg,	5e, Sr, Tl	¥-558		ຣເຕາເλ	
Sar Sar D	Sample Date	Sample Time	Sample Type (C≖Comp, G≖Grab)	Matrix	# of Cont.	Sampter(s) In Sb, As, B, B; Cd, Cr, Co, H	Wu' Wo' Lp' Be' Cq' Ct' C Dissolved Si Wo' Ns' Bp'	ਲ ₈ -226, ਲ	Мегсигу	M beviossiQ	Sample Specific Notes.
	11/15/2022	1005	υ	GW	7	×	×	×	×	×	
	11/16/2022	1145	υ	GW	7	×	×	×	×	×	
	11/16/2022	1132	υ	GW	7	×	×	×	×	×	
AD-7 AD-7	11/16/2022	910	в	GW	5	×	×	×	×	×	
AD-12	11/15/2022	1058	υ	Νg	10	×	×	×	×	×	
	11/15/2022	821	IJ	GW	7	×	×	×	×	×	
	11/16/2022	1058	IJ	GW	7	×	×	×	×	×	
AD-18	11/16/2022	1013	IJ	GW	7	×	×	×	×	×	
AD-22	11/14/2022	1131	υ	GW	7	×	×	×	×	×	
AD-28	11/16/2022	848	σ	GW	~	×	×	×	×	×	
AD-30	11/16/2022	946	U	N O	~	×	×	×	×	×	
AD-31	11/15/2022	1002	υ	GW	7	×	×	×	×	×	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	3; 5=NaO	0H; 6= Oth	ler	; F= fit	; F= filter in field	4 4	F4	4	2	F2	
Six 1L Bottles must be collected for Radium for every 10th sample.	ery 10th s	sample.					í.				
Special Instructions/QC Requirements & Comments:		5	TG-32 Aced	Aeci	det	1					
Relinquished by She And Lon	Company	-		Date/Time:	0	3 certa Received by	ed by:				Date/Time
Relinquished by:	Company:			Date/Time	4	Receiv	Received by:	0 6			Date/Time:
Relinquished by: Com	Company:			Date/Time	D	Receiv	Received in Antonatoly by	We have a	112		Date/Time: 1/22 12 00PM

Record
Custody
Chain of

Dolan Chemical Laboratory (DCL) 4001 Birby Road	_			Ŭ	Chaii	n of C	ustod	Chain of Custody Record	ord				
Groveport, Ohio 43125				Prog	ram: (Coal Con	nbustion	Program: Coal Combustion Residuals (CCR)	s (CCR)	252		10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 - 10100 -	
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					5	Site Contact:				Date:	2	For Lab Use Only: COC/Order #:	
Project Name: Pirkey PP CCR						~ ~ ~	250 mL		Three (six every 10th*)	250 mL Glass	250 mL Glass		
-1	Analysis 7 6 Rout	Turmaround	Analysis Turnaround Time (in Calendar Days) @ Routine (28 days for Monitoring Wells)	endar Da no Wells'	(jys)			e G	1 L bottles, pH<2,	Pottle HCL #	bottle, HCL ⁺⁺ ,		
Contact Phone: 318-673-2744				Ð			╉	HNO	SUN	ZYHO	DHKZ		
Sampler(s): Matt Hamilton Kenny McDonald							ני גי Mg, גי גו, Mg,	'!] '8 <u>4</u> '0;	972-8		թւշուծ		
Sample Identification	Sample Date	Sample Time	Sample Type (C∞Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) In	Mo, Na, Pb, : Mo, Na, Pb, :	Dissolved Si Be, Cd, Cr, C Mn, Mo, Pb,	Ra-226, Ra	Mercury	M bevlossiQ	Sample Specific Notes:	
AD-32	11/15/2022	903	υ		7		×	×	×	×	×		
AD-33	11/15/2022	1106	v	GW	7		×	×	×	×	×		
Duplicate - 2	11/15/2022	1400	U	GW	4		×	×		×	×		
Equipment Blank	11/16/2022	1022	с	ßW	2		×			×			
					_		_						
Preservation Used: 1= ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Nai	0H; 6= Ot	ter	. F= fi	; F= fitter in field	eld	4	F4	4	2	F2		
 Six 1L Bottles must be collected for Radium for every 10th sample. 	r every 10th	sample.											
Special Instructions/QC Requirements & Comments:		\sim	TG-32 recded	led									
Relinquished by Red And	Company:	net.		Date/Time:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	See Re	Received by:					Date/Time:	
Relinquished by:	Company:	þ		Date/Time:	j Q	8 B	Received by:					Date/Time:	
Relinquished by:	Company:			Date/Time:		R.	ceived in L	Received in Laboratory by:				Date/Time:	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WA	STE SAMPLE RECEIPT FORM (IR#1)
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS Fedex USPS
	Other
Plant/Customer Pilkey	Number of Plastic Containers:
Opened By M(H	Number of Glass Containers: 31
Date/Time 11/21/22 12:00PM	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N	or N/A Initial:on ice I no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	
Was container in good condition? (Y)/ N	Comments
Was Chain of Custody received?	Comments
Requested turnaround: Roth	If RUSH, who was notified?
pH (15 min) Cr* ⁶ (pres) NO ₂ or (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out property?	Comments
Were samples tabeled property?	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	TN or N/A Initial & Date: MIRK 11/21/21
nH paper (circle one): MQuant pH Cat 1. lot HC904495	.09535.0001 lorg Lab rat pH Cat # LRS -4801
	If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book)
	: Person Contacted:
Lab ID# 223664 Initial	& Date & Time :
terrethy A	nents;
Reviewed by	1
\bigcirc –	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Doian Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

