Annual Groundwater Monitoring Report

Southwestern Electric Power Company
Welsh Power Plant

Primary Bottom Ash Pond CN 602843245; RN100213370 Registration No: CCR 110

> 1187 Country Road 4865 Titus County Pittsburg, Texas

> > January 2024

Prepared by:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Table of Contents

	<u>Pa</u>	age
I.	Overview	2
II.	Groundwater Monitoring Well Locations and Identification Numbers	4
III.	Monitoring Wells Installed or Decommissioned	4
IV.	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion	
V.	Groundwater Quality Data Statistical Analysis	5
VI.	Alternate Source Demonstrations	5
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	6
VIII.	Other Information Required	6
IX.	Description of Any Problems Encountered and Actions Taken	6
X.	A Projection of Key Activities for the Upcoming Year	6

Appendix 1: Groundwater Data Tables and Figures

Appendix 2: Statistical Analyses

Appendix 3: Alternative Source Demonstrations - NA

Appendix 4: Notices for Monitoring Program Transitions - NA

Appendix 5: Well Installation/Decommissioning Logs- NA

Appendix 6: Groundwater Monitoring Field and Laboratory Reports

Abbreviations:

ASD - Alternate Source Demonstration

CCR – Coal Combustion Residual

GWPS - Groundwater protection standards

PBAP – Primary Bottom Ash Pond

SSI - Statistically Significant Increase

SSL – Statistically Significant Level

TCEQ – Texas Commission on Environmental Quality

I. Overview

This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year for an existing Coal Combustion Residual (CCR) unit at Southwestern Electric Power Company's, a wholly owned subsidiary of American Electric Power Company (AEP), Welsh Power Plant. The Texas Commission on Environmental Quality's (TCEQ's) CCR rule requires that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2024.

In general, the following activities were completed:

- At the start of the current annual reporting period, the PBAP was operating under the Assessment monitoring program.
- At the end of the current annual reporting period, the PBAP was operating under the Assessment monitoring program.
- The PBAP initiated an assessment monitoring program on April 13, 2018.
- Groundwater samples and elevations were collected for AD-1, AD-5, AD-17, AD-8, AD-9, and AD-15 and analyzed for Appendix III and IV constituents, as specified in 30 TAC §352.951et seq. and AEP's Groundwater Sampling and Analysis Plan (2021).
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units.
- Data and statistical analysis not available for the previous reporting period indicated that during the 2nd semi-annual 2022 sampling event (October 2022):
 - Potential Statistically Significant Increases (SSIs) above background were identified for:
 - Boron at AD-8
 - pH at AD-15
 - No potential Statistically Significant Levels (SSLs) above the groundwater protection standards (GWPS) were identified.
- Annual groundwater sampling was conducted in February 2023;
- The 1st semi-annual groundwater sampling event was conducted in June 2023;
 - o Potential SSIs above background were identified for:
 - Boron at AD-8
 - pH at AD-15
 - o No potential SSLs above GWPS were identified.
- The 2nd semi-annual groundwater sampling event was conducted in October 2023;
 - o Potential SSIs above background were identified for:
 - Boron at AD-8

o No potential SSLs above GWPS were identified.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:


- A map, aerial photograph or a drawing showing the PBAP CCR management unit, all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of assessment monitoring programs is included in Appendix 1;
- Statistical comparison of monitoring data to determine if there have been SSI(s) and SSLs, where applicable (Appendix 2);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions, where applicable (Appendix 3);
- A summary of any transition between monitoring programs or an alternate monitoring frequency, if applicable (Appendix 4).
- Identification of any monitoring wells that were installed, or decommissioned during the preceding year, along with a statement as to why that happened, where applicable (Appendix 5,); and
- Other information required to be included in the annual report, field sheets, analytical reports, etc. (Appendix 6)

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

Primary Bottom Ash Pond Monitoring Wells								
Background	Down Gradient							
AD-1	AD-8							
AD-5	AD-9							
AD-17	AD-15							

Note: ADs 6, 7, and 18 are used for gauging purposes only

III. Monitoring Wells Installed or Decommissioned

There were no groundwater monitoring wells installed or decommissioned during this reporting period.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion</u>

Groundwater samples and elevations were collected for AD-1, AD-5, AD-17, AD-8, AD-9, and AD-15 and analyzed for Appendix III and IV constituents, as specified in §352.951et seq. and AEP's Groundwater Sampling and Analysis Plan (2021).

Appendix 1 contains potentiometric maps with the static water elevation, groundwater flow direction for each monitoring event, tables showing groundwater velocity, and all the groundwater quality data collected to date under 30 TAC 352.951.

V. <u>Groundwater Quality Data Statistical Analysis</u>

Appendix 2 contains the statistical analysis reports available for this reporting period.

Data and statistical analysis not available for the previous reporting period indicated that during the 2nd semi-annual 2022 sampling event (October 31, 2022 and certified March 19, 2023):

- o Potential SSIs above background were identified for:
 - Boron at AD-8
 - pH at AD-15
- No potential SSLs above GWPS were identified.

The annual sampling event for the compliance wells for the Appendix III and IV parameters was conducted February 6, 2023 and satisfies the requirement of 30 TAC 352.951.

The 1st semi-annual groundwater sampling event was conducted June 5-6, 2023 with statistical evaluation certified October 3, 2023;

- o Protentional SSIs above background were identified for:
 - Boron at AD-8
 - pH at AD-9
- o No potential SSLs above GWPS were identified

The 2nd semi-annual groundwater sampling event was conducted October 3, 2023 with statistical evaluation certified January 24, 2024;

- o Protentional SSIs above background were identified for:
 - Boron at AD-8
- o No potential SSLs above GWPS were identified

VI. Alternate Source Demonstrations

No ASDs were conducted for this reporting period.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

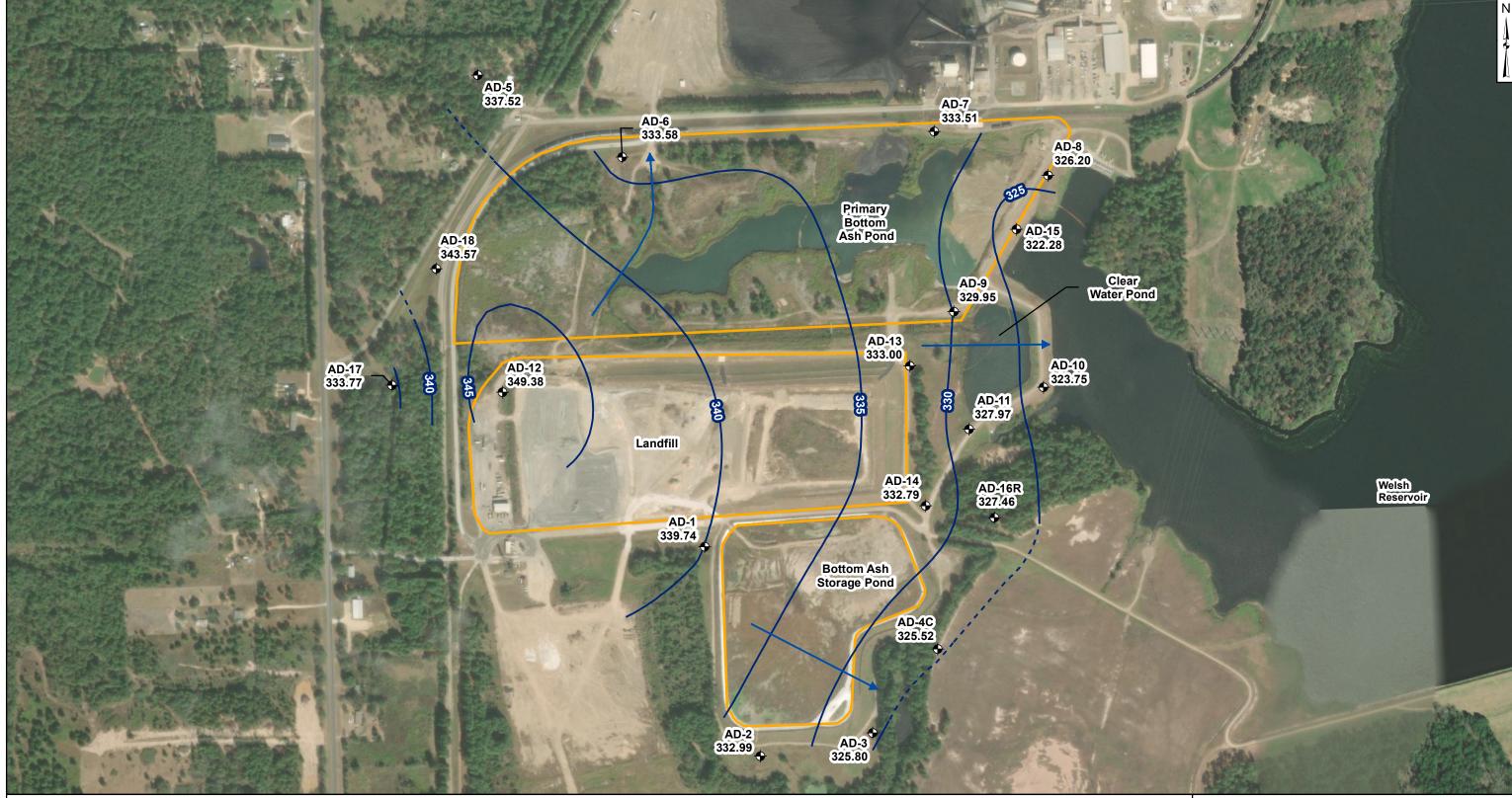
As of this annual groundwater report, the CCR Unit remains in assessment monitoring and will be sampled on a semi-annual basis.

VIII. Other Information Required

Field sheets and laboratory reports are in Appendix 6.

Appendix 2 contains a memorandum that explains the reissuance of select analytical laboratory reports to correct laboratory equipment data quality assurance/quality control issues.

IX. <u>Description of Any Problems Encountered and Actions Taken</u>


No significant problems were encountered.

X. A Projection of Key Activities for the Upcoming Year

- Conducted the annual groundwater sampling event for all constituents listed in 30 TAC 352 Appendix III and IV;
- Assessment monitoring will continue on a semiannual groundwater sampling schedule for 30 TAC 352 Appendix III and IV constituents;
- Evaluation of the assessment monitoring results from a statistical analysis viewpoint, looking for SSIs above background and SSLs above GWPS;
- If needed, ASDs will be conducted to evaluate if the unit can remain in assessment monitoring or the unit will move to an assessment of corrective measures;
- Responding to any new data received considering TCEQ's CCR rule requirements; and
- Preparation of the next annual groundwater report.

APPENDIX 1

Potentiometric maps and Tables that follow show the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.

Legend

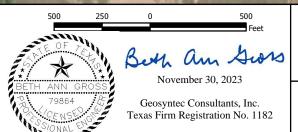
- ◆ Groundwater Monitoring Well
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)
- → Approximate Groundwater Flow Direction
- CCR Units

- Monitoring well coordinates and water level data (collected on February 6 and 7, 2023) provided by AEP.
 Site features based on information available in CCR Groundwater Monitoring Well Network Evaluation (Arcadis 2022).
- 3. Groundwater elevation units are feet above mean sea level.
- 4. Satellite imagery provided by ESRI.

Groundwater Potentiometric Map February 2023

AEP Welsh Power Plant Cason, Texas

Geosy	mtec [©]	Figure
con	sultants	4
Columbus, Ohio		



Legend

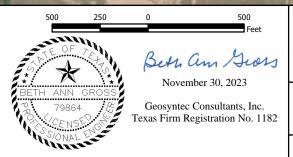
- Groundwater Monitoring Well
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)
- → Approximate Groundwater Flow Direction
- CCR Units

Notes

- Monitoring well coordinates and water level data (collected on June 6, 2023) provided by AEP.
 AD-12 was not gauged during the June 2023 event.
 Site features based on information available in CCR Groundwater Monitoring Well Network Evaluation
- 4. Groundwater elevation units are feet above mean sea level.
- 5 Satellite imagery provided by ESRI.

Groundwater Potentiometric Map June 2023

AEP Welsh Power Plant Cason, Texas


Geosy	Figure							
con	consultants							
Columbus, Ohio	۷							

Legend

- Groundwater Monitoring Well
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)
- → Approximate Groundwater Flow Direction
- CCR Units

- Monitoring well coordinates and water level data (collected on October 3 and 4, 2023) provided by AEP.
 Site features based on information available in CCR Groundwater Monitoring Well Network Evaluation (Arcadis 2022).
- 3. Groundwater elevation units are feet above mean sea level.
- 4. Satellite imagery provided by ESRI.

Groundwater Potentiometric Map October 2023

AEP Welsh Power Plant Cason, Texas

Geosy	Figure	
con	sultants	2
Columbus, Ohio		

Table 1. Groundwater Elevation Data Summary Welsh Power Plant

Unit		All Units		Botto	om Ash Storage	Pond	Prima	ary Bottom Asl	Pond		Landfill	
Gradient		Background			Downgradient			Downgradient			Downgradient	
Well	AD-1	AD-5	AD-17	AD-3	AD-4C	AD-16R*	AD-8	AD-9	AD-15	AD-11	AD-13	AD-14
Mar-2016	342.83	338.04	334.64	325.12	326.19	337.09	325.70	329.74	322.14	328.13	334.76	334.83
May-2016	344.89	337.62	334.26	312.97	325.89	335.84	325.68	329.28	321.93	328.39	334.54	334.51
Jul-2016	342.89	337.24	334.30	323.70	324.01	332.14	325.05	329.53	321.28	328.14	332.93	331.71
Sep-2016	341.42	337.51	334.45	323.63	324.00	326.52	325.49	329.11	321.42	327.99	332.65	331.17
Oct-2016	341.23	337.74	334.64	323.47	323.76	331.43	325.29	328.92	321.71	327.87	332.39	330.94
Dec-2016	340.58	337.01	334.05	323.78	325.07	330.96	325.92	329.31	321.64	328.20	332.84	330.79
Jan-2017	341.18	338.34	333.94	325.04	326.39	330.71	326.76	330.50	322.81	328.90	334.54	332.63
Feb-2017	339.74	336.17	333.94	324.92	324.89		324.27	328.05	321.93	328.25	331.83	330.87
May-2018	340.31	335.56	332.85	321.79	324.54	328.72	325.72	329.32	320.26	326.36	330.38	330.57
Aug-2018	339.16	336.37	333.95	323.02	323.43	326.91	325.84	329.58	321.57	327.67	331.01	329.38
Nov-2018	-			325.51	326.24	327.20						
Feb-2019	341.95	338.15	334.86	325.97	326.50	331.39	326.37	330.03	322.60	328.80	333.60	334.25
Apr-2019	-			325.37	326.28	335.76	326.20	330.00		328.16	333.29	334.59
May-2019	345.68	337.54	335.13	325.65	326.15	339.02	326.09	329.83	322.03	328.08	333.46	334.77
Jul-2019	343.95	336.89	334.94	324.72	324.73	332.17	325.80	329.57	321.43	327.97	332.23	331.85
Feb-2020	341.88	338.56	334.94				326.04	329.58	322.12	328.10	333.38	333.44
May-2020	344.09	337.79	335.10	325.38	326.20	330.42	326.32	329.75	322.17	328.33	333.29	333.97
Oct-2020	340.56	337.35	334.69	323.57	324.19	327.67	325.36	328.60	321.12	327.49	330.97	330.04
Dec-2020	340.04	337.61	334.63	323.51	325.17	327.12						
Feb-2021	341.68	338.16	334.72				326.38	329.55	322.20	328.46	333.35	333.73
Jun-2021	345.82	337.15	334.93	326.36	326.87	330.59	326.77	329.92	322.45	328.70	334.69	335.88
Jul-2021	ŀ				325.45							
Oct-2021	340.54	336.75	334.53	322.86	323.58	327.58	325.23	328.51	320.33	327.08	330.94	329.73
Mar-2022	339.58	337.12	333.92	323.80	325.62	326.17	DRY	DRY	DRY	DRY	DRY	DRY
Jun-2022	338.86	335.94	333.48	323.11	323.46	326.44	324.65	328.45	320.27	327.03	330.56	329.18
Aug-2022	339.01	336.02	333.48	322.80	324.21	325.87						
Oct-2022	-						324.90	328.75	321.19	327.16	330.50	329.17
Nov-2022	338.17	336.41	333.31	323.12	324.46	325.74						
Feb-2023				325.80	325.52	327.52	326.20	329.95	322.28	327.97	333.00	332.79
Jun-2023	339.19	336.58	333.87	324.06	324.44	327.57	325.51	328.86	321.42	327.60	330.98	330.04
Jul-2023					324.76							
Oct-2023	338.51	336.62	333.95	322.97	323.28	326.78	325.44	328.98	320.82	327.03	330.46	329.12
Dec-2023				323.85	325.01	326.04						

Notes:

^{1.} Groundwater elevation measured in feet above mean sea level.

^{*}AD-16 prior to February 2017.