÷.,

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- XR2Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes:
 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard(b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- \mathbb{R}_{4} R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

■ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \times R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Jonathan Barnhill	Jonathan Barnhill	Lab Supervisor	12/14/2022
Name (printed)	Signature	Official Title	Date

ICP-MS Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: _

Reviewer Name: Jonathan Barnhill

LRC Date: 12/14/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112206 PB22112207 QC2212035 QC2212036

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	Ι	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	Ι	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	Ι	Were all COCs included in the LCS?	Yes	
	Ι	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	Ι	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	Ι	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
_	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

ICP-MS Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12/14/2022

Laboratory Job Number: 223664

Prep Batch Number(s): ______PB22112206 PB22112207 QC2212035 QC2212036

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	Ι	Was the ICAL curve verified for each analyte?	Yes	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.⁴
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

ICP-MS Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: <u>American Electric</u> Power Dolan Chemical Laboratory

Project Name:

Reviewer Name: Jonathan Barnhill

LRC Date: 12/14/2022

Laboratory Job Number: 223664

Prep Batch Number(s): ______PB22112206 PB22112207 QC2212035 QC2212036

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Matrix Spike Failure for Na on sample 223664-001
	Matrix Spike Failure for Na on sample 223664-011

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- XR2Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- \mathbb{R}_{4} R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \mathbf{X} R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha Palmer	Tamer Jalmer	Chemical Technician, Prin	12/20/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: <u>12/20/2022</u>

Laboratory Job Number: PB22112803

Prep Batch Number(s): 223664

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR). ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?	Yes	
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	Ι	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR). ³	Exception Report No. ⁴
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	Ι	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	NA	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	NA	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power</u> Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: <u>12/20</u>/2022

Laboratory Job Number: PB22112803

Prep Batch Number(s): 223664

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	NA	
	Ι	Were percent differences for each analyte within the method-required QC limits?	NA	
	Ι	Was the ICAL curve verified for each analyte?	NA	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	NA	
	Ι	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	Ι	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ι	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	Yes	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	Ι	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey Power

Reviewer Name: _____Tamisha Palmer

LRC Date: <u>12/20/2022</u>

Laboratory Job Number: PB22112803

Prep Batch Number(s): 223664

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- X
 R2
 Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- \mathbb{R}_{4} R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \mathbf{X} R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Sunita Timsina	Timbina	Chemist Associate	12/20/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name	American Electric Power Dolan Chemical Laboratory
Project Name: Pil	rkey Power Station
Reviewer Name:	Sunita Timsina
LRC Date: 12/20/2	2022
Laboratory Job N	umber: <u>223664</u>
Prep Batch Numb	er(s): PB22112804

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR). ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?	Yes	
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	Ι	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	Ι	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	Ι	Were appropriate type(s) of blanks analyzed?	Yes	
	Ι	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR). ³	Exception Report No.4
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	Ι	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	Ι	Were all COCs included in the LCS?	Yes	
	Ι	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	Ι	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	NA	
	Ι	Were MS/MSD analyzed at the appropriate frequency?	NA	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	Ι	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	NO	ER1
R9	0, I	Method quantitation limits (MQLs):		
	Ι	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/20/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112804

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	Ι	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	NA	
	Ι	Were percent differences for each analyte within the method-required QC limits?	NA	
	Ι	Was the ICAL curve verified for each analyte?	NA	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	NA	
	Ι	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	Ι	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ι	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	NA	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	Ι	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

 Laboratory Name:
 American Electric Power Dolan Chemical Laboratory

 Project Name:
 Pirkey Power Station

 Reviewer Name:
 Sunita Timsina

 LRC Date:
 12/20/2022

 Laboratory Job Number:
 223664

 Prep Batch Number(s):
 PB22112804

Exception Report No.	Description
ER1	RPD for duplicate sample exceeds 25%.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X