Table 1: Residence Time Calculation Summary Welsh Primary Bottom Ash Pond

			202.	3-02	202.	3-06	2023-10		
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	
	AD-1 ^[1]	2.0	2.6	23.2	3.1	19.8	2.0	31.0	
	AD-5 [1]	2.0	2.5	24.6	4.4	13.8	1.2	52.7	
Primary Bottom	AD-8 ^[2]	2.0	4.2	14.4	3.1	19.6	3.2	18.8	
Ash Pond	AD-9 ^[2]	2.0	4.7	13.0	2.6	23.7	2.2	27.5	
	AD-15 ^[2]	2.0	6.7	9.1	6.3	9.7	6.8	8.9	
	AD-17 ^[1]	2.0	8.6	7.1	3.7	16.6	7.6	8.0	

Notes:

- [1] Upgradient Well
- [2] Downgradient Well

Table 1. Groundwater Data Summary: AD-1 Welsh - PBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/26/2016	Background	0.346	36.5	5	< 0.083 U1	5.9	42	252
7/27/2016	Background	0.35	39.6	4	< 0.083 U1	5.3	36	239
9/30/2016	Background	0.332	15	5	< 0.083 U1	5.4	35	173
10/19/2016	Background	0.398	19.1	4	< 0.083 U1	5.2	42	192
12/12/2016	Background	0.394	8.74	4	< 0.083 U1	5.2	40	200
1/17/2017	Background	0.656	129	4	< 0.083 U1	7.1	68	538
2/23/2017	Background	0.7	147	9	< 0.083 U1	6.9	68	612
6/7/2017	Background	0.449	15.1	4	< 0.083 U1	5.1	42	176
10/6/2017	Detection	0.453	14.3	4	< 0.083 U1	5.3	40	160
5/24/2018	Assessment	0.345	10.2	4	< 0.083 U1	5.2	43	150
8/14/2018	Assessment	0.443	5.95	5	< 0.083 U1	5.2	44	160
2/20/2019	Assessment	0.504	142	2.82	0.24	7.3	49.2	522
5/30/2019	Assessment	0.689	138	1.59	0.29	6.7	43.3	588
7/24/2019	Assessment	0.644	62.7	2	0.106 J1	6.0	58	180
2/17/2020	Assessment	0.626	115	3.41	0.31	5.8	56.3	488
5/20/2020	Assessment	0.801	126	1.83	0.20	7.2	51.4	508
10/14/2020	Assessment	0.670	3.88	2.16	0.25	4.5	66.9	183
2/23/2021	Assessment	0.617	113		0.31	6.6		
6/2/2021	Assessment	0.786	97.1	2.26	0.30	6.2	61.4	400
10/20/2021	Assessment	0.732	4.8	2.21	0.22	4.4	72.4	190
6/28/2022	Assessment	0.768	6.76	2.32	0.22	4.9	74.7	180
11/1/2022	Assessment	0.586	7.87	2.70	0.14	4.8	61.3	170
6/6/2023	Assessment	0.729	6.59	3.03	0.24	4.9	91.1	210
10/4/2023	Assessment	0.901	6.56	3.03	0.2	5.3	80.7	200

Table 1. Groundwater Data Summary: AD-1 Welsh - PBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/26/2016	Background	< 0.93 U1	1.39361 J1	191	0.271453 J1	0.213294 J1	0.240267 J1	1.15339 J1	1.184	< 0.083 U1	< 0.68 U1	0.01	0.033	0.53149 J1	1.74922 J1	0.959865 J1
7/27/2016	Background	< 0.93 U1	< 1.05 U1	191	0.315631 J1	0.0940357 J1	< 0.23 U1	0.615933 J1	0.9952	< 0.083 U1	< 0.68 U1	0.019	0.00793 J1	< 0.29 U1	1.81763 J1	< 0.86 U1
9/30/2016	Background	< 0.93 U1	2.96797 J1	141	0.382874 J1	< 0.07 U1	5	0.850408 J1	1.38	< 0.083 U1	3.38434 J1	0.014	0.01773 J1	< 0.29 U1	1.02629 J1	< 0.86 U1
10/19/2016	Background	< 0.93 U1	< 1.05 U1	114	0.311247 J1	< 0.07 U1	0.412131 J1	0.649606 J1	1.141	< 0.083 U1	< 0.68 U1	0.008	0.00534 J1	1.39872 J1	2.03168 J1	1.25062 J1
12/12/2016	Background	< 0.93 U1	< 1.05 U1	72	0.34133 J1	< 0.07 U1	< 0.23 U1	0.424105 J1	0.719	< 0.083 U1	< 0.68 U1	0.008	0.01521 J1	< 0.29 U1	1.85825 J1	< 0.86 U1
1/17/2017	Background	< 0.93 U1	< 1.05 U1	410	0.0366913 J1	< 0.07 U1	< 0.23 U1	0.480125 J1	3.009	< 0.083 U1	< 0.68 U1	0.000275956 J1	< 0.005 U1	< 0.29 U1	4.04737 J1	< 0.86 U1
2/23/2017	Background	< 0.93 U1	< 1.05 U1	488	< 0.02 U1	< 0.07 U1	< 0.23 U1	0.765099 J1	4.309	< 0.083 U1	< 0.68 U1	0.001	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
6/7/2017	Background	< 0.93 U1	1.14 J1	93.46	0.37 J1	< 0.07 U1	0.66 J1	0.77 J1	0.676	< 0.083 U1	< 0.68 U1	0.00902	0.007 J1	< 0.29 U1	2.1 J1	< 0.86 U1
5/24/2018	Assessment	3.17 J1	< 1.05 U1	79.9	0.39 J1	< 0.07 U1	< 0.23 U1	0.35 J1	1.983	< 0.083 U1	< 0.68 U1	0.00814	0.006 J1	< 0.29 U1	1.38 J1	< 0.86 U1
8/14/2018	Assessment	0.03 J1	0.21	63.0	0.482	0.02	0.160	0.797	1.102	< 0.083 U1	0.238	0.00708	0.013 J1	0.21	1.7	0.03 J1
2/20/2019	Assessment	0.16	0.46	457	0.09 J1	0.01 J1	0.306	0.399	3.159	0.24	0.124	0.00155	< 0.005 U1	1 J1	0.7	< 0.1 U1
5/30/2019	Assessment	0.16	0.60	512	0.244	0.01 J1	0.1 J1	0.756	2.717	0.29	0.197	< 0.009 U1	< 0.005 U1	2.43	1.4	< 0.1 U1
7/24/2019	Assessment	0.08 J1	0.39	245	0.540	0.02 J1	0.1 J1	0.789	1.819	0.106 J1	0.1 J1	0.00557	< 0.005 U1	2 J1	3.4	< 0.1 U1
2/17/2020	Assessment	0.33	0.49	303	0.07 J1	0.02 J1	0.1 J1	0.28	2.665	0.31	0.1 J1	0.00105	< 0.002 U1	1 J1	2.3	< 0.1 U1
5/20/2020	Assessment	0.15	0.53	394	0.270	0.02 J1	0.1 J1	0.490	2.312	0.20	0.1 J1	0.00301	< 0.002 U1	2 J1	2.8	< 0.1 U1
10/14/2020	Assessment	< 0.1 U1	0.3 J1	84.7	0.984	< 0.05 U1	0.9 J1	2.12	1.552	0.25	0.3 J1	0.00932	0.003 J1	< 2 U1	5.3	< 0.5 U1
2/23/2021	Assessment	0.24	0.74	338	0.136	0.03 J1	0.338	0.477	1.737	0.31	0.852	0.00155	< 0.002 U1	1 J1	2.5	< 0.1 U1
6/2/2021	Assessment	0.18	0.66	349	0.088	0.01 J1	0.32	0.474	2.15	0.30	0.09 J1	0.00052	0.002 J1	4.8	1.26	< 0.04 U1
10/20/2021	Assessment	0.04 J1	0.20	86.1	0.932	0.026	0.33	2.44	0.99	0.22	0.23	0.00756	0.003 J1	< 0.1 U1	7.39	< 0.04 U1
6/28/2022	Assessment	0.03 J1	0.26	85.4	0.995	0.030	0.37	2.34	3.69	0.22	0.33	0.00855	0.002 J1	< 0.1 U1	8.35	0.05 J1
11/1/2022	Assessment	0.03 J1	0.19	78.9	0.620	0.024	0.35	1.17	2.01	0.14	0.13 J1	0.00818	0.002 J1	< 0.1 U1	5.51	< 0.04 U1
6/6/2023	Assessment	0.041 J1	0.21	83.4	1.11	0.034	0.35	2.67	0.95	0.24	0.37	0.00805	0.002 J1	< 0.1 U1	10.1	0.04 J1
10/4/2023	Assessment	0.029 J1	0.19	80.0	1.06	0.027	0.38	2.25	1.86	0.2	0.44	0.0103	0.002 J1	< 0.1 U1	9.26	0.05 J1

Table 1. Groundwater Data Summary: AD-5 Welsh - PBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/31/2016	Background	0.03	36.9	15	0.3469 J1	6.4	123	337
7/28/2016	Background	0.04	44.7	16	< 0.083 U1	5.4	163	360
9/30/2016	Background	0.04	46.3	15	0.2436 J1	5.3	190	416
10/20/2016	Background	0.05	50.7	14	< 0.083 U1	5.9	267	448
12/13/2016	Background	0.05	49.6	13	< 0.083 U1	6.2	233	484
1/17/2017	Background	0.04	49.8	14	< 0.083 U1	6.3	234	438
2/23/2017	Background	0.04	33	15	< 0.083 U1	5.5	127	286
6/7/2017	Background	0.05281	49.7	14	< 0.083 U1	6.0	82	300
10/6/2017	Detection	0.04322	33.1	16	< 0.083 U1	5.6	82	258
5/24/2018	Assessment	0.05007	28.1	22	< 0.083 U1	6.2	60	242
8/15/2018	Assessment	0.050	40.5	19	< 0.083 U1	6.2	240	428
2/21/2019	Assessment	0.033	33.9	24.7	0.21	5.4	46.5	220
5/30/2019	Assessment	0.03 J1	30.0	22.3	0.29	6.3	51.3	238
7/24/2019	Assessment	0.04 J1	41.1	18	0.112 J1	6.3	90	354
2/17/2020	Assessment	0.03 J1	39.8	19.8	0.22	5.5	43.7	248
5/20/2020	Assessment	0.03 J1	40.2	22.3	0.18	6.8	55.5	264
10/14/2020	Assessment	0.04 J1	36.6	18.8	0.18	6.5	148	338
2/23/2021	Assessment	0.03 J1	30.9		0.23	6.0		
6/2/2021	Assessment	0.027 J1	24.4	19.6	0.21	5.8	53.8	220
10/20/2021	Assessment	0.038 J1	38.4	17.4	0.17	5.6	155	370
6/28/2022	Assessment	0.048 J1	32.9	15.3	0.15	5.9	146	310
11/1/2022	Assessment	0.041 J1	38.6	16.9	0.16	5.9	185	380
6/6/2023	Assessment	0.030 J1	26.5	16.1	0.15	5.8	114	280
10/4/2023	Assessment	0.042 J1	35.2	17.5	0.17	6.6	132	290

Table 1. Groundwater Data Summary: AD-5 Welsh - PBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/31/2016	Background	< 0.93 U1	< 1.05 U1	57	0.149801 J1	0.0765156 J1	0.555038 J1	14	1.634	0.3469 J1	< 0.68 U1	0.135	0.01135 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
7/28/2016	Background	2.05116 J1	2.90819 J1	93	0.518653 J1	0.502155 J1	0.411466 J1	15	4.75	< 0.083 U1	< 0.68 U1	0.191	0.01516 J1	< 0.29 U1	1.08901 J1	< 0.86 U1
9/30/2016	Background	< 0.93 U1	4.7609 J1	87	0.251584 J1	< 0.07 U1	0.90676 J1	14	3.33	0.2436 J1	< 0.68 U1	0.186	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/20/2016	Background	< 0.93 U1	< 1.05 U1	70	0.08781 J1	0.107488 J1	0.248085 J1	9	2.319	< 0.083 U1	< 0.68 U1	0.225	< 0.005 U1	1.36984 J1	< 0.99 U1	< 0.86 U1
12/13/2016	Background	< 0.93 U1	1.15381 J1	53	0.164529 J1	0.203546 J1	0.747921 J1	13	2.182	< 0.083 U1	< 0.68 U1	0.199	0.00802 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/17/2017	Background	< 0.93 U1	< 1.05 U1	47	0.0574718 J1	0.180502 J1	< 0.23 U1	12	1.023	< 0.083 U1	< 0.68 U1	0.239	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/23/2017	Background	< 0.93 U1	< 1.05 U1	42	0.0306858 J1	< 0.07 U1	< 0.23 U1	13	1.788	< 0.083 U1	< 0.68 U1	0.166	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
6/7/2017	Background	< 0.93 U1	3.85 J1	87.7	0.08 J1	0.39 J1	0.28 J1	11.93	2.32	< 0.083 U1	< 0.68 U1	0.124	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
5/24/2018	Assessment	< 0.93 U1	< 1.05 U1	71.16	< 0.02 U1	0.23 J1	0.8 J1	14.24	1.946	< 0.083 U1	< 0.68 U1	0.121	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/15/2018	Assessment	0.01 J1	1.69	63.7	0.055	0.008 J1	0.072	11.4	0.316	< 0.083 U1	0.079	0.147	< 0.005 U1	0.13	0.08 J1	< 10 U1
2/21/2019	Assessment	0.02 J1	1.59	69.4	0.08 J1	< 0.01 U1	0.432	8.58	1.267	0.21	0.147	0.0807	< 0.005 U1	< 0.4 U1	0.1 J1	< 0.1 U1
5/30/2019	Assessment	< 0.02 U1	3.05	60.5	0.08 J1	< 0.01 U1	0.06 J1	11.8	1.431	0.29	0.05 J1	0.104	0.006 J1	< 0.4 U1	0.05 J1	< 0.1 U1
7/24/2019	Assessment	< 0.02 U1	2.48	77.4	0.05 J1	< 0.01 U1	0.05 J1	8.38	2.533	0.112 J1	< 0.05 U1	0.108	< 0.005 U1	< 0.4 U1	0.06 J1	< 0.1 U1
2/17/2020	Assessment	0.03 J1	2.17	109	0.09 J1	0.02 J1	0.336	4.52	2.393	0.22	0.227	0.0732	< 0.002 U1	0.9 J1	0.2	< 0.1 U1
5/20/2020	Assessment	< 0.02 U1	1.78	93.1	0.05 J1	0.01 J1	0.1 J1	7.65	1.612	0.18	0.07 J1	0.0740	< 0.002 U1	< 0.4 U1	0.09 J1	< 0.1 U1
10/14/2020	Assessment	< 0.02 U1	6.28	71.7	0.09 J1	< 0.01 U1	0.09 J1	14.9	2.7	0.18	0.05 J1	0.134	< 0.002 U1	< 0.4 U1	0.1 J1	< 0.1 U1
2/23/2021	Assessment	< 0.02 U1	2.06	68.3	0.03 J1	< 0.01 U1	0.1 J1	6.31	1.397	0.23	< 0.05 U1	0.0705	< 0.002 U1	< 0.4 U1	0.03 J1	< 0.1 U1
6/2/2021	Assessment	< 0.02 U1	1.72	49.3	0.018 M1, J1	< 0.004 U1	0.26	10.5	2.47	0.21	< 0.05 U1	0.0764 M1	< 0.002 U1	0.1 J1	< 0.09 U1	< 0.04 U1
10/20/2021	Assessment	< 0.02 U1	1.44	53.2	0.018 J1	< 0.004 U1	0.23	6.85	2.68	0.17	< 0.05 U1	0.133 M1	< 0.002 U1	< 0.1 U1	< 0.09 U1	< 0.04 U1
6/28/2022	Assessment	< 0.02 U1	3.01	51.8	0.032 J1	< 0.004 U1	0.22	12.8	2.06	0.15	< 0.05 U1	0.161	< 0.002 U1	0.1 J1	< 0.09 U1	0.05 J1
11/1/2022	Assessment	< 0.02 U1	2.77	63.2	0.046 J1	< 0.004 U1	0.43	15.1	3.88	0.16	< 0.05 U1	0.174	< 0.002 U1	< 0.1 U1	< 0.09 U1	< 0.04 U1
6/6/2023	Assessment	0.010 J1	4.30	45.5	0.055	< 0.004 U1	0.24 J1	9.47	1.72	0.15	< 0.05 U1	0.106	< 0.002 U1	< 0.1 U1	0.06 J1	< 0.02 U1
10/4/2023	Assessment	< 0.008 U1	2.94	63.9	0.049 J1	< 0.004 U1	0.30	12.8	3.57	0.17	< 0.05 U1	0.143	< 0.002 U1	< 0.1 U1	0.05 J1	< 0.02 U1

Table 1. Groundwater Data Summary: AD-8 Welsh - PBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/31/2016	Background	1.46	32.6	36	0.6507 J1	6.9	217	524
7/28/2016	Background	1.44	25.9	26	0.485 J1	5.4	202	469
9/29/2016	Background	1.51	24.3	28	0.4912 J1	7.7	186	432
10/20/2016	Background	1.54	25.9	30	0.6234 J1	6.1	184	424
12/12/2016	Background	1.53	23.6	27	0.5355 J1	5.6	168	442
1/19/2017	Background	1.53	18.7	24	0.5574 J1	6.2	153	352
2/22/2017	Background	1.67	19.3	22	< 0.083 U1	6.8	163	356
6/6/2017	Background	1.39	17.4	22	0.6628 J1	5.6	151	368
10/5/2017	Detection	1.49	14.9	20	< 0.083 U1	6.7	128	284
1/4/2018	Detection	1.47						
5/23/2018	Assessment				0.501 J1	6.2		
8/15/2018	Assessment					6.8		
9/17/2018	Assessment	1.30	15.0	24			122	288
2/5/2019	Assessment	2.55	19.7	22.8	0.72	5.4	153	
2/21/2019	Assessment	1.47	17.6	23.2	0.66	6.4	163	352
4/30/2019	Assessment	1.21				6.9		
5/29/2019	Assessment	1.07	16.9	19.5	0.89	5.5	150	324
7/23/2019	Assessment	1.21	20.8	15	0.559 J1	6.6	145	392
2/17/2020	Assessment	1.25	14.6	17.0	0.67	6.5	159	344
5/19/2020	Assessment	1.23	15.1	16.5	0.66	6.4	149	336
7/22/2020	Assessment	1.14				6.6		
10/12/2020	Assessment	1.10	17.2	13.6	0.88	6.8	138	298
2/23/2021	Assessment	1.18	14.8		0.69	6.1		
6/1/2021	Assessment	1.10	15.3	14.8	0.73	5.3	162	330
10/19/2021	Assessment	1.10	17.2	13.7	0.9	5.5	139	300
3/1/2022	Assessment	1.16	18.7	15.9	0.97	5.9	138	260
6/27/2022	Assessment	1.15	19.5	15.9	0.82	5.9	156	330
10/31/2022	Assessment	1.08	22.3	20.9	0.93	6.1	141	280
2/6/2023	Assessment	1.16	24.6 M1	19.5	0.72	6.3	182	370
6/5/2023	Assessment	0.932	19.3	21.1	0.86	6.1	155	300
10/3/2023	Assessment	1.06	18.9	21.5	0.94	6.7	137	310

Table 1. Groundwater Data Summary: AD-8 Welsh - PBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
Concetion Date	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/31/2016	Background	< 0.93 U1	1.06251 J1	34	0.114491 J1	< 0.07 U1	2	7	1.046	0.6507 J1	< 0.68 U1	0.122	0.02103 J1	1.01326 J1	1.37017 J1	1.18455 J1
7/28/2016	Background	1.46141 J1	< 1.05 U1	26	0.171642 J1	< 0.07 U1	0.751164 J1	9	1.584	0.485 J1	< 0.68 U1	0.098	0.00859 J1	1.48301 J1	1.96333 J1	< 0.86 U1
9/29/2016	Background	< 0.93 U1	< 1.05 U1	23	< 0.02 U1	< 0.07 U1	0.51348 J1	7	6.3	0.4912 J1	< 0.68 U1	0.111	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/20/2016	Background	< 0.93 U1	< 1.05 U1	24	0.028758 J1	< 0.07 U1	0.617826 J1	7	0.3449	0.6234 J1	< 0.68 U1	0.135	< 0.005 U1	0.838863 J1	< 0.99 U1	1.64377 J1
12/12/2016	Background	< 0.93 U1	< 1.05 U1	21	< 0.02 U1	< 0.07 U1	< 0.23 U1	7	1.083	0.5355 J1	< 0.68 U1	0.11	0.01007 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/19/2017	Background	< 0.93 U1	< 1.05 U1	20	< 0.02 U1	< 0.07 U1	< 0.23 U1	6	0.823	0.5574 J1	< 0.68 U1	0.094	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/22/2017	Background	< 0.93 U1	< 1.05 U1	19	< 0.02 U1	< 0.07 U1	< 0.23 U1	6	0.536	< 0.083 U1	< 0.68 U1	0.092	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
6/6/2017	Background	< 0.93 U1	< 1.05 U1	19.08	< 0.02 U1	< 0.07 U1	< 0.23 U1	3.86 J1	1.0735	0.6628 J1	< 0.68 U1	0.09491	0.008 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
5/23/2018	Assessment	3.19 J1	< 1.05 U1	22.12	< 0.02 U1	< 0.07 U1	< 0.23 U1	3.19 J1	0.3366	0.501 J1	< 0.68 U1	0.0956	< 0.005 U1	< 0.29 U1	1.75 J1	< 0.86 U1
8/15/2018	Assessment	0.01 J1	0.31	21.2	0.008 J1	0.02 J1	0.050	5.36	3.44		0.039	0.0555		0.16	0.07 J1	0.129
2/21/2019	Assessment	< 0.02 U1	0.57	28.1	0.03 J1	0.03 J1	0.456	2.88	0.417	0.66	0.223	0.0911	< 0.005 U1	< 0.4 U1	0.1 J1	< 0.1 U1
5/29/2019	Assessment	< 0.02 U1	0.37	30.3	< 0.02 U1	0.02 J1	0.1 J1	6.03	0.911	0.89	0.07 J1	0.067	< 0.005 U1	< 0.4 U1	0.06 J1	0.1 J1
7/23/2019	Assessment	< 0.02 U1	0.41	31.0	< 0.02 U1	0.02 J1	0.09 J1	7.07	0.72	0.559 J1	0.08 J1	0.0641	< 0.005 U1	< 0.4 U1	0.08 J1	0.1 J1
2/17/2020	Assessment	< 0.02 U1	0.55	38.9	< 0.02 U1	0.05 J1	0.244	1.02	1.257	0.67	0.1 J1	0.124	< 0.002 U1	< 0.4 U1	0.08 J1	< 0.1 U1
5/19/2020	Assessment	< 0.02 U1	0.27	21.1	< 0.02 U1	0.04 J1	0.2 J1	1.17	0.344	0.66	< 0.05 U1	0.0872	< 0.002 U1	< 0.4 U1	0.07 J1	< 0.1 U1
10/12/2020	Assessment	< 0.02 U1	0.30	25.9	< 0.02 U1	0.04 J1	0.06 J1	5.71	0.267	0.88	0.06 J1	0.0615	< 0.002 U1	< 0.4 U1	0.08 J1	0.1 J1
2/23/2021	Assessment	< 0.02 U1	0.31	24.2	< 0.1 U1	0.03 J1	0.1 J1	0.899	0.544	0.69	0.06 J1	0.104	< 0.002 U1	< 0.4 U1	< 0.03 U1	< 0.1 U1
6/1/2021	Assessment	< 0.02 U1	0.37	47.9	0.01 J1	0.029	0.28	1.04	0.69	0.73	0.07 J1	0.0818	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.05 J1
10/19/2021	Assessment	< 0.02 U1	0.25	23.3	< 0.01 U1	0.021	0.27	4.13	1.15	0.9	< 0.05 U1	0.0690	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.11 J1
3/1/2022	Assessment	< 0.02 U1	0.27	23.6	< 0.04 U1	0.018 J1	0.23	5.10	1.31	0.97	< 0.05 U1	0.0654	< 0.002 Q1, U1	< 0.1 U1	< 0.09 U1	0.13 J1
6/27/2022	Assessment	< 0.02 U1	0.25	26.1	< 0.007 U1	0.018 J1	0.41	3.15	1.39	0.82	0.07 J1	0.0777	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.11 J1
10/31/2022	Assessment	< 0.02 U1	0.25	27.8	0.01 J1	0.038	0.31	8.92	1.1	0.93	< 0.05 U1	0.0559	< 0.002 U1	0.2 J1	< 0.09 U1	0.15 J1
2/6/2023	Assessment	< 0.02 U1	0.28	32.5	0.021 J1	0.031	0.23	5.08	3.47	0.72	0.05 J1	0.0821	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.10 J1
6/5/2023	Assessment	0.012 J1	0.24	25.9	0.011 J1	0.020	0.27 J1	3.65	0.68	0.86	0.12 J1	0.0664	< 0.002 U1	< 0.1 U1	0.07 J1	0.10 J1
10/3/2023	Assessment	0.009 J1	0.21	24.2	< 0.007 U1	0.020	0.40	3.95	1.24	0.94	< 0.05 U1	0.0732	< 0.002 U1	< 0.1 U1	0.05 J1	0.10 J1

Table 1. Groundwater Data Summary: AD-9 Welsh - PBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/31/2016	Background	0.12	229	88	0.4191 J1	6.3	1,352	2,541
7/28/2016	Background	0.105	255	98	0.4339 J1	5.0	1,464	2,564
9/29/2016	Background	0.115	220	86	0.304 J1	4.7	1,301	2,448
10/19/2016	Background	0.109	228	76	0.6227 J1	5.2	1,350	2,494
12/12/2016	Background	0.108	250	92	< 0.083 U1	5.7	1,639	2,667
1/19/2017	Background	0.312	91.1	54	< 0.083 U1	5.4	884	1,360
2/22/2017	Background	0.1	258	86	< 0.083 U1	5.8	1,774	2,662
6/6/2017	Background	0.146	191	19	< 0.083 U1	4.6	105	308
10/5/2017	Detection	0.129	9.64	20	< 0.083 U1	5.8	86	248
5/23/2018	Assessment				< 0.083 U1	5.3		
8/15/2018	Assessment					5.0		
9/17/2018	Assessment	0.198	230	103			1,910	2,694
2/5/2019	Assessment	0.096	133	27.9	0.16	4.2	181	
2/21/2019	Assessment	1.39	211	89	0.19	5.0	1,350	2,240
4/30/2019	Assessment	0.07				4.5		
5/29/2019	Assessment	0.06 J1	10.1	44.0	0.16	3.6	503	1,758
7/23/2019	Assessment	0.081	222	77	0.5736 J1	6.3	1,701	2,460
2/17/2020	Assessment	0.12	11.5	19.9	0.15	6.0	100	282
5/19/2020	Assessment	0.066	11.3	44.8	0.1 J1	4.9	536	902
10/12/2020	Assessment	0.100	11.8	18.8	0.19	4.8	100	296
2/23/2021	Assessment	0.219	11.6		0.21	4.7		
6/1/2021	Assessment	0.221	12.5	16.7	0.19	4.4	118	300
10/19/2021	Assessment	0.226	11.9	31.8	0.19	4.3	374	700
3/1/2022	Assessment	0.148	12.0	18.3	0.15	4.8	109	300
6/27/2022	Assessment	0.174	109	59.8	0.09 J1	4.8	933	1,460
10/31/2022	Assessment	0.109	12.4	16.8	0.17	5.0	122	300
2/6/2023	Assessment	0.337	12.4	15.5	0.17	4.9	137	340
6/6/2023	Assessment	0.083	164	78.3	0.17	5.1	1,230	1,950
10/3/2023	Assessment	0.168	168	75.4	0.1	5.8	1,200	1,910

Table 1. Groundwater Data Summary: AD-9 Welsh - PBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/31/2016	Background	< 0.93 U1	< 1.05 U1	51	0.999439 J1	1	< 0.23 U1	27	2.945	0.4191 J1	< 0.68 U1	1.32	0.0194 J1	< 0.29 U1	1.04175 J1	< 0.86 U1
7/28/2016	Background	< 0.93 U1	< 1.05 U1	31	0.726564 J1	2	0.262163 J1	22	1.447	0.4339 J1	< 0.68 U1	1.38	0.045	< 0.29 U1	8	< 0.86 U1
9/29/2016	Background	< 0.93 U1	< 1.05 U1	33	0.582852 J1	0.187457 J1	< 0.23 U1	12	3.199	0.304 J1	< 0.68 U1	1.17	0.00739 J1	< 0.29 U1	3.52832 J1	< 0.86 U1
10/19/2016	Background	< 0.93 U1	< 1.05 U1	26	0.478576 J1	0.965032 J1	< 0.23 U1	16	1.311	0.6227 J1	< 0.68 U1	1.44	< 0.005 U1	< 0.29 U1	3.09028 J1	< 0.86 U1
12/12/2016	Background	< 0.93 U1	< 1.05 U1	27	0.481339 J1	2	< 0.23 U1	24	3	< 0.083 U1	< 0.68 U1	1.33	0.02123 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/19/2017	Background	< 0.93 U1	< 1.05 U1	98	2	0.693618 J1	< 0.23 U1	42	2.349	< 0.083 U1	< 0.68 U1	0.634	0.00717 J1	< 0.29 U1	< 0.99 U1	1.7755 J1
2/22/2017	Background	< 0.93 U1	< 1.05 U1	22	0.301057 J1	0.680144 J1	< 0.23 U1	24	2.32	< 0.083 U1	< 0.68 U1	1.41	< 0.005 U1	< 0.29 U1	1.06022 J1	1.45295 J1
6/6/2017	Background	< 0.93 U1	< 1.05 U1	42.27	0.77 J1	2.22	< 0.23 U1	24.16	1.586	< 0.083 U1	< 0.68 U1	1	0.006 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
5/23/2018	Assessment	< 0.93 U1	< 1.05 U1	30.45	0.32 J1	2.88	< 0.23 U1	26.7	2.556	< 0.083 U1	< 0.68 U1	1.2	< 0.005 U1	< 0.29 U1	< 0.99 U1	8.46
8/15/2018	Assessment	< 10 U1	1.68	24.2	0.268	0.06	0.420	11.1	1.864		0.262	0.851		0.11	0.3	0.062
2/21/2019	Assessment	< 0.02 U1	1.18	52.4	0.474	0.09	0.313	14.8	2.51	0.19	0.08 J1	1.12	0.01 J1	< 0.4 U1	0.3	0.1 J1
5/29/2019	Assessment	< 0.02 U1	0.20	49.7	0.941	0.21	0.346	15.9	1.36	0.16	0.07 J1	0.225	< 0.005 U1	< 0.4 U1	0.2	0.2 J1
7/23/2019	Assessment	< 0.02 U1	1.39	32.1	0.361	0.06	0.2 J1	12.7	1.689	0.5736 J1	0.2 J1	1.11	< 0.005 U1	< 0.4 U1	0.4	< 0.1 U1
2/17/2020	Assessment	< 0.02 U1	0.33	52.8	0.979	0.24	0.608	17.7	1.938	0.15	0.2 J1	0.218	0.002 J1	< 0.4 U1	0.3	0.2 J1
5/19/2020	Assessment	< 0.02 U1	0.25	51.6	0.933	0.24	0.458	16.5	1.854	0.1 J1	0.07 J1	0.160	0.003 J1	< 0.4 U1	0.4	0.2 J1
10/12/2020	Assessment	< 0.02 U1	0.72	55.3	1.27	0.22	0.471	18.6	2.838	0.19	0.349	0.194	0.003 J1	< 0.4 U1	0.3	0.2 J1
2/23/2021	Assessment	< 0.02 U1	0.27	54.9	1.51	0.33	0.373	21.7	1.557	0.21	0.1 J1	0.189	0.003 J1	< 0.4 U1	0.4	0.2 J1
6/1/2021	Assessment	< 0.02 U1	0.21	51.6	1.15	0.353	0.59	20.6	1.74	0.19	0.08 J1	0.141	0.003 J1	< 0.1 U1	0.31 J1	0.22
10/19/2021	Assessment	< 0.02 U1	0.30	50.3	1.36	0.315	0.68	20.6	1.74	0.19	0.1 J1	0.184 P3	0.003 J1	< 0.1 U1	0.34 J1	0.23
3/1/2022	Assessment	< 0.02 U1	0.24	55.3	1.20	0.266	0.74	19.1	3.35	0.15	0.08 J1	0.205	0.003 Q1, J1	< 0.1 U1	0.26 J1	0.22
6/27/2022	Assessment	< 0.02 U1	0.87	49.7	0.780	0.244	0.59	19.5	3.52	0.09 J1	0.27	0.539	< 0.002 U1	< 0.1 U1	0.46 J1	0.22
10/31/2022	Assessment	< 0.02 U1	0.21	52.0	1.14	0.199	1.23	17.1	1.06	0.17	0.08 J1	0.231	0.004 J1	< 0.1 U1	0.27 J1	0.22
2/6/2023	Assessment	< 0.02 U1	0.33	49.0	1.60	0.379	0.58	22.1	3.05	0.17	0.18 J1	0.181	0.003 J1	0.1 J1	0.46 J1	0.28
6/6/2023	Assessment	0.008 J1	1.15	39.8	0.502	0.135	0.33	15.8	1.86	0.17	0.12 J1	0.661	< 0.002 U1	< 0.1 U1	0.51	0.14 J1
10/3/2023	Assessment	< 0.008 U1	1.57	37.0	0.788	0.195	0.48	17.4	2.11	0.1	0.47	0.777	< 0.002 U1	< 0.1 U1	0.44 J1	0.16 J1

Table 1. Groundwater Data Summary: AD-15 Welsh - PBAP Appendix III Constituents

Collection Date Monitoring Program		Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/31/2016	Background	0.329	5.09	30	< 0.083 U1	5.6	24	188
7/28/2016	Background	0.407	3.83	34	< 0.083 U1	4.8	28	196
9/29/2016	Background	0.36	13.7	28	0.2621 J1	4.6	23	367
10/19/2016	Background	0.152	4.57	26	< 0.083 U1	4.4	17	152
12/12/2016	Background	0.334	3.6	26	< 0.083 U1	4.7	19	204
1/19/2017	Background	0.413	3.35	32	< 0.083 U1	5.8	25	176
2/22/2017	Background	0.1	4.21	20	< 0.083 U1	4.6	8	88
6/6/2017	Background	0.321	3.57	27	< 0.083 U1	4.8	19	184
10/5/2017	Detection	0.395	3.08	30	< 0.083 U1	5.9	21	200
5/23/2018	Assessment				< 0.083 U1	4.8		
8/15/2018	Assessment					4.6		
9/17/2018	Assessment	0.341	3.04	37			24	174
2/5/2019	Assessment	0.03 J1	2.18	20.6	0.06	3.9	0.2 J1	
2/21/2019	Assessment	0.169	2.67	28.2	0.09	5.0	10.6	150
5/29/2019	Assessment	< 0.02 U1	2.97	21.4	0.06 J1	4.9	2.1	34
7/23/2019	Assessment	0.306	3.45	28	0.086 J1	3.2	18	214
2/17/2020	Assessment	0.419	3.64	34.3	0.11	4.5	21.5	234
5/19/2020	Assessment	0.376	3.37	34.1	0.07	5.3	19.0	216
10/12/2020	Assessment	0.334	2.99	30.4	0.10	5.1	17.1	170
2/23/2021	Assessment	0.03 J1	2.30		0.08	4.4		
6/1/2021	Assessment	0.213	3.0	28.4	0.10	4.4	11.4	150
10/19/2021	Assessment	0.218	2.7	28.0	0.09	4.4	10.3	140
3/1/2022	Assessment	0.076	2.63	25.0	0.05 J1	4.4	4.29	80
6/27/2022	Assessment	0.329	3.25	30.9	0.09	4.5	18.9	170
10/31/2022	Assessment	0.093	2.57	26.2	0.07	4.4	4.62	90
2/6/2023	Assessment	0.174	2.70	27.5	0.06	4.3	9.85	130
6/5/2023	Assessment	0.194	2.92	28.6	0.08	4.3	12.4	140
10/3/2023	Assessment	0.179	2.47	27.5	0.06	4.9	9.9	140

Table 1. Groundwater Data Summary: AD-15 Welsh - PBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/31/2016	Background	< 0.93 U1	12	215	0.959793 J1	0.351465 J1	17	11	2.284	< 0.083 U1	7	0.017	0.054	1.77432 J1	3.46337 J1	< 0.86 U1
7/28/2016	Background	< 0.93 U1	6	124	0.362598 J1	0.111427 J1	4	6	1.322	< 0.083 U1	< 0.68 U1	0.021	0.01646 J1	0.586779 J1	1.19442 J1	< 0.86 U1
9/29/2016	Background	< 0.93 U1	131	1,930	15	7	280	134	9.92	0.2621 J1	161	0.149	0.707	3.60313 J1	14	< 0.86 U1
10/19/2016	Background	< 0.93 U1	23	415	2	0.575938 J1	54	19	3.567	< 0.083 U1	22	0.036	0.1	1.54555 J1	1.17613 J1	1.55993 J1
12/12/2016	Background	< 0.93 U1	6	184	0.695316 J1	0.246456 J1	15	10	3.36	< 0.083 U1	3.96087 J1	0.013	0.026	0.463544 J1	1.32943 J1	< 0.86 U1
1/19/2017	Background	< 0.93 U1	6	153	0.449612 J1	< 0.07 U1	9	7	2.386	< 0.083 U1	2.87518 J1	0.008	0.01932 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/22/2017	Background	< 0.93 U1	20	353	2	0.319406 J1	49	20	2.261	< 0.083 U1	19	0.025	0.058	1.42695 J1	< 0.99 U1	< 0.86 U1
6/6/2017	Background	< 0.93 U1	8.54	166	0.61 J1	0.48 J1	12.35	8.44	2.491	< 0.083 U1	2.98 J1	0.0108	0.022 J1	< 0.29 U1	2.71 J1	< 0.86 U1
5/23/2018	Assessment	< 0.93 U1	2.56 J1	102	0.03 J1	0.1 J1	2.63	4.74 J1	1.46	< 0.083 U1	< 0.68 U1	0.00562	< 0.005 U1	< 0.29 U1	1.54 J1	1.37 J1
8/15/2018	Assessment	0.03 J1	3.26	85.2	0.116	0.01 J1	0.481	3.71	1.076	-	0.438	0.00338		0.05 J1	0.9	0.090
2/21/2019	Assessment	< 0.02 U1	2.21	76.6	0.208	0.01 J1	0.225	2.9	0.841	0.09	0.104	0.00294	< 0.005 U1	< 0.4 U1	0.4	< 0.1 U1
5/29/2019	Assessment	0.05 J1	2.95	203	1.50	0.08	9.31	5.49	3.55	0.06 J1	9.85	0.01 J1	0.081	< 0.4 U1	5.1	0.1 J1
7/23/2019	Assessment	0.03 J1	2.10	113	0.573	0.04 J1	2.26	5.41	2.245	0.086 J1	2.87	0.00414	0.025	< 0.4 U1	1.6	< 0.1 U1
2/17/2020	Assessment	0.09 J1	9.12	115	0.39	0.02 J1	6.01	4.08	2.546	0.11	4.8	0.00509	0.013	3.32	1.7	0.1 J1
5/19/2020	Assessment	0.02 J1	3.94	80.3	0.09 J1	0.01 J1	0.2 J1	3.28	1.115	0.07	0.09 J1	0.00383	< 0.002 U1	< 0.4 U1	0.7	< 0.1 U1
10/12/2020	Assessment	0.03 J1	4.90	83.4	0.146	0.01 J1	0.425	3.93	1.604	0.10	0.417	0.00393	0.003 J1	< 0.4 U1	0.7	< 0.1 U1
2/23/2021	Assessment	< 0.02 U1	1.39	72.4	0.190	0.02 J1	0.1 J1	2.61	1.021	0.08	0.08 J1	0.00167	< 0.002 U1	< 0.4 U1	0.2	< 0.1 U1
6/1/2021	Assessment	< 0.02 U1	3.04	76.9	0.138	0.015 J1	0.31	2.73	1.45	0.10	< 0.05 U1	0.00330	< 0.002 U1	< 0.1 U1	0.43 J1	0.05 J1
10/19/2021	Assessment	< 0.02 U1	3.72	73.1	0.143	0.009 J1	0.31	2.84	2.02	0.09	0.07 J1	0.00435	< 0.002 U1	< 0.1 U1	0.55	0.06 J1
3/1/2022	Assessment	< 0.02 U1	1.89	75.1	0.207	0.011 J1	0.55	2.76	2.01	0.05 J1	0.09 J1	0.00208	0.003 Q1, J1	< 0.1 U1	0.29 J1	0.05 J1
6/27/2022	Assessment	< 0.02 U1	3.03	78.5	0.088	0.015 J1	0.38	3.54	2.15	0.09	0.05 J1	0.00573	< 0.002 U1	< 0.1 U1	0.63	0.07 J1
10/31/2022	Assessment	< 0.02 U1	2.55	75.3	0.187	0.015 J1	0.41	2.94	1.67	0.07	0.12 J1	0.00235	< 0.002 U1	< 0.1 U1	0.38 J1	0.05 J1
2/6/2023	Assessment	< 0.02 U1	3.26	73.9	0.162	0.019 J1	0.33	2.77	1.77	0.06	0.15 J1	0.00373	< 0.002 U1	< 0.1 U1	0.45 J1	0.07 J1
6/5/2023	Assessment	0.056 J1	7.67	86.9	0.237	0.024	2.27	3.49	1.37	0.08	1.94	0.00423	0.006	0.1 J1	1.23	0.08 J1
10/3/2023	Assessment	0.014 J1	3.01	69.8	0.139	0.013 J1	0.37	3.06	2.1	0.06	0.08 J1	0.00398	< 0.002 U1	< 0.1 U1	0.54	0.06 J1