X

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- XR2Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 - NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- \mathbb{R}_{4} R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- \times R5 Test reports/summary forms for blank samples
 - R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- (a) Samples associated with the MS/MSD clearly identified
- (b) MS/MSD spiking amounts
- (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
- (d) Calculated %Rs and relative percent differences (RPDs)
- (e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- **R9** List of method quantitation limits (MQLs) for each analyte for each method and matrix
- \mathbf{X} R10 Other problems or anomalies
- ★ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Sunita Timsina	Simsina	Chemist Associate	12/29/2022
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Nai	me: <u>American Electric Power Dolan Chemical Laboratory</u>				
Project Name:	Pirkey Power Station				
Reviewer Name: Sunita Timsina					
LRC Date: <u>12/2</u>	29/2022				
Laboratory Job	Number: <u>223664</u>				
Prep Batch Nur	nber(s): PB22112203, PB22112805				

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	Ι	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	Ι	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	Ι	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	Ι	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	Ι	Were all samples prepared and analyzed within holding times?	Yes	
	Ι	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	Ι	Were calculations checked by a peer or supervisor?	Yes	
	Ι	Were all analyte identifications checked by a peer or supervisor?	Yes	
	Ι	Were sample quantitation limits reported for all analytes not detected?	Yes	
	Ι	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	Ι	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	Ι	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Item ¹	Analytes. ²	Description	Result (Yes, No, NA, NR). ³	Exception Report No. ⁴
	Ι	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	Ι	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	Ι	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	Ι	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ι	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	Ι	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	Ι	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	Ι	Were RPDs or relative standard deviations within the laboratory QC limits?	N/A	
R9	0, I	Method quantitation limits (MQLs):		
	Ι	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	Ι	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ι	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	Ι	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power</u> Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: <u>12/29/2022</u>

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112203, PB22112805

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.⁴
S1	0, I	Initial calibration (ICAL)		
	Ι	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	Ι	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	Ι	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	Ι	Are ICAL data available for all instruments used?	Yes	
	Ι	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	Ι	Was the CCV analyzed at the method-required frequency?	NA	
	Ι	Were percent differences for each analyte within the method-required QC limits?	NA	
	Ι	Was the ICAL curve verified for each analyte?	NA	
	Ι	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	NA	
	Ι	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	Ι	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	Ι	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	Ι	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	Ι	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	Ι	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	Ι	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ι	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	Ι	Was a MDL study performed for each reported analyte?	NA	
	Ι	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	Ι	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	Ι	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	Ι	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ι	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

 Laboratory Name:
 American Electric Power Dolan Chemical Laboratory

 Project Name:
 Pirkey Power Station

 Reviewer Name:
 Sunita Timsina

 LRC Date:
 12/29/2022

 Laboratory Job Number:
 223664

 Prep Batch Number(s):
 PB22112203, PB22112805

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

x

- ★ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
- R1 Field chain-of-custody documentation
- R2 Sample identification cross-reference
 - R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard
 - (b) Dilution factors
 - (c) Preparation methods
 - (d) Cleanup methods
 - (e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - (a) Calculated recovery (%R)
 - (b) The laboratory's surrogate QC limits
- R5 Test reports/summary forms for blank samples
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - (a) LCS spiking amounts
 - (b) Calculated %R for each analyte
 - (c) The laboratory's LCS QC limits
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - (a) Samples associated with the MS/MSD clearly identified
 - (b) MS/MSD spiking amounts
 - (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples
 - (d) Calculated %Rs and relative percent differences (RPDs)
 - (e) The laboratory's MS/MSD QC limits
- **R8** Laboratory analytical duplicate (if applicable) recovery and precision:
 - (a) The amount of analyte measured in the duplicate
 - (b) The calculated RPD
 - (c) The laboratory's QC limits for analytical duplicates
- R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix
- R10 Other problems or anomalies
- The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Susann Sulzmann	S Sultmany	Senior Chemist	12-20-2022
Name (printed)	Signature	Official Title	Date

Mercury Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: <u>American Electric Power Dolan Chemical Laboratory</u>

Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	1	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	Ι	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

Page 2 of 6

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	Ι	Was the LCSD RPD within QC limits?	yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	5
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Mercury Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Name: <u>American Electric Power D</u>olan Chemical Laboratory

Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
\$ 1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	Ι	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	Ι	Was the appropriate compound for the method used for tuning?	NA	
	Ι	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Mercury	Laboratory	Review	Checklist
---------	------------	--------	-----------

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?		
\$7	0	Tentatively identified compounds (TICs):		
I	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58 I	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
59 I I	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	Ι	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	Ι	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	0, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		1
	Ι	Are laboratory SOPs current and on file for each method performed?	Yes	

Mercury Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: <u>American Electric</u> Power Dolan Chemical Laboratory

Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Exception Report No.	Description	
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; 1 - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."