Table 1. Groundwater Data Summary: AD-17 Welsh - PBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/26/2016	Background	0.121	200	43	0.4023 J1	7.2	1,166	1,810
7/27/2016	Background	0.119	195	32	0.4135 J1	5.7	1,005	1,576
9/30/2016	Background	0.111	191	36	0.3055 J1	6.2	1,055	1,663
10/20/2016	Background	0.124	194	32	0.583 J1	6.1	1,163	1,612
12/13/2016	Background	0.135	196	31	0.5399 J1	6.0	1,096	1,560
1/17/2017	Background	0.101	196	33	< 0.083 U1	5.9	1,445	1,686
2/22/2017	Background	0.135	189	30	< 0.083 U1	5.7	1,055	1,628
6/6/2017	Background	0.121	188	30	< 0.083 U1	5.8	1,105	1,578
10/6/2017	Detection	0.183	183	31	< 0.083 U1	5.9	1,090	1,548
5/24/2018	Assessment	0.239	193	39	< 0.083 U1	6.3	1,067	1,836
8/15/2018	Assessment	0.118	187	40	< 0.083 U1	5.6	1,168	1,748
2/21/2019	Assessment	0.151	207	43.2	0.18	6.9	1,060	1,722
5/30/2019	Assessment	0.158	202	41.7	< 0.04 U1	6.1	1,120	1,546
7/24/2019	Assessment	0.113	216	37	0.085 J1	6.0	1,127	1,864
2/17/2020	Assessment	0.104	184	36.0	0.16	5.9	1,070	1,750
5/20/2020	Assessment	0.115	250	47.7	0.15	5.7	1,190	1,890
10/14/2020	Assessment	0.100	185	35.7	0.17	5.4	1,060	1,720
2/23/2021	Assessment	0.098	168		0.17	5.6		
6/2/2021	Assessment	0.124	233	44.9	0.31	5.7	1,210	1,890
10/20/2021	Assessment	0.104	164	37.3	0.16	5.1	1,040	1,710
6/28/2022	Assessment	0.112	167	37.0	0.09 J1	5.2	1,050	1,740
11/1/2022	Assessment	0.097	165	40.3	0.09 J1	5.7	1,110	1,690
6/6/2023	Assessment	0.10 J1	150	35.6	< 0.05 U1	5.3	1,190	1,510
10/4/2023	Assessment	0.14 J1	176 M1	37.9	0.06 J1	5.8	1,180	1,520

Table 1. Groundwater Data Summary: AD-17 Welsh - PBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/26/2016	Background	< 0.93 U1	1.37501 J1	21	0.173275 J1	2	1	63	1.525	0.4023 J1	< 0.68 U1	0.37	0.032	< 0.29 U1	< 0.99 U1	< 0.86 U1
7/27/2016	Background	1.13716 J1	< 1.05 U1	20	0.307264 J1	4	1	68	2.78	0.4135 J1	< 0.68 U1	0.374	0.02133 J1	1.04115 J1	4.56733 J1	< 0.86 U1
9/30/2016	Background	< 0.93 U1	< 1.05 U1	31	0.175474 J1	0.848199 J1	3	58	2.358	0.3055 J1	< 0.68 U1	0.354	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/20/2016	Background	< 0.93 U1	< 1.05 U1	34	0.200656 J1	2	4	65	2.224	0.583 J1	< 0.68 U1	0.394	< 0.005 U1	0.322249 J1	3.34422 J1	< 0.86 U1
12/13/2016	Background	< 0.93 U1	< 1.05 U1	17	0.0498325 J1	3	0.816224 J1	68	2.384	0.5399 J1	< 0.68 U1	0.323	0.01485 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/17/2017	Background	< 0.93 U1	< 1.05 U1	14	0.0319852 J1	3	68	68	2.436	< 0.083 U1	< 0.68 U1	0.341	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/22/2017	Background	< 0.93 U1	< 1.05 U1	20	0.0665729 J1	2	1	73	2.288	< 0.083 U1	< 0.68 U1	0.331	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
6/6/2017	Background	< 0.93 U1	< 1.05 U1	10.33	< 0.02 U1	6.06	< 0.23 U1	74.8	1.598	< 0.083 U1	< 0.68 U1	0.329	0.013 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
5/24/2018	Assessment	< 0.93 U1	< 1.05 U1	9.65	< 0.02 U1	6.46	< 0.23 U1	71.73	1.939	< 0.083 U1	< 0.68 U1	0.308	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/15/2018	Assessment	0.02 J1	1.83	12.8	0.069	0.25	0.604	43.5	2.35	< 0.083 U1	1.10	0.243	0.011 J1	0.35	0.3	0.074
2/21/2019	Assessment	0.08 J1	2.51	120	0.24	0.27	3.34	64.5	2.657	0.18	2.49	0.268	0.007 J1	0.7 J1	0.8	< 0.1 U1
5/30/2019	Assessment	< 0.02 U1	0.41	19.6	0.02 J1	0.03 J1	0.246	51.1	2.508	< 0.04 U1	0.03 J1	0.341	< 0.005 U1	< 0.4 U1	0.06 J1	< 0.1 U1
7/24/2019	Assessment	< 0.02 U1	1.07	14.3	0.130	0.03 J1	0.228	57.7	3.45	0.085 J1	0.263	0.283	< 0.005 U1	< 0.4 U1	0.1 J1	< 0.1 U1
2/17/2020	Assessment	< 0.02 U1	0.72	9.6	0.04 J1	< 0.01 U1	0.08 J1	42.3	3.46	0.16	< 0.05 U1	0.273	< 0.004 U1	< 0.4 U1	< 0.03 U1	< 0.1 U1
5/20/2020	Assessment	< 0.02 U1	0.86	11.4	0.07 J1	0.02 J1	0.231	70.0	2.76	0.15	0.08 J1	0.302	< 0.002 U1	< 0.4 U1	0.09 J1	< 0.1 U1
10/14/2020	Assessment	< 0.02 U1	0.84	10.9	0.04 J1	0.01 J1	0.327	45.4	2.169	0.17	0.2 J1	0.274	< 0.002 U1	< 0.4 U1	0.06 J1	< 0.1 U1
2/23/2021	Assessment	< 0.02 U1	0.61	10.6	0.03 J1	0.03 J1	0.1 J1	41.1	1.433	0.17	0.08 J1	0.249	< 0.002 U1	< 0.4 U1	0.04 J1	< 0.1 U1
6/2/2021	Assessment	< 0.02 U1	0.84	10.9	0.066	0.026	0.38	72.9	2.4	0.31	0.09 J1	0.311	< 0.002 U1	0.2 J1	< 0.09 U1	< 0.04 U1
10/20/2021	Assessment	< 0.02 U1	0.57	10.2	0.035 J1	0.019 J1	0.38	42.9	1.73	0.16	0.07 J1	0.250	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.05 J1
6/28/2022	Assessment	< 0.02 U1	0.53	12.6	0.040 J1	0.011 J1	0.40	41.3	6.54	0.09 J1	0.12 J1	0.267	0.003 J1	0.1 J1	< 0.09 U1	< 0.04 U1
11/1/2022	Assessment	0.02 J1	0.62	12.7	0.073	0.019 J1	0.96	41.9	3.81	0.09 J1	0.27	0.278	0.004 J1	< 0.1 U1	< 0.09 U1	< 0.04 U1
6/6/2023	Assessment	< 0.08 U1	1.1	19.6	0.11 J1	< 0.04 U1	1.1 J1	36.8	1.42	< 0.05 U1	0.7 J1	0.254	0.003 J1	< 1 U1	0.5 J1	< 0.2 U1
10/4/2023	Assessment	< 0.08 U1	0.5 J1	11.8	< 0.07 U1	< 0.04 U1	1.3 J1	41.2	2.05	0.06 J1	< 0.5 U1	0.305 M1	< 0.002 U1	< 1 U1	< 0.4 U1	< 0.2 U1

Table 1. Groundwater Data Summary Welsh - PBAP

Notes:

- -: Not analyzed

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

mg/L: milligrams per liter

P3: The precision on the matrix spike duplicate (MSD) was above acceptance limits.

pCi/L: picocuries per liter

Q1: Sample received in inappropriate sample container.

SU: standard unit

μg/L: micrograms per liter

APPENDIX 2

Where applicable, shown in this appendix the are results from statistical analyses, and a description of the statistical analysis method chosen. These statistical analyses are conducted separately for each constituent in each monitoring well.

Memorandum

Date: January 17, 2024

To: Rebecca Jones (AEP)

Copies to: Brian Newton (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Evaluation of 2023 Reissued Analytical Laboratory Data for

J. Robert Welsh Plant's Primary Bottom Ash Pond

In accordance with Texas Commission on Environmental Quality (TCEQ) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule") groundwater sampling was completed in 2023 to support assessment monitoring at the Primary Bottom Ash Pond, an existing CCR unit at the J. Robert Welsh Plant in Pittsburg, Texas. After the statistical evaluation was completed using data from the first semiannual assessment monitoring event, select analytical laboratory reports were reissued to correct an inconsistent number of significant figures in electronic data deliverables and the published laboratory reports.

A review of the reissued analytical laboratory reports identified reported lithium results that had the number of significant figures changed (Table 1). The site-specific background value for lithium was not updated as part of the first semiannual assessment monitoring event; therefore, the lithium result at background location AD-1 was not used in the statistical evaluation before the reissued analytical laboratory reports were reviewed. Both the initial reported lithium value and the revised lithium value at downgradient location AD-15 were below the site-specific groundwater protection standard of 0.394 milligrams per liter, and no statistically significant levels of lithium were identified during the first semiannual assessment monitoring event. Therefore, no changes to the statistical outcome of the first semiannual assessment monitoring event would occur.

The revised lithium values in the reissued laboratory analytical reports will be used in future reporting and statistical evaluations.

¹ Geosyntec. 2023. Statistical Analysis Summary – Primary Bottom Ash Pond. J. Robert Welsh Plant, Pittsburg, Texas. Geosyntec Consultants, Inc. October.

Table 1. 2023 Revised Analytical Results Welsh Plant - Primary Bottom Ash Pond

Sample Date	Well ID	Well Location	Constituent	Units	Initial Reported Value	Revised Value
6/6/2023	AD-1	Background	Lithium	mg/L	0.0081	0.00805
6/5/2023	AD-15	Downgradient	Lithium	mg/L	0.0042	0.00423

Notes:

1. All results are shown in milligrams per liter (mg/L).

engineers | scientists | innovators

STATISTICAL ANALYSIS SUMMARY, PRIMARY BOTTOM ASH POND

J. Robert Welsh Plant Pittsburg, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: CHA8500B

March 19, 2023

TABLE OF CONTENTS

1.	EXE	ECUTIV	/E SUMMARY	1
2.	ВОТ	TOM A	ASH POND EVALUATION	2
	2.1	Data V	Validation and QA/QC	2
	2.2	Statist	tical Analysis	2
			Establishment of GWPSs	
		2.2.2	Evaluation of Potential Appendix IV SSLs	3
		2.2.3	Establishment of Appendix III Prediction Limits	3
			Evaluation of Potential Appendix III SSIs	
	2.3	Concl	usions	5
3.	REF	ERENO	CES	6
			LIST OF TABLES	
T 1	1 1		1 1 D 1 C	

Table 1: Groundwater Data Summary

Table 2: Appendix IV Groundwater Protection Standards

Table 3: Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A: Certification by Qualified Professional Engineer

Attachment B: Data Quality Review Memorandum

Attachment C: Statistical Analysis Output

ACRONYMS AND ABBREVIATIONS

CCR coal combustion residuals

GWPS groundwater protection standard

LPL lower prediction limit

MDL method detection limit

mg/L milligram per liter

PBAP Primary Bottom Ash Pond PQL practical quantitation limit

QA/QC quality assurance/quality control
SSI statistically significant increase
SSL statistically significant level

SU standard units

TCEQ Texas Commission on Environmental Quality

TDS total dissolved solids
UPL upper prediction limit

1. EXECUTIVE SUMMARY

In accordance with Texas Commission on Environmental Quality's (TCEQ) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule"), groundwater monitoring has been conducted at the Primary Bottom Ash Pond (PBAP), an existing CCR unit at the Welsh Power Plant in Pittsburg, Texas. Recent groundwater monitoring results were compared to site-specific groundwater protection standards (GWPSs) to identify potential exceedances for CCR units in assessment monitoring.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron at the PBAP. An alternative source was not identified at the time, so assessment monitoring was initiated and GWPSs were set in accordance with § 352.951(b) (Geosyntec 2018). During 2022, as required by § 352.951(a), an annual sampling event for Appendix III and Appendix IV parameters was completed in March, and semiannual sampling events for both Appendix III parameters and Appendix IV parameters were completed in June and October. During the March and June 2022 assessment monitoring events, no statistically significant levels (SSLs) were observed. However, concentration of Appendix III parameters remained above background values (Geosyntec 2022). Thus, the unit remained in assessment monitoring. The results of the October 2022 assessment event are documented in this report.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. GWPSs were reestablished for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether SSLs of Appendix IV parameters were present at the GWPS. No SSLs were identified during the October 2022 event. However, concentrations of Appendix III parameters remained above background. Thus, the unit will remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

2. BOTTOM ASH POND EVALUATION

2.1 Data Validation and QA/QC

During the October 2022 assessment monitoring event, one set of samples was collected for analysis from each background and compliance well. Samples from October 2022 were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program. Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks, continuing calibration verification samples, and laboratory fortified blanks.

A data quality review was completed to assess whether the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ 2020). As noted in the review memorandum (Attachment B), the data were determined usable for supporting project objectives. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.36 statistics software. The export file was checked against the analytical data for transcription errors and completeness.

2.2 Statistical Analysis

Statistical analyses for the PBAP were conducted in accordance with the October 2020 Statistical Analysis Plan (Geosyntec 2020), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment C.

The data obtained in October 2022 were screened for potential outliers. The results for fluoride at background well AD-1 and mercury at background well AD-17 were identified as low outliers. However, these results were estimated results under the reporting limit (practical quantitation limit [PQL]) but above the method detection limit (MDL)—that is, "J-flagged" data—and were retained in the data set.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with § 352.951(b) and the Statistical Analysis Plan (Geosyntec 2020). The established GWPS was set to whichever was greater of the background concentration and the maximum contaminant level for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit was calculated using data that were pooled from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for barium, beryllium, chromium, and combined radium. Nonparametric tolerance limits were calculated for arsenic, cadmium, cobalt, fluoride, lithium, and selenium, due to apparent nonnormal distributions, and for antimony, lead, mercury, molybdenum,

and thallium, due to a high nondetect frequency. Upper tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$), but nonparametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the nondetect frequency was too high). An SSL was concluded if the lower confidence limit was above the GWPS (i.e., if the entire confidence interval was above the GWPS). Calculated confidence limits are shown in Attachment C.

No SSLs were identified at the PBAP.

2.2.3 Establishment of Appendix III Prediction Limits

Upper prediction limits (UPLs) were previously established for all Appendix III parameters following the background monitoring period (Geosyntec 2018). Intrawell tests were used to evaluate potential SSIs for calcium, chloride, fluoride, sulfate, and total dissolved solids (TDS). Interwell tests were used to evaluate potential SSIs for boron and pH. Interwell and intrawell prediction limits are updated periodically during the assessment monitoring period as sufficient data become available.

Mann-Whitney tests (Wilcoxon rank-sum tests) were performed to determine whether the newer data are affected by a release from the PBAP. Because the interwell Appendix III limits and the Appendix IV GWPSs are based on data from upgradient wells, which were not expected to have been impacted by a release, these tests were used for intrawell Appendix III tests only. Mann-Whitney tests were used to compare the medians of historical data (May 2016–May 2020) with the new compliance samples (June 2020–June 2022) for calcium, chloride, fluoride, sulfate, and TDS. Results were evaluated to determine whether the medians of the two groups were similar at the 99% confidence level. Where no significant difference was found, the new compliance data were added to the background data set. Where a statistically significant difference was found between the medians of the two groups, the data were reviewed to evaluate the cause of the difference and to determine whether adding newer data to the background data set, replacing the background data set with the newer data, or continuing to use the existing background data set was most appropriate. If the differences appeared to have been caused by a release, then the previous background data set would have been used as before.

The complete Mann-Whitney test results and a summary of the significant findings can be found in Attachment C. Statistically significant differences were found between the two groups for chloride, fluoride, and sulfate at select wells. However, the recent data were mostly within range of historic concentrations. Thus, the background data sets were updated to include all available data through June 2022.

Prediction limits for the interwell tests were calculated using data collected through the October 2022 assessment monitoring event. New background well data were tested for outliers before being added to the background data set. Background well data were also evaluated for statistically significant trends using the Sen's Slope/Mann-Kendall trend test, and the results are included in

Attachment C. The boron and pH prediction limits were calculated using a one-of-two retesting procedure, as during detection monitoring.

After the revised background set was established, a parametric or nonparametric analysis was selected based on the distribution of the data and the frequency of nondetect data. Estimated results under the reporting limit (i.e., PQL) but above the MDL (i.e., "J-flagged" data) were considered detections and the estimated results were used in the statistical analyses. Nonparametric analyses were selected for data sets with at least 50% nondetect data or data sets that could not be normalized. Parametric analyses were selected for data sets (either transformed or untransformed) that passed the Shapiro-Wilk/Shapiro-Francía test for normality. The Kaplan-Meier nondetect adjustment was applied to data sets with between 15% and 50% nondetect data. For data sets with fewer than 15% nondetect data, nondetect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or nonparametric) and transformation (where applicable) for each background data set are shown in Attachment C.

Interwell UPLs were updated for boron and pH, and lower prediction limits (LPLs) were also updated for pH using historical data through October 2022. The updated prediction limits are summarized in Table 3. Intrawell UPLs were updated for calcium, chloride, fluoride, sulfate, and TDS using the historical data through June 2022. The prediction limits were calculated for a one-of-two retesting procedure: If at least one sample in a series of two is not above the UPL (or, in the case of pH, is neither less than the LPL nor greater than the UPL), then it can be concluded that an SSI has not occurred. In practice, where the initial result is not above the UPL (or, in the case of pH, is neither under the LPL nor above the UPL), a second sample will not be collected. The retesting procedures allowed for an acceptably high statistical power that could detect changes at compliance wells for constituents evaluated using intrawell prediction limits.

2.2.4 Evaluation of Potential Appendix III SSIs

A review of the Appendix III results was also completed to assess whether concentrations of Appendix III parameters at the compliance wells were above background concentrations. Data collected during the October 2022 assessment monitoring event from each compliance well were compared to previously established prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following were detected above the UPLs, or, in the case of pH, below the LPLs:

- Boron concentrations were detected above the interwell UPL of 0.801 milligrams per liter (mg/L) at AD-8 (1.08 mg/L).
- The reported pH values were below the interwell LPL of 4.8 standard units (SU) at AD-15 (4.4 SU).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the initial (October 2022) sample was above the UPL or below the LPL. Based on these results, concentrations of boron appear to be above background concentrations, and pH values appear to be below background values. Therefore, the unit will remain in assessment monitoring.

2.3 Conclusions

A semiannual assessment monitoring event was conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that prevented data usage. No outliers were removed from the October 2022 data. GWPSs were reestablished for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval was above the GWPS. No SSLs were identified.


The interwell prediction limits for boron and pH and the intrawell prediction limits for calcium, chloride, fluoride, sulfate, and TDS were updated to incorporate more recent data. Appendix III results were compared to established prediction limits, with values above the UPL detected for boron and with results below the LPL for pH.

Based on this evaluation, the PBAP CCR unit will remain in assessment monitoring.

3. REFERENCES

- Geosyntec. 2018. Statistical Analysis Summary Primary Bottom Ash Pond, J. Robert Welsh Plant, Pittsburg, Texas. Geosyntec Consultants, Inc. January.
- Geosyntec. 2022. Statistical Analysis Summary Primary Bottom Ash Pond, J. Robert Welsh Plant. Geosyntec Consultants, Inc. October.
- TCEQ. 2020. Draft Technical Guidance No. 32. Coal Combustion Residuals Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality. May.

Table 1. Groundwater Data Summary Statistical Analysis Summary Welsh Plant - Primary Bottom Ash Pond

Well ID		AD-1	AD-5	AD-8	AD-9	AD-15	AD-17
Well Classification		Background	Background	Compliance	Compliance	Compliance	Background
Parameter	Unit	11/1/2022	11/1/2022	10/31/2022	10/31/2022	10/31/2022	11/1/2022
Antimony	μg/L	0.03 J1	0.1 U1	0.1 U1	0.1 U1	0.1 U1	0.02 J1
Arsenic	μg/L	0.19	2.77	0.25	0.21	2.55	0.62
Barium	μg/L	78.9	63.2	27.8	52.0	75.3	12.7
Beryllium	μg/L	0.620	0.046 J1	0.01 J1	1.14	0.187	0.073
Boron	mg/L	0.586	0.041 J1	1.08	0.109	0.093	0.097
Cadmium	μg/L	0.024	0.02 U1	0.038	0.199	0.015 J1	0.019 J1
Calcium	mg/L	7.87	38.6	22.3	12.4	2.57	165
Chloride	mg/L	2.70	16.9	20.9	16.8	26.2	40.3
Chromium	μg/L	0.35	0.43	0.31	1.23	0.41	0.96
Cobalt	μg/L	1.17	15.1	8.92	17.1	2.94	41.9
Combined Radium	pCi/L	2.01	3.88	1.1	1.06	1.67	3.81
Fluoride	mg/L	0.14	0.16	0.93	0.17	0.07	0.09 J1
Lead	μg/L	0.13 J1	0.2 U1	0.2 U1	0.08 J1	0.12 J1	0.27
Lithium	mg/L	0.00818	0.174	0.0559	0.231	0.00235	0.278
Mercury	μg/L	0.002 J1	0.005 U1	0.005 U1	0.004 J1	0.005 U1	0.004 J1
Molybdenum	μg/L	0.5 U1	0.5 U1	0.2 J1	0.5 U1	0.5 U1	0.5 U1
Selenium	μg/L	5.51	0.5 U1	0.5 U1	0.27 J1	0.38 J1	0.5 U1
Sulfate	mg/L	61.3	185	141	122	4.62	1,110
Thallium	μg/L	0.2 U1	0.2 U1	0.15 J1	0.22	0.05 J1	0.2 U1
Total Dissolved Solids	mg/L	170	380	280	300	90	1,690
рН	SU	4.75	5.87	6.09	5.03	4.39	5.68

Notes:

μg/L: Micrograms per Liter mg/L: Milligrams per Liter pCi/L: Picocuries per Liter

SU: Standard Unit

U1: Not detected at or above method detection limit (MDL). For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Table 2. Appendix IV Groundwater Protection Standards Statistical Analysis Summary

Welsh Plant - Primary Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.00317	0.00600
Arsenic, Total (mg/L)	0.0100	0.00628	0.0100
Barium, Total (mg/L)	2.00	0.564	2.00
Beryllium, Total (mg/L)	0.00400	0.00112	0.00400
Cadmium, Total (mg/L)	0.00500	0.00400	0.00500
Chromium, Total (mg/L)	0.100	0.00233	0.100
Cobalt, Total (mg/L)	n/a	0.0748	0.0748
Combined Radium, Total (pCi/L)	5.00	4.61	5.00
Fluoride, Total (mg/L)	4.00	0.583	4.00
Lead, Total (mg/L)	n/a	0.00338	0.00338
Lithium, Total (mg/L)	n/a	0.394	0.394
Mercury, Total (mg/L)	0.00200	0.0000330	0.00200
Molybdenum, Total (mg/L)	n/a	0.00243	0.00243
Selenium, Total (mg/L)	0.0500	0.00835	0.0500
Thallium, Total (mg/L)	0.00200	0.00125	0.00200

Notes:

MCL: Maximum Contaminant Level GWPS: Groundwater Protection Standard

mg/L: Milligrams per Liter pCi/L: Picocuries per Liter

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

Grey cells indicate the GWPS is based on the calculated UTL. Either the UTL is higher than the MCL or an MCL does not exist.

Table 3. Appendix III Data Summary Statistical Analysis Summary Welsh - Primary Bottom Ash Pond

Analyte Unit		Description	AD-8	AD-9	AD-15
Analyte	Oiiit	Description	10/31/2022	10/31/2022	10/31/2022
Boron		Interwell Background Value (UPL)	0.801		
DOIOII	mg/L	Analytical Result	1.08	0.109	0.093
Calcium	mg/L	Intrawell Background Value (UPL)	28.1	258	4.65
Calcium		Analytical Result	22.3	12.4	2.57
Chloride	mg/L	Intrawell Background Value (UPL)	26.1	117	36.9
Cilioride		Analytical Result	20.9	16.8	26.2
Fluoride	mg/L	Intrawell Background Value (UPL)	0.949	0.685	1.00
		Analytical Result	0.93	0.17	0.07
рН	SU	Interwell Background Value (UPL) 6.9			
		Interwell Background Value (LPL)	4.8		
		Analytical Result	6.1	5.0	4.4
Sulfate	mg/L	Intrawell Background Value (UPL)	204	2145	30.5
		Analytical Result	141	122	4.62
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	489	2690	261
		Analytical Result	280	300	90

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit mg/L: Milligrams per Liter

SU: Standard Units

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mountaineer Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

David Anthony Mil	STATE OF TELO	STATE OF TELL		
Printed Name of Licens	sed Professional Engineer	DAVID ANTHONY MILLER 112498	111111	
David Anth	ony Miller	SO/ONAL ENGINEER		
Signature				
112498	Texas	03.20.2023		
License Number	Licensing State	Date		

ATTACHMENT B Data Quality Review Memorandum

500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Date: January 18, 2023

To: David Miller (AEP)

Copies to: Jill Parker-Witt (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Welsh Power Plant

October-November 2022 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Welsh Power Plant, located in Pittsburg, Texas in October and November 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III and IV constituents were analyzed.

The following sample data groups (SDGs) were associated with the twenty-one (21) groundwater samples collected during the October and November 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223477
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223481
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223483
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223484
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223509
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223510
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223511
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223515

Data Quality Review – Welsh November 2022 Data January 18, 2023 Page 2

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

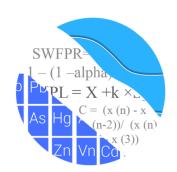
- As reported in SDG 223509, chromium and cobalt were detected in the equipment blank sample "EQUIPMENT BLANK BASP" collected on 11/1/2022. The detected chromium concentration in the equipment blank (0.53 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results. The detected cobalt concentration in the equipment blank (0.145 μg/L) was more than 10% of the detected value in sample AD-4C (0.757 μg/L), which could result in high bias in the AD-4C cobalt results.
- As reported in SDG 222510, barium, boron, chromium, cobalt, lithium, and molybdenum were detected in the equipment blank sample "EB Background" collected on 11/1/2022. The detected boron concentration in the equipment blank (0.01 mg/L) was more than 10% of the detected value in samples AD-5 (0.041 mg/L) and AD-17 (0.097 mg/L), which could result in high bias in the AD-5 and AD-17 boron results. Likewise, the detected chromium concentration in the equipment blank (0.52 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results. The detected cobalt concentration in the equipment blank (0.161 μg/L) was more than 10% of the detected value in samples AD-1 (1.17 μg/L) and "Dup-Background" (1.17 μg/L), which could result in high bias in the AD-1 and duplicate cobalt results. All other equipment blank detections were less than 10% of the detected values in groundwater and would not result in a high bias.
- As reported in SDG 223511, chromium, cobalt, lithium, and molybdenum were detected in the equipment blank sample "EQUIPMENT BLANK PBAP" collected on 10/31/2022. The detected chromium concentration in the equipment blank (0.53 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results. The estimated molybdenum concentration in the equipment blank (0.2 μg/L) was more than 10% of the estimated value in sample AD-8 (0.2 μg/L), which could result in high bias in the AD-8 molybdenum results. All other equipment blank detections were less than 10% of the detected values in groundwater and would not result in a high bias.

-

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

Data Quality Review – Welsh November 2022 Data January 18, 2023 Page 3

- As reported in SDG 223513, chromium, cobalt, lithium, and molybdenum were detected in the equipment blank sample "EQUIPMENT BLANK LF" collected on 10/31/2022. The detected chromium concentration in the equipment blank (0.7 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results. The estimated molybdenum concentration in the equipment blank (0.3 μg/L) was more than 10% of the estimated value in samples AD-13 (0.2 μg/L) and AD-14 (0.4 μg/L), which could result in high bias in the AD-13 and AD-14 molybdenum results. All other equipment blank detections were less than 10% of the detected values in groundwater and would not result in a high bias.
- As reported in SDG 223510, the relative percent difference (RPD) for chromium concentrations from parent sample "AD-1" and duplicate sample "Dup Background" was 41%. The AD-1 chromium results should be considered estimated.
- As reported in SDG 223510, the RPD for radium-226 (77.1%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-1" radium-226 results should be considered estimated.
- As reported in SDG 223509, the matrix spike (MS) recovery (47.8%) and matrix spike duplicate (MSD) recovery (35.3%) for lithium were below the acceptable range of 75-125%. The associated sample (AD-3) was flagged M1: the associated MS or MSD recovery was outside acceptance limits. The AD-3 lithium results should be considered estimated.


Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

February 9, 2023

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Suite 250 Worthington, OH 43085

Re: Welsh PBAP - Assessment Monitoring Event & Background Update 2022

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis and background update of 2022 groundwater data for American Electric Power Inc.'s Welsh PBAP. The analysis complies with the Texas Commission of Environmental Quality Rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at the site for the Coal Combustion Residuals (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

o **Upgradient wells:** AD-1, AD-5, and AD-17

o **Downgradient wells:** AD-8, AD-9, and AD-15

Data were sent electronically, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting. The analysis was conducted according to the Statistical Analysis Plan prepared by GSC and approved by Dr. Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series plots for Appendix III and IV parameters are provided for all wells and constituents, and are used to evaluate concentrations over the entire record (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values flagged as outliers may be seen in the Outlier Summary following this letter (Figure C) and are plotted in a lighter font and disconnected symbol on the time series graphs.

Summary of Statistical Methods

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for calcium, chloride, fluoride, sulfate, and TDS
- 2) Interwell prediction limits combined with a 1-of-2 resample plan for boron and pH

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of an additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.

- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits will be necessary to accommodate these types of changes. In the interwell case, newer data may be included in background during each sample event after screening the upgradient well data for any new outliers. Data will also be periodically evaluated for statistically significant trends, and earlier data may be deselected prior to construction of statistical limits so that limits represent-day conditions.

In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, the earlier portion of data are deselected prior to construction of limits in order to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening Conducted in December 2017

Outlier Evaluation

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Tukey's outlier test noted a few outliers that were flagged as outliers and a summary of those values was submitted with the screening. The outliers identified by Tukey's test for TDS in well AD-15, however, were not flagged as these values were not unusual to the data set at the time and were similar to observations reported in neighboring wells. However, the measured concentrations of most metals for September 30, 2016 at well

AD-15 are high compared to the rest of the observations, which suggests a possible laboratory problem. These values were flagged as outliers as they do not appear to represent the population at this well. Flagged values may be seen in a lighter font on the time series graphs. Note that reporting limits have recently decreased; therefore, no non-detect substitution was made for the data. During the next background update, the more historical and higher reporting limits may be deselected providing there are sufficient samples to construct statistical limits.

<u>Seasonality</u>

No true seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release. It was noted that for each constituent evaluated, the highest concentrations are reported in the upgradient wells.

Trend Test Evaluation

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a couple statistically significant decreasing trends that were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were required.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical

limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

As a result of the screening, intrawell prediction limits were determined to be most appropriate for calcium, fluoride, sulfate, and TDS while interwell prediction limits were appropriate for boron and pH. A summary of those findings was included with the report.

Appendix III Background Update Summaries

December 2020

Prior to updating background data for the 2020 analysis, data were evaluated using Tukey's outlier test and visual screening for updating background limits through May 2020 on all wells for parameters that use intrawell prediction limits (calcium, chloride, fluoride, sulfate, and TDS) and through October 2020 on upgradient wells for parameters that use interwell prediction limits (boron and pH). Tukey's test did not identify any new outliers except for calcium at upgradient well AD-17. This value was not flagged as an outlier as the value appears similar to the surrounding population.

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through February 2019 to the new compliance samples at each well through May 2020 to evaluate whether the groups are statistically different at the 99% confidence level, in which case background data may not be updated with more recent compliance data. Statistically significant differences were found for chloride in upgradient well AD-1 and downgradient well AD-8, as well as all fluoride in all upgradient wells and downgradient well AD-15. All well/constituent pairs for parameters using intrawell prediction limits were updated with compliance samples to use all historical data through May 2020, with the exception of chloride in downgradient well AD-8 and fluoride in downgradient well AD-17. These well/constituent pairs were truncated to use measurements from January 2017 through May 2020.

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron and pH to identify statistically significant increasing or decreasing trends. The results of the trend analyses showed a statistically significant increasing trend for boron

in upgradient well AD-1. However, the magnitude of the trend was low relative to the average concentrations in this well. Therefore, no adjustment was required at this time. All well/constituent pairs for parameters using interwell prediction limits were updated to use all historical data through November 2022. A summary of the background update results was included in the December 2020 report.

February 2022

Outlier Analysis

Tukey's outlier test and visual screening were used to re-evaluate data through October 2021 at all upgradient wells for parameters utilizing interwell prediction limits (boron and pH). Tukey's outlier test did not identify any values as potential outliers; therefore, no new values were flagged as outliers and no changes were made to previously flagged outliers for these constituents.

For parameters which use intrawell prediction limits (calcium, chloride, fluoride, sulfate, and TDS), values were not re-evaluated for new outliers as these records had insufficient samples for updating background during this evaluation period. However, a value of 9 mg/L for chloride in upgradient well AD-1 was flagged during this analysis in order to be consistent with the shared upgradient well network among Welsh sites.

Intrawell – Prediction Limits

Intrawell prediction limits, combined with a 1-of-2 resample plan, are constructed using historical data through May 2020 (except for chloride at well AD-8 and fluoride at well AD-17 as discussed above) for calcium, chloride, fluoride, sulfate, and TDS. Background data sets for all parameters utilizing intrawell prediction limits will be updated after the Fall 2022 sample event when a minimum of 4 compliance samples are available.

Interwell – Trend Test Evaluation

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron and pH to identify statistically significant increasing or decreasing trends. The results of the trend analyses showed a statistically significant increasing trend for boron in upgradient well AD-1 as well as a decreasing trend for pH in upgradient well AD-17. However, the magnitude of the trends was low relative to the average concentrations in this well; therefore, no adjustment was required at the time.

<u>Interwell – Prediction Limits</u>

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data from upgradient wells through October 2021 for boron and pH. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent.

February 2023

Outlier Analysis

Prior to updating background for the 2023 analysis, data were evaluated using Tukey's outlier test and visual screening for updating background limits through June 2022 on all wells for constituents that use intrawell prediction limits (calcium, chloride, fluoride, sulfate, and TDS) and through November 2022 on pooled upgradient well data from upgradient wells for constituents that use interwell prediction limits (boron and pH). Results of the outlier tests follows this report (Figure C).

Tukey's outlier test on all wells for calcium, chloride, fluoride, sulfate, and TDS identified the highest values for calcium and TDS among downgradient well AD-15 that were flagged in previous analyses. Most of previously flagged outliers were confirmed through Tukey's outlier test and visual screening; therefore, no new values were flagged. Note that the previously flagged concentration of 9.0 mg/L for chloride at upgradient well AD-1 was unflagged during this analysis. While this this measurement was previously flagged as it was slightly different than remaining measurements within this well, after further evaluation it was determined that all low-level chloride concentrations within the record represent naturally occurring groundwater quality upgradient of the site. This step resulted in an intrawell prediction limit of 6.989 mg/L compared to the previously established limit of 5.876 mg/L.

Tukey's outlier test on pooled upgradient well data identified both high and low values for fluoride as outliers, but these values were also similar to remaining observations within their respective records; therefore, the values were not flagged in the database. No additional values were flagged as outliers. A list of all flagged values follows this report (Figure C).

<u>Intrawell – Mann-Whitney Test</u>

For pH which is tested using intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through May 2020 to the

new compliance samples at each well through June 2022 to evaluate whether the groups are statistically different at the 99% confidence level, in which case background data may be updated with compliance data (Figure D). Statistically significant differences were identified for the following well/constituent pairs:

• Chloride: AD-8

• Fluoride: AD-5 (upgradient) and AD-8

• Sulfate: AD-1 (upgradient)

AD-8 and sulfate at upgradient well AD-1, the majority of compliance observations were within the range of historic concentrations within each respective well and were below historic concentrations identified upgradient of the facility; therefore, the record for these well/constituent pair were updated. Regarding cases with statistically significant decreases in medians, the records for chloride at AD-8 and fluoride at upgradient well AD-5 were updated because compliance data were within the range of historic concentrations and result in statistical limits within the range of or slightly higher than those reported historically. Therefore, all data sets were updated with compliance samples through June 2022.

Intrawell – Prediction Limits

Intrawell prediction limits, combined with a 1-of-2 resample plan, are constructed using historical data through June 2022 for calcium, chloride, fluoride sulfate, and TDS. A summary of the limits follows this letter (Figure E). No comparison of the October/November 2022 observation was performed in this analysis.

Interwell – Trend Test Evaluation

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron and pH to identify statistically significant increasing or decreasing trends at the 99% confidence level (Figure F). Statistically significant trends were identified for the following well/constituent pairs:

Increasing

• Boron: AD-1

Decreasing

• pH: AD-17

However, the magnitude of the trends was low relative to the average concentrations in this well; therefore, no adjustments were required at this time.

<u>Interwell – Prediction Limits</u>

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data from upgradient wells through October/November 2022 for boron and pH (Figure G). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. A summary table of the updated limits may be found following this letter in the Prediction Limit Summary Tables. No comparison of the October/November 2022 compliance observations was performed in this analysis.

Evaluation of Appendix IV Parameters – October/November 2022

Prior to evaluating Appendix IV parameters, upgradient well data are screened through both visual screening and Tukey's outlier test for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits. All flagged values may be seen on the Outlier Summary following this letter (Figure C) and no changes to previously flagged outliers for Appendix IV parameters were made.

For the current analysis, Tukey's outlier test on pooled upgradient well data through October/November 2022 identified outliers for chromium, fluoride, lead, and mercury. The values identified by Tukey's test, with the exception of the highest value for chromium at AD-17, were either similar to concentrations upgradient of the facility or were lower than the respective Maximum Contaminant Level (MCL); therefore, these values were not flagged as outliers.

Previously flagged values were confirmed by visual screening and Tukey's outlier test. The highest value for chromium at upgradient well AD-17, molybdenum in upgradient well AD-1, and two highest values for cadmium in upgradient well AD-17 remain flagged in order to maintain statistical limits that are conservative (i.e., lower) from a regulatory perspective.

Additionally, downgradient well data through October/November 2022 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. No additional outliers among downgradient wells were flagged during this analysis. All flagged values may be seen on the Outlier Summary following this letter (Figure C).

Interwell Upper Tolerance Limits

Upper tolerance limits were used to calculate background limits from pooled upgradient well data through October/November 2022 for Appendix IV parameters (Figure H). For parametric limits a target of 95% confidence and 95% coverage is used. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

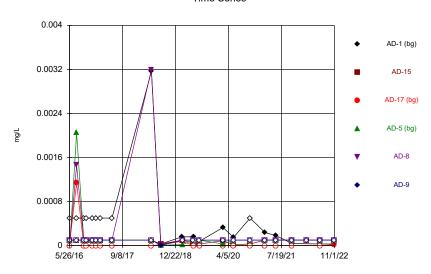
These background limits were compared to the Maximum Contaminant Levels (MCLs) as shown in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the confidence interval comparisons (Figure I).

Confidence Intervals

Confidence intervals were then constructed using data through October/November 2022 on downgradient wells for each of the Appendix IV parameters and compared to the GWPS, (i.e., the highest limit of the MCL or background limit as discussed above). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. Complete graphical results of the confidence intervals follow this letter (Figure J). No statistical exceedances were identified.

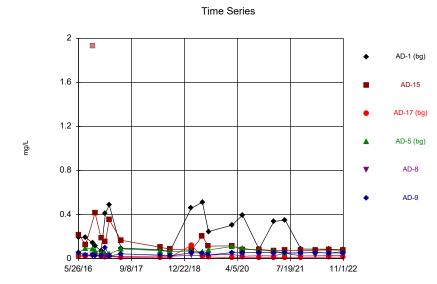
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Welsh PBAP. If you have any questions or comments, please feel free to contact us.

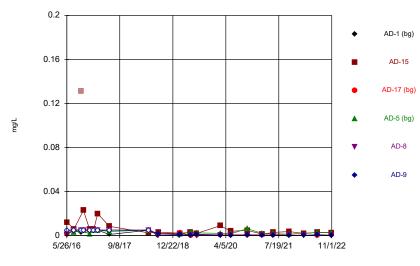
For Groundwater Stats Consulting,


Abdul Diane

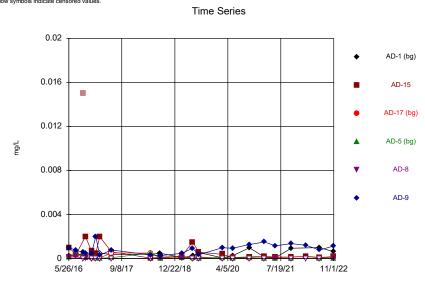
Groundwater Analyst

Andrew T. Collins Project Manager

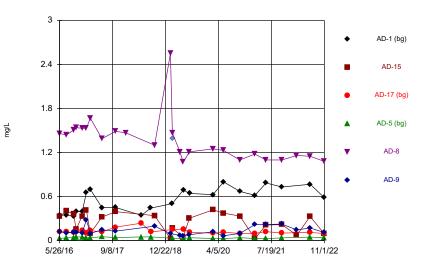

FIGURE A Time Series


Constituent: Antimony, total Analysis Run 2/7/2023 2:21 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

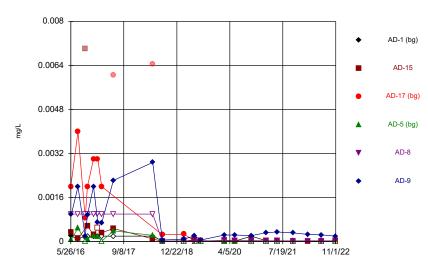
Sanitas™ v.9.6.36 . UG

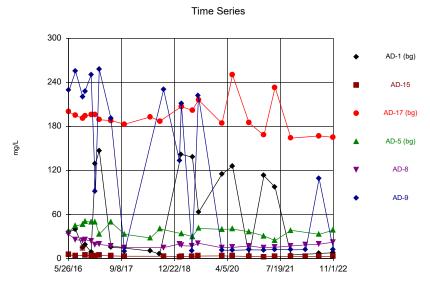

Constituent: Barium, total Analysis Run 2/7/2023 2:21 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Time Series

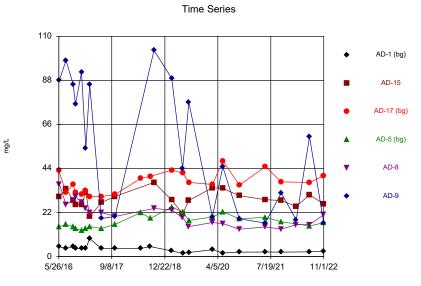

Constituent: Arsenic, total Analysis Run 2/7/2023 2:21 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

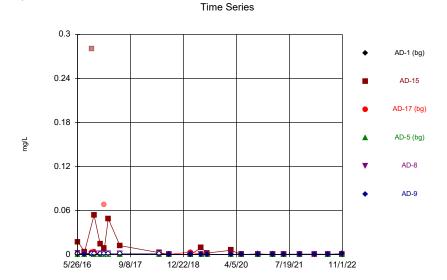

Constituent: Beryllium, total Analysis Run 2/7/2023 2:21 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: Boron, total Analysis Run 2/7/2023 2:22 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP

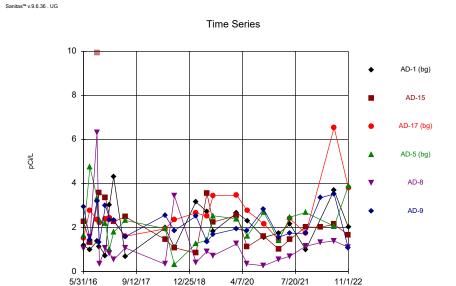
Time Series


Constituent: Cadmium, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

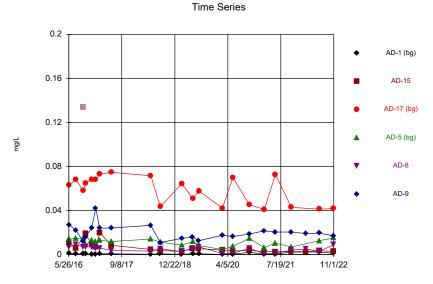
Sanitas™ v.9.6.36 . UG



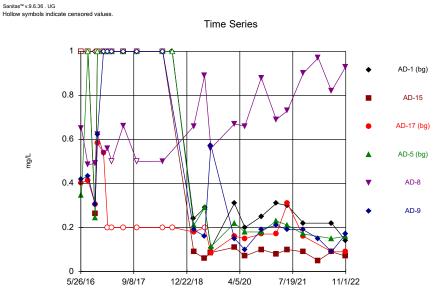
Constituent: Calcium, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG

Constituent: Chloride, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP



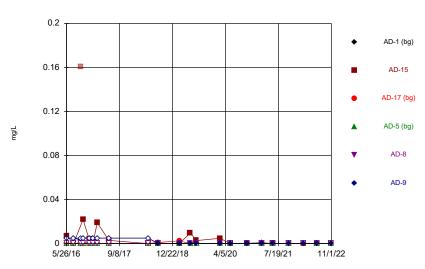
Constituent: Chromium, total Analysis Run 2/7/2023 2:22 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP



Constituent: Combined Radium 226 + 228 Analysis Run 2/7/2023 2:22 PM View: Constituents View

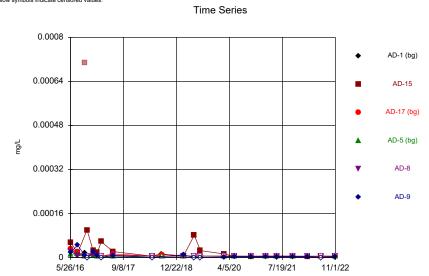
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

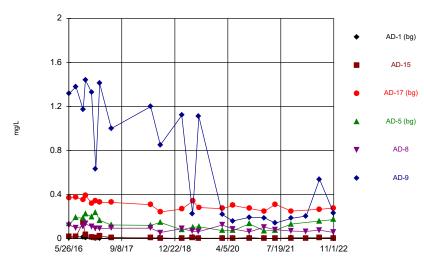
Constituent: Cobalt, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP



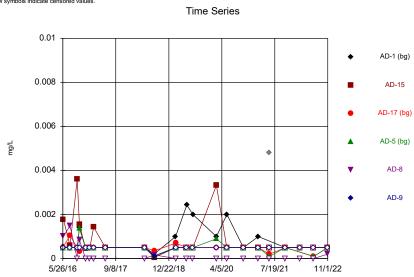
Constituent: Fluoride, total Analysis Run 2/7/2023 2:22 PM View: Constituents View

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values

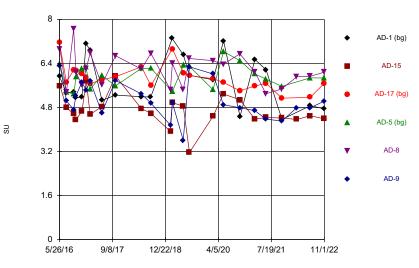

Constituent: Lead, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values

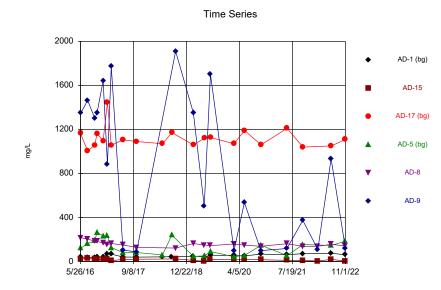

Constituent: Mercury, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

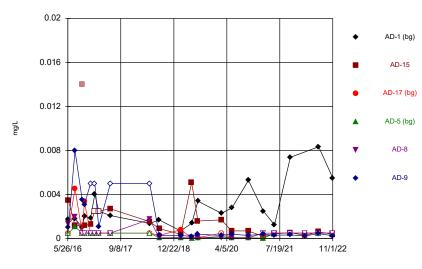
Time Series

Constituent: Lithium, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

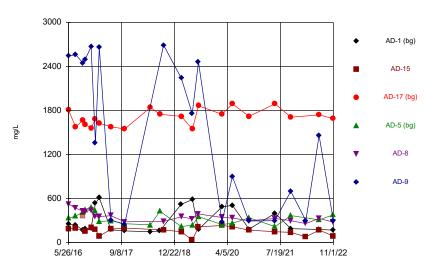
Constituent: Molybdenum, total Analysis Run 2/7/2023 2:22 PM View: Constituents View


Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: pH, field Analysis Run 2/7/2023 2:22 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

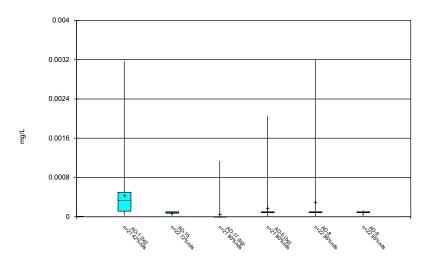
Constituent: Sulfate, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: Selenium, total Analysis Run 2/7/2023 2:22 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

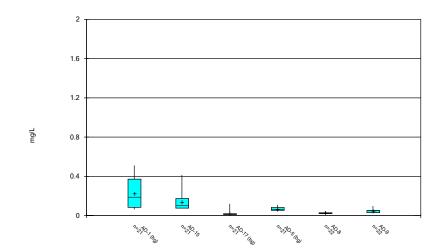
Time Series 0.009 AD-1 (bg) 0.0072 AD-15 AD-17 (bg) 0.0054 AD-5 (bg) 0.0036 AD-8 AD-9 0.0018 5/26/16 9/8/17 12/22/18 4/5/20 7/19/21 11/1/22

Constituent: Thallium, total Analysis Run 2/7/2023 2:22 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

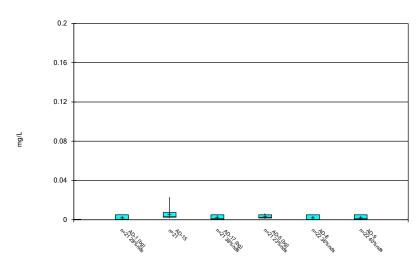

Time Series

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 2:22 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE B Box Plots

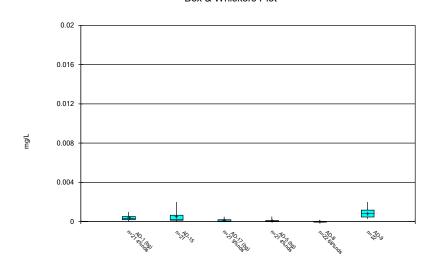


Constituent: Antimony, total Analysis Run 2/7/2023 2:19 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

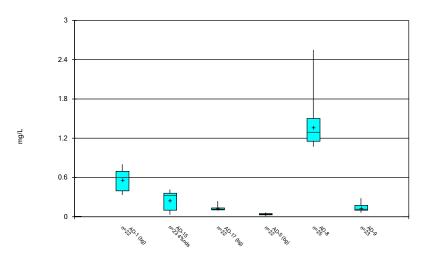

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

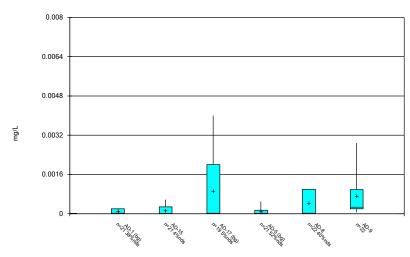
Constituent: Barium, total Analysis Run 2/7/2023 2:19 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 2/7/2023 2:19 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

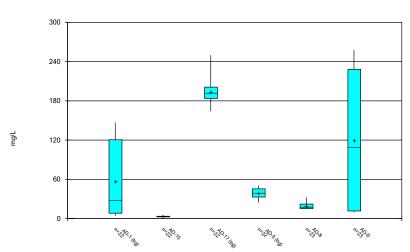

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot


Constituent: Beryllium, total Analysis Run 2/7/2023 2:19 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Box & Whiskers Plot

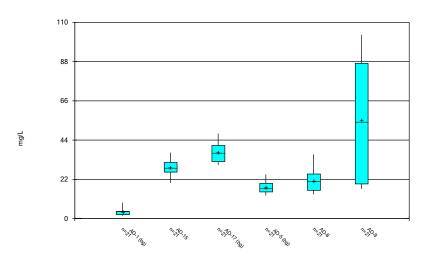
Constituent: Boron, total Analysis Run 2/7/2023 2:19 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 2/7/2023 2:19 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

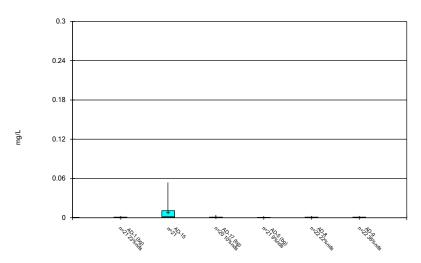
Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

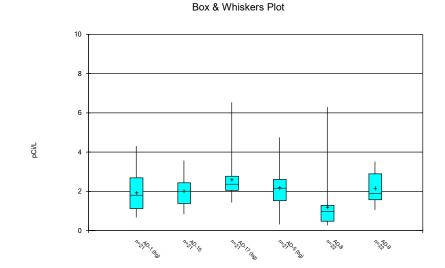


Constituent: Calcium, total Analysis Run 2/7/2023 2:19 PM View: Constituents View

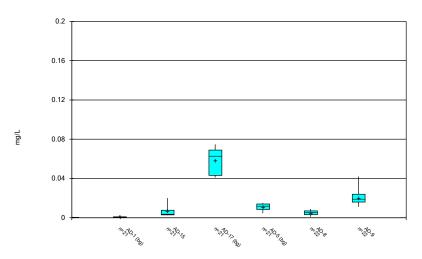
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

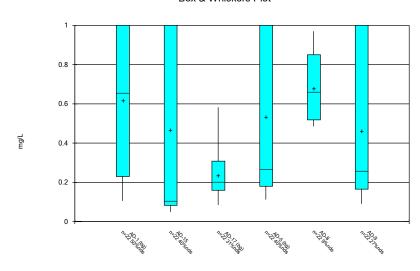

Constituent: Chloride, total Analysis Run 2/7/2023 2:19 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Chromium, total Analysis Run 2/7/2023 2:19 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP

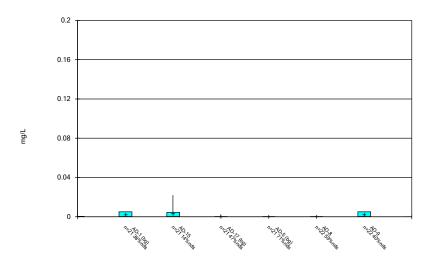

Sanitas™ v.9.6.36 . UG

Constituent: Combined Radium 226 + 228 Analysis Run 2/7/2023 2:20 PM View: Constituents View

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

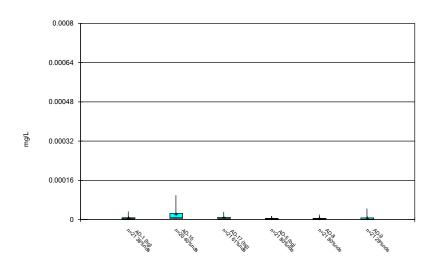

Box & Whiskers Plot

Constituent: Cobalt, total Analysis Run 2/7/2023 2:20 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP

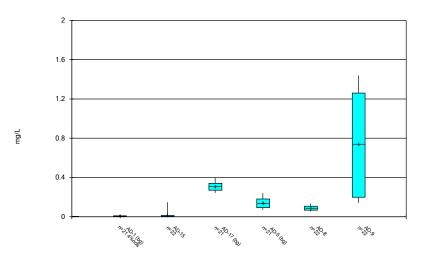

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

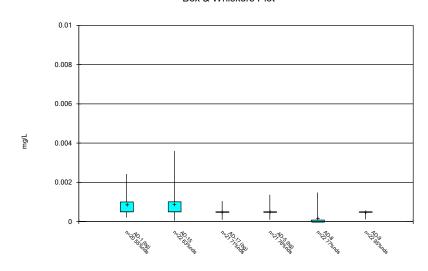


Constituent: Lead, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

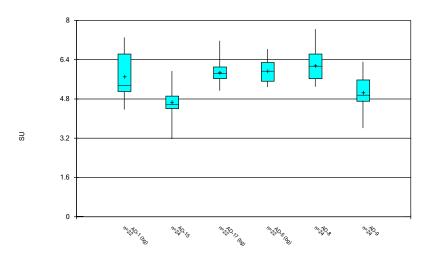

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Mercury, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

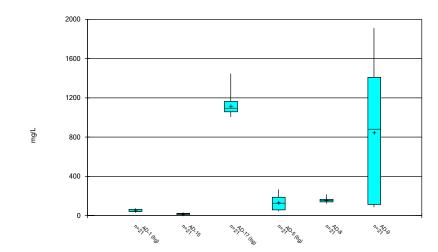

Box & Whiskers Plot

Constituent: Lithium, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

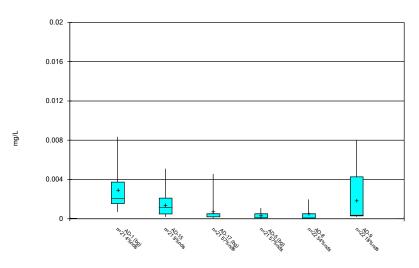

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

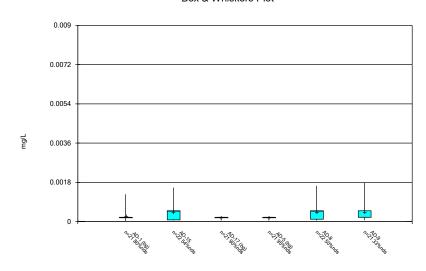

Box & Whiskers Plot

Constituent: pH, field Analysis Run 2/7/2023 2:20 PM View: Constituents View Welsh PBAP Client: Geosyntec Data: Welsh PBAP

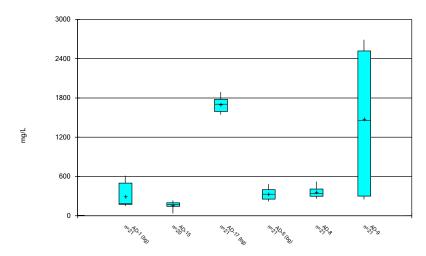

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Sulfate, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 2/7/2023 2:20 PM View: Constituents View
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Box & Whiskers Plot

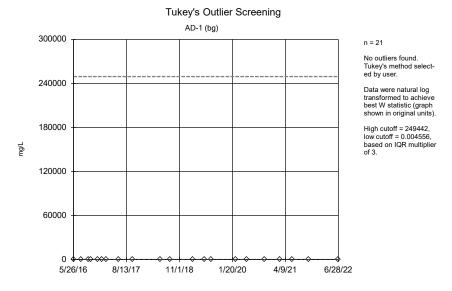
FIGURE C Outlier Summary and Tukey's Outlier Test

Outlier Sunmmary

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/7/2023, 4:26 AM

	AD-15 Arsenic,	, _{total} (mg/L) AD-15 Barium	, total (mg/L) AD-15 Beryllium	m, total (mg/L) AD-9 Boron, to	otal (mg/L)	_{lm, total} (mg/L) AD-17 Cadmiu	_{um, total} (mg/L) AD-15 Calciun	_{n, total} (mg/L) AD-15 Chromii	um, total (mg/L)	_{um, total} (mg/L) AD-15 Cobalt, total (r
	AD-137.	AD-13 D	AD-13 D-1	AD-9 Day	AD-13 0	AD-11	AD-10	AD-10	AD-11	AD-10 -
9/29/2016										
9/30/2016	0.131 (o)	1.93 (o)	0.015 (o)		0.007 (o)		13.7 (o)	0.28 (o)		0.134 (o)
1/20/2017									0.068 (o)	
6/8/2017						0.00606 (o)				
5/23/2018										
5/24/2018						0.00646 (o)				
2/21/2019				1.39 (o)						
6/2/2021										
		-06	+ 228 (pCi/L)					۳) مدر	ialL)	
	AD-15 Combin	ed Radium 226 f	+ 228 (pCi/L) otal (mg/L)	, total (mg/L)	num, total (mg/L)	m, total (mg/L)	i, total (mg/L)	_{iss} olved Solids (m	ig/L)	
010010046	AD-15 Combine	ed Radium 226 ^s AD-15 Lead, ^{tr}	+ 228 (pCi/L) otal (mg/L) AD-15 Mercury	, total (mg/L) AD-1 Molybde	_{num,} total (mg/L) AD-15 Seleniu	m, total (mg/L) AD-9 Thallium	_{i, total} (mg/L) AD-15 Total Di	_{iss} olved Solids ^{(m}	ig/L)	
9/29/2016	_{AD-15} Combin 9.92 (o)			, total (mg/L) AD-1 Molybde		m, total (mg/L) AD-9 Thallium		_{iss} olved Solids (π	igIL)	
9/30/2016		ed Radium 226 - AD-15 Lead, tr 0.161 (o)	+ 228 (pCi/L) otal (mg/L) AD-15 Mercur) 0.000707 (o)	_{r, total} (mg/L) AD-1 Molybde	_{num,} total (mg/L) AD-15 Seleniu 0.014 (o)	m, total (mg/L) AD-9 Thallium	, total (mg/L) AD-15 Total Di 367 (o)	_{iss} olved Solids (π	ig/L)	
9/30/2016 1/20/2017				, total (mg/L) AD-1 Molybde		m, total (mg/L) AD-9 Thallium.		_{iss} olved Solids ^{(m}	ig/L)	
9/30/2016 1/20/2017 6/8/2017				, total (mg/L) AD-1 Molybde				_{iss} olved Solids ⁽ⁿ	_{lg} (L)	
9/30/2016 1/20/2017 6/8/2017 5/23/2018				, total (mg/L) AD-1 Molybde		m, total (mgll-) AD-9 Thallium AD-9 Totallium		_{iss} olved Solids (m	ig/L)	
9/30/2016 1/20/2017 6/8/2017				, total (mg/L) AD-1 Molybde				_{iss} olved Solids (^m	ig/L)	
9/30/2016 1/20/2017 6/8/2017 5/23/2018				, total (mg/L) AD-1 Molybde				_{iss} olved Solids ^{(m}	igiL)	

Tukey's Outlier Analysis - Significant Results

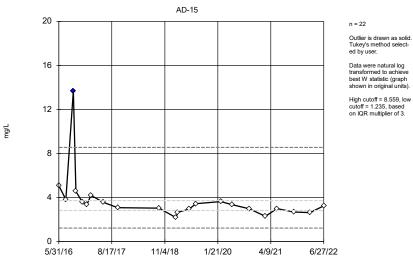

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/2/2023, 3:11 AM

Constituent	Well	Outlier Value(s)	Method A	Alpha N	Mean	Std. Dev.	Distribution	Normality Test
Calcium, total (mg/L)	AD-15	Yes 13.7	NP N	NaN 22	3.781	2.321	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	AD-15	Yes 367	NP N	NaN 20	174.4	66.97	normal	ShapiroWilk

Tukey's Outlier Analysis - All Results

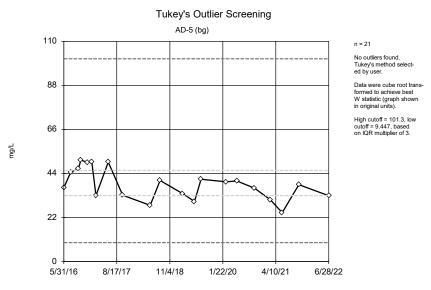
Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/2/2023, 3:11 AM

Constituent	Well	Outlie	Value(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Calcium, total (mg/L)	AD-1 (bg)	No	n/a	NP	NaN	21	59.51	55.92	ln(x)	ShapiroWilk
Calcium, total (mg/L)	AD-15	Yes	13.7	NP	NaN	22	3.781	2.321	In(x)	ShapiroWilk
Calcium, total (mg/L)	AD-17 (bg)	No	n/a	NP	NaN	21	194.7	20.17	ln(x)	ShapiroWilk
Calcium, total (mg/L)	AD-5 (bg)	No	n/a	NP	NaN	21	38.6	7.729	x^(1/3)	ShapiroWilk
Calcium, total (mg/L)	AD-8	No	n/a	NP	NaN	22	19.32	4.606	ln(x)	ShapiroWilk
Calcium, total (mg/L)	AD-9	No	n/a	NP	NaN	22	124.1	104.8	x^2	ShapiroWilk
Chloride, total (mg/L)	AD-1 (bg)	No	n/a	NP	NaN	20	3.63	1.685	ln(x)	ShapiroWilk
Chloride, total (mg/L)	AD-15	No	n/a	NP	NaN	20	28.94	4.232	x^2	ShapiroWilk
Chloride, total (mg/L)	AD-17 (bg)	No	n/a	NP	NaN	20	36.88	5.261	ln(x)	ShapiroWilk
Chloride, total (mg/L)	AD-5 (bg)	No	n/a	NP	NaN	20	17.56	3.38	ln(x)	ShapiroWilk
Chloride, total (mg/L)	AD-8	No	n/a	NP	NaN	20	21.21	6.13	ln(x)	ShapiroWilk
Chloride, total (mg/L)	AD-9	No	n/a	NP	NaN	20	57.11	31.78	normal	ShapiroWilk
Fluoride, total (mg/L)	AD-1 (bg)	No	n/a	NP	NaN	21	0.6403	0.3889	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-15	No	n/a	NP	NaN	21	0.4851	0.4586	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-17 (bg)	No	n/a	NP	NaN	21	0.2438	0.1351	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-5 (bg)	No	n/a	NP	NaN	21	0.5496	0.4024	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-8	No	n/a	NP	NaN	21	0.6636	0.1516	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-9	No	n/a	NP	NaN	21	0.4749	0.3684	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	AD-1 (bg)	No	n/a	NP	NaN	20	51.68	12.91	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	AD-15	No	n/a	NP	NaN	20	17.06	7.084	x^2	ShapiroWilk
Sulfate, total (mg/L)	AD-17 (bg)	No	n/a	NP	NaN	20	1117	95.11	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	AD-5 (bg)	No	n/a	NP	NaN	20	129.5	73.02	x^(1/3)	ShapiroWilk
Sulfate, total (mg/L)	AD-8	No	n/a	NP	NaN	20	158.7	23.82	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	AD-9	No	n/a	NP	NaN	20	884.5	666.3	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	AD-1 (bg)	No	n/a	NP	NaN	20	304.6	170.1	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	AD-15	Yes	367	NP	NaN	20	174.4	66.97	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	AD-17 (bg)	No	n/a	NP	NaN	20	1704	114.5	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	AD-5 (bg)	No	n/a	NP	NaN	20	328	82.5	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	AD-8	No	n/a	NP	NaN	20	360.3	68.19	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	AD-9	No	n/a	NP	NaN	20	1534	1015	normal	ShapiroWilk

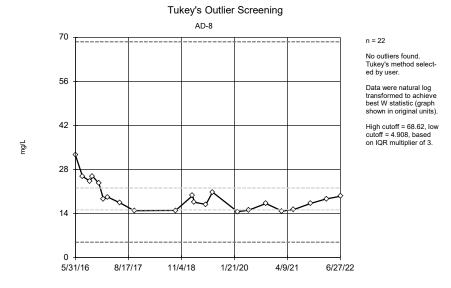

Constituent: Calcium, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Tukey's Outlier Screening AD-17 (bg) 300 n = 21 No outliers found. Tukey's method selected by user. 240 Data were natural log transformed to achieve best W statistic (graph shown in original units). 180 High cutoff = 259.9, low cutoff = 142.7, based on IQR multiplier of 3. mg/L 120 60 0 5/26/16 8/13/17 11/1/18 1/20/20 4/9/21 6/28/22


Constituent: Calcium, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

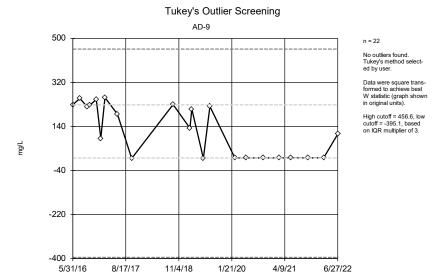
Tukey's Outlier Screening



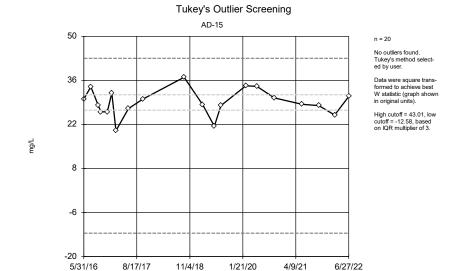
Constituent: Calcium, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

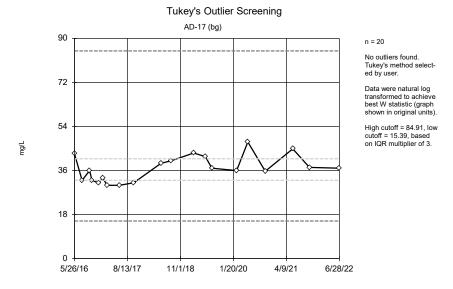
Constituent: Calcium, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP



Constituent: Calcium, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

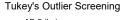

Sanitas™ v.9.6.36 . UG Tukey's Outlier Screening AD-1 (bg) 30 n = 20 No outliers found. Tukey's method selected by user. 24 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 22.93, low cutoff = 0.3898, based on IQR multiplier of 3. 12 0 5/26/16 8/13/17 11/1/18 1/20/20 4/9/21 6/28/22

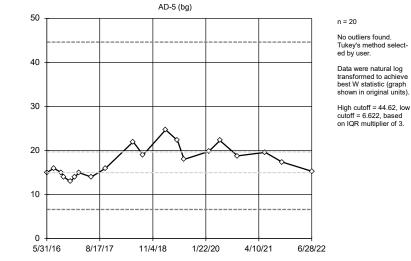
Constituent: Chloride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Calcium, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Chloride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

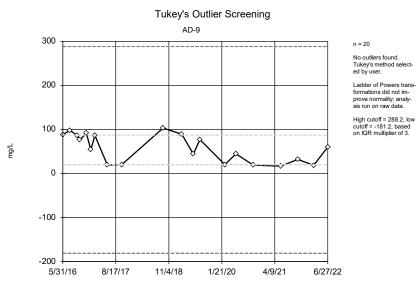



Constituent: Chloride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

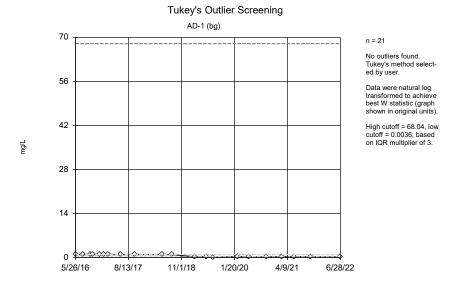
Sanitas™ v.9.6.36 . UG

Tukey's Outlier Screening AD-8 100 No outliers found. Tukey's method selected by user. 80 Data were natural log transformed to achieve best W statistic (graph shown in original units). 60 High cutoff = 96.87, low cutoff = 4.1, based on IQR multiplier of 3. 40 20 0 5/31/16 8/17/17 11/4/18 1/21/20 4/9/21 6/27/22

Constituent: Chloride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP



Constituent: Chloride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG

mg/L

Constituent: Chloride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG Sanitas™ v.9.6.36 . UG

Constituent: Fluoride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Tukey's Outlier Screening

Sanitas™ v.9.6.36 . UG

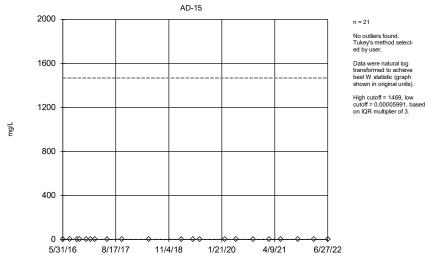
0

5/26/16

8/13/17

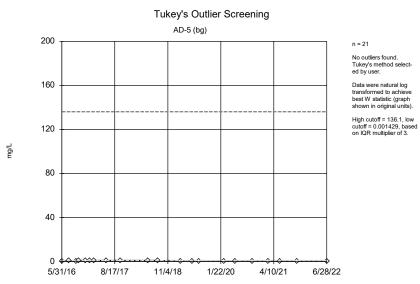
AD-17 (bg) 2 n = 21 No outliers found. Tukey's method selected by user. 1.6 Data were natural log transformed to achieve best W statistic (graph shown in original units). 1.2 High cutoff = 1.999, low cutoff = 0.02539, based on IQR multiplier of 3. 0.8 0.4

Constituent: Fluoride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

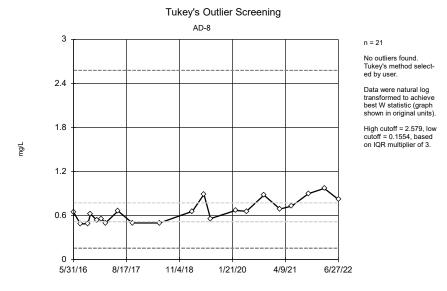

1/20/20

4/9/21

6/28/22


11/1/18

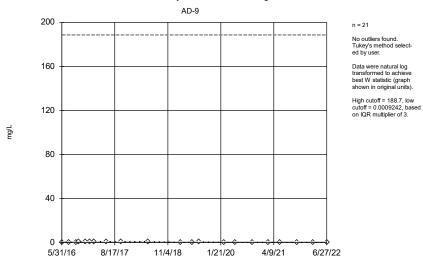
Tukey's Outlier Screening



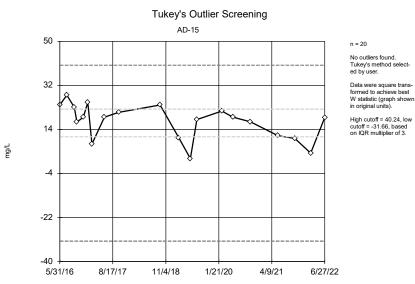
Constituent: Fluoride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

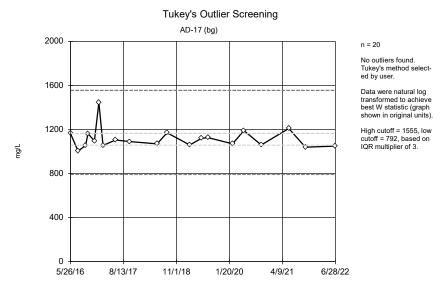
Constituent: Fluoride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP

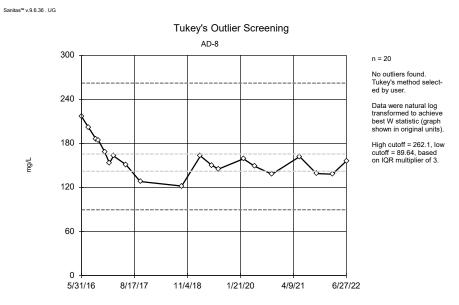


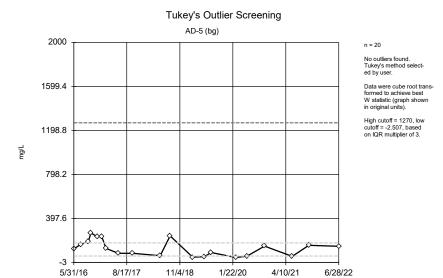
Constituent: Fluoride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG Tukey's Outlier Screening AD-1 (bg) 300 n = 20 No outliers found. Tukey's method selected by user. 240 Data were natural log transformed to achieve best W statistic (graph shown in original units). 180 High cutoff = 227.7, low cutoff = 11.82, based on IQR multiplier of 3. 120 60 0 5/26/16 8/13/17 11/1/18 1/20/20 4/9/21 6/28/22

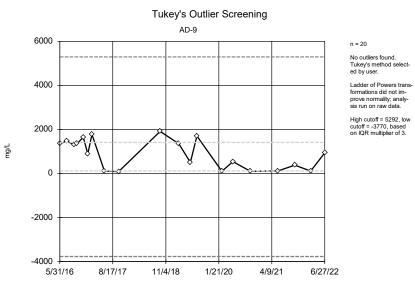
Constituent: Sulfate, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intrawel Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Tukey's Outlier Screening

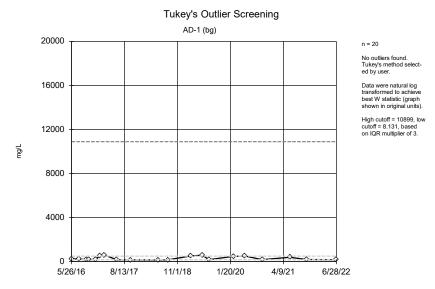

Constituent: Fluoride, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intraw Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: Sulfate, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intrawel Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Sulfate, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intrawel Welsh PBAP Client: Geosyntec Data: Welsh PBAP

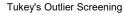


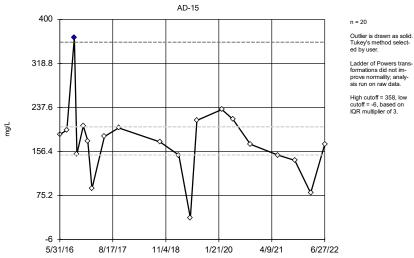
Constituent: Sulfate, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intrawel Welsh PBAP Client: Geosyntec Data: Welsh PBAP



Constituent: Sulfate, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intrawel Welsh PBAP Client: Geosyntec Data: Welsh PBAP

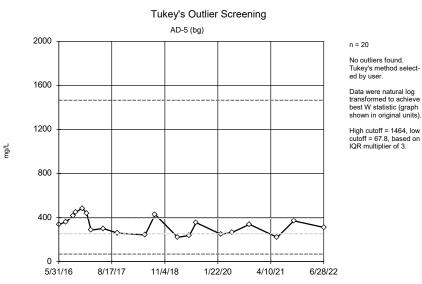
Constituent: Sulfate, total Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix III Intrawel Welsh PBAP Client: Geosyntec Data: Welsh PBAP

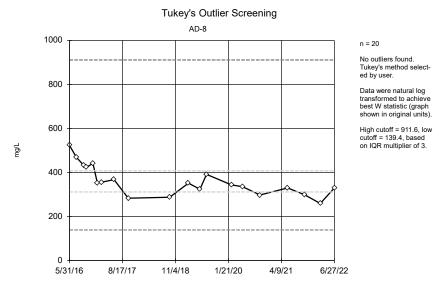



Constituent: Total Dissolved Solids Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix I Welsh PBAP Client: Geosyntec Data: Welsh PBAP

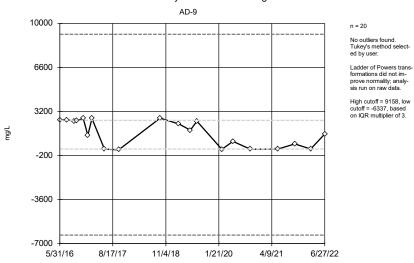
Sanitas™ v.9.6.36 . UG

Tukey's Outlier Screening AD-17 (bg) 3000 n = 20 No outliers found. Tukey's method selected by user. 2400 Data were natural log transformed to achieve best W statistic (graph shown in original units). 1800 High cutoff = 2473, low cutoff = 1148, based on IQR multiplier of 3. ng/L 1200 600 0 5/26/16 8/13/17 11/1/18 1/20/20 4/9/21 6/28/22


Constituent: Total Dissolved Solids Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix I Welsh PBAP Client: Geosyntec Data: Welsh PBAP

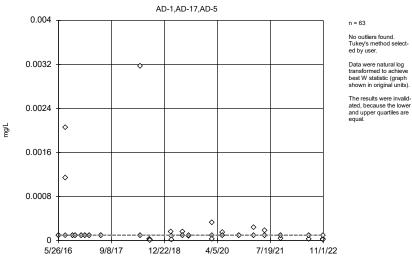


Constituent: Total Dissolved Solids Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix I


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

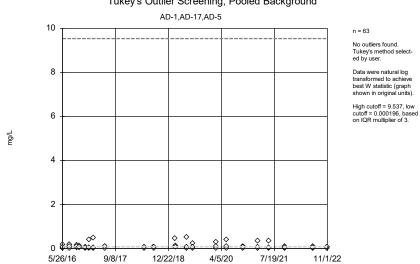
Constituent: Total Dissolved Solids Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix I Welsh PBAP Client: Geosyntec Data: Welsh PBAP

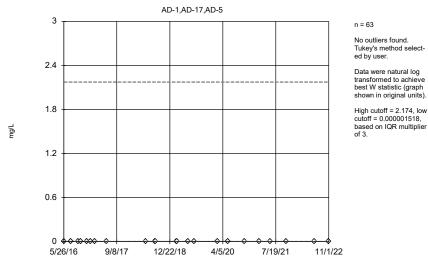
Tukey's Outlier Screening



Constituent: Total Dissolved Solids Analysis Run 2/2/2023 3:10 AM View: Tukey's Outlier Test (Appendix I Welsh PBAP Client: Geosyntec Data: Welsh PBAP

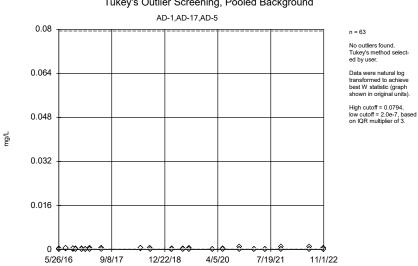
Tukey's Outlier Test - Upgradient Wells - All Results

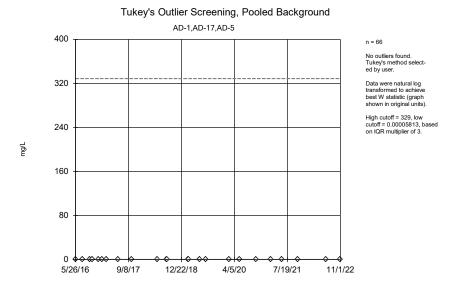

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/2/2023, 1:05 AM Constituent <u>Well</u> Outlier Value(s) Method <u>Alpha</u> <u>N</u> <u>Mean</u> Std. Dev. <u>Distribution</u> <u>Normality Test</u> AD-1,AD-17,AD-5 NaN 63 0.0001947 0.0004732 Antimony, total (mg/L) NP ShapiroFrancia n/a n/a unknown Arsenic, total (mg/L) AD-1,AD-17,AD-5 NP NaN 63 0.002556 0.001952 ShapiroFrancia n/a ln(x) Barium, total (mg/L) AD-1,AD-17,AD-5 No n/a NP NaN 63 0.1055 0.1271 In(x) ShapiroFrancia Beryllium, total (mg/L) NP AD-1.AD-17.AD-5 NaN 63 0.0002176 0.0002374 ShapiroFrancia No n/a In(x) Boron, total (mg/L) AD-1,AD-17,AD-5 NP 66 0.2416 0.2468 In(x) ShapiroFrancia Cadmium, total (mg/L) AD-1,AD-17,AD-5 No n/a NP NaN 63 0.0005197 0.001325 In(x) ShapiroFrancia Chromium, total (mg/L) AD-1.AD-17.AD-5 0.068 NP NaN 63 0.00163 0.008526 In(x) ShapiroFrancia Yes Cobalt, total (mg/L) AD-1,AD-17,AD-5 NP 63 0.02345 ShapiroFrancia No n/a 0.02626 x^(1/3) Combined Radium 226 + 228 (pCi/L) AD-1,AD-17,AD-5 No NP NaN 63 2.256 1.044 x^(1/3) ShapiroFrancia AD-1,AD-17,AD-5 Yes 0.583.0.5399.0.085.0.09.0.09 NP NaN 66 0.2197 0.08753 In(x) ShapiroFrancia Fluoride, total (mg/L) 0.003384,0.000852,0.0011,0.00249,0.00003 ΝP ShapiroFrancia Lead, total (mg/L) AD-1,AD-17,AD-5 Yes NaN 63 0.0002888 0.0005141 In(x) Lithium, total (mg/L) AD-1,AD-17,AD-5 No NP NaN 63 0.1513 0.1299 sqrt(x) ShapiroFrancia 63 0.000007205 0.000005973 ln(x) Mercury, total (mg/L) AD-1,AD-17,AD-5 Yes $0.000033, 0.00001773, 0.00001521, 0.000013, 0.000013, \ NP$ NaN ShapiroFrancia AD-1,AD-17,AD-5 63 0.0006775 0.0006766 ShapiroFrancia Molybdenum, total (mg/L) n/a unknown pH, field (SU) AD-1,AD-17,AD-5 No n/a NP NaN 66 5.853 0.637 x^(1/3) ShapiroFrancia NP AD-1.AD-17.AD-5 63 0.001306 0.001756 ShapiroFrancia Selenium, total (mg/L) No NaN ln(x) n/a Thallium, total (mg/L) AD-1,AD-17,AD-5 n/a n/a 63 0.0002169 0.0001692 unknown ShapiroFrancia


Constituent: Antimony, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Tukey's Outlier Screening, Pooled Background

Constituent: Barium, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Tukey's Outlier Screening, Pooled Background


Constituent: Arsenic, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells Welsh PBAP Client: Geosyntec Data: Welsh PBAP

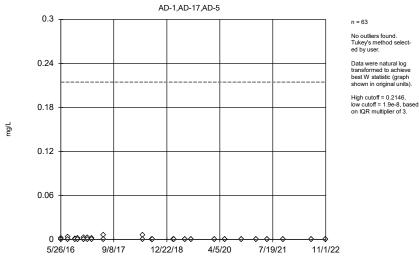
Sanitas™ v.9.6.36 . UG

Tukey's Outlier Screening, Pooled Background

Constituent: Beryllium, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells Welsh PBAP Client: Geosyntec Data: Welsh PBAP

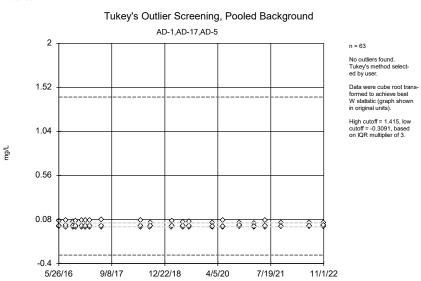
Constituent: Boron, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

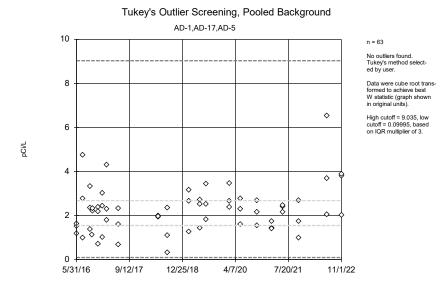

Sanitas™ v.9.6.36 . UG

Tukey's Outlier Screening, Pooled Background AD-1,AD-17,AD-5 0.07 n = 63 Outlier is drawn as solid. Tukey's method selected by user. 0.056 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.01094. low cutoff = 0.0000127, based on IQR multiplier 0.042 0.028 0.014 n 4 5/26/16 9/8/17 12/22/18 4/5/20 7/19/21 11/1/22

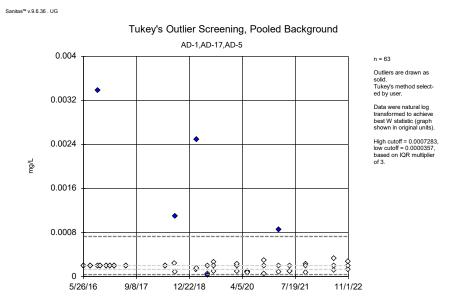
Constituent: Chromium, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Tukey's Outlier Screening, Pooled Background

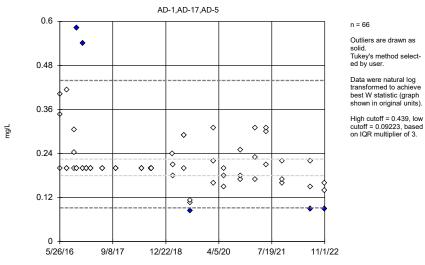

Constituent: Cadmium, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

Welsh PBAP Client: Geosyntec Data: Welsh PBAP



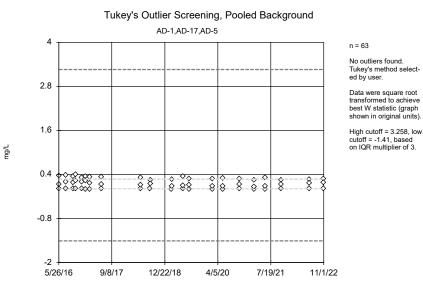
Constituent: Cobalt, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

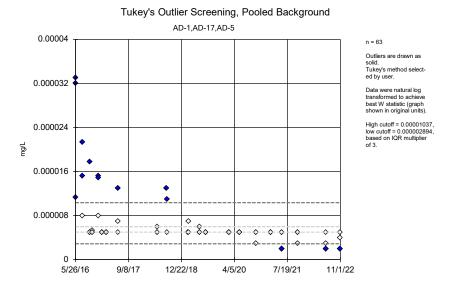

Constituent: Combined Radium 226 + 228 Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Lead, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Tukey's Outlier Screening, Pooled Background

Constituent: Fluoride, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

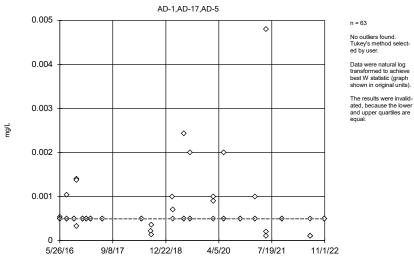

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Constituent: Lithium, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

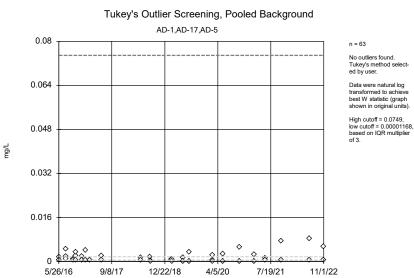
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Mercury, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

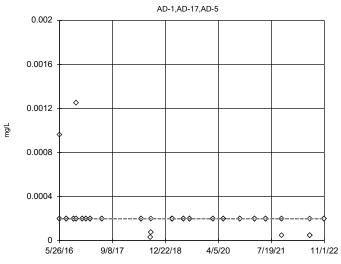
Tukey's Outlier Screening, Pooled Background AD-1,AD-17,AD-5 10 n = 66 No outliers found. Tukey's method selected by user. Data were cube root transformed to achieve best W statistic (graph shown **\$** in original units). 0 0 \Diamond 0 High cutoff = 9.302, low cutoff = 3.295, based on IQR multiplier of 3. **\lambda** \Diamond **\$** $\Diamond \Diamond$ S \Diamond \Diamond 2 5/26/16 9/8/17 12/22/18 4/5/20 7/19/21 11/1/22

Constituent: pH, field Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Tukey's Outlier Screening, Pooled Background

Constituent: Molybdenum, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Selenium, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

n = 63

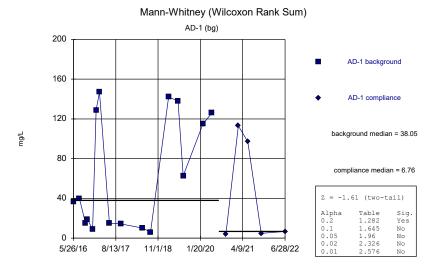
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

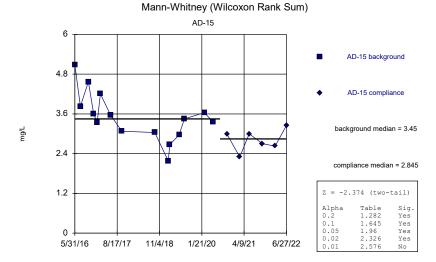
The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Thallium, total Analysis Run 2/2/2023 12:53 AM View: Tukey's Outlier Test on All Wells

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


FIGURE D Mann-Whitney

Welch's t-test/Mann-Whitney - Significant Results


	Welsh PBAP	Client: Geosyntec	Data: Welsh PBAP	Printed 2/7/2023, 4:29 AM		
Constituent		Well		Calc.	<u>0.01</u>	Method
Chloride, total (mg/L)		AD-8		-2.886	Yes	Mann-W
Fluoride, total (mg/L)		AD-5	(bg)	-2.625	Yes	Mann-W
Fluoride, total (mg/L)		AD-8		3.155	Yes	Mann-W
Sulfate, total (mg/L)		AD-1	(bg)	2.604	Yes	Mann-W

Welch's t-test/Mann-Whitney - All Results

	Welsh PBAP	Client: Geosyntec	Data: Welsh PBAP	Printed 2/7/2023, 4:29 AM		
Constituent		Well		Calc.	0.01	Method
Calcium, total (mg/L)		AD-1	(bg)	-1.61	No	Mann-W
Calcium, total (mg/L)		AD-1	5	-2.374	No	Mann-W
Calcium, total (mg/L)		AD-1	7 (bg)	-1.941	No	Mann-W
Calcium, total (mg/L)		AD-5	(bg)	-2.106	No	Mann-W
Calcium, total (mg/L)		AD-8		-1.254	No	Mann-W
Calcium, total (mg/L)		AD-9		-1.732	No	Mann-W
Chloride, total (mg/L)		AD-1	(bg)	-1.982	No	Mann-W
Chloride, total (mg/L)		AD-1	5	-0.175	No	Mann-W
Chloride, total (mg/L)		AD-1	7 (bg)	0.852	No	Mann-W
Chloride, total (mg/L)		AD-5	(bg)	0.4268	No	Mann-W
Chloride, total (mg/L)		AD-8		-2.886	Yes	Mann-W
Chloride, total (mg/L)		AD-9		-2.532	No	Mann-W
Fluoride, total (mg/L)		AD-1	(bg)	-2.231	No	Mann-W
Fluoride, total (mg/L)		AD-1	5	-2.315	No	Mann-W
Fluoride, total (mg/L)		AD-1	7 (bg)	-0.8884	No	Mann-W
Fluoride, total (mg/L)		AD-5	(bg)	-2.625	Yes	Mann-W
Fluoride, total (mg/L)		AD-8		3.155	Yes	Mann-W
Fluoride, total (mg/L)		AD-9		-2.332	No	Mann-W
Sulfate, total (mg/L)		AD-1	(bg)	2.604	Yes	Mann-W
Sulfate, total (mg/L)		AD-1	5	-2.011	No	Mann-W
Sulfate, total (mg/L)		AD-1	7 (bg)	-1.135	No	Mann-W
Sulfate, total (mg/L)		AD-5	(bg)	0.04726	No	Mann-W
Sulfate, total (mg/L)		AD-8		-1.485	No	Mann-W
Sulfate, total (mg/L)		AD-9		-1.878	No	Mann-W
Total Dissolved Solids (mg/L)		AD-1	(bg)	-0.4728	No	Mann-W
Total Dissolved Solids (mg/L)		AD-1	5	-2.039	No	Mann-W
Total Dissolved Solids (mg/L)		AD-1	7 (bg)	1.088	No	Mann-W
Total Dissolved Solids (mg/L)		AD-5	(bg)	-0.3781	No	Mann-W
Total Dissolved Solids (mg/L)		AD-8		-2.446	No	Mann-W
Total Dissolved Solids (mg/L)		AD-9		-2.096	No	Mann-W

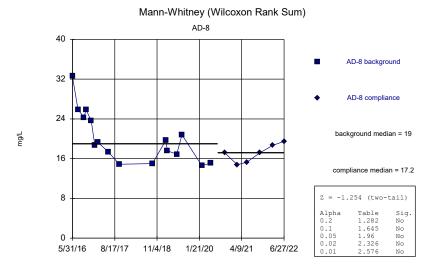
Constituent: Calcium, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Calcium, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Mann-Whitney (Wilcoxon Rank Sum) AD-17 (bg) 300 AD-17 background 240 AD-17 compliance 180 mg/L background median = 194.5 120 compliance median = 168 Z = -1.941 (two-tail) 60 Alpha Table Sig. 1.282 0.2 Yes Yes 0.05 1.96 No No 1/20/20 4/9/21 6/28/22 5/26/16 8/13/17 11/1/18 2.576

Sanitas™ v.9.6.36 . UG

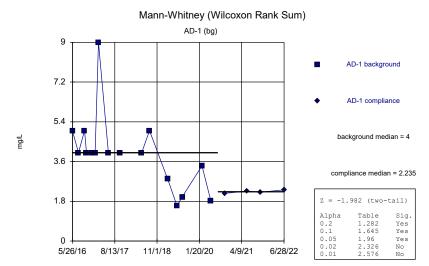

Mann-Whitney (Wilcoxon Rank Sum) AD-5 (bg) 60 AD-5 background 48 AD-5 compliance 36 mg/L background median = 40.35 24 compliance median = 32.9 12 Z = -2.106 (two-tail) Alpha Table Sig. 1.282 0.2 Yes Yes 0.05 1.96 Yes 1/22/20 4/10/21 6/28/22 5/31/16 8/17/17 11/4/18 2.576 No

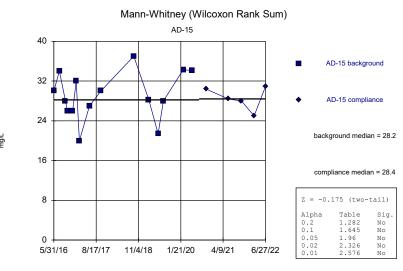
Constituent: Calcium, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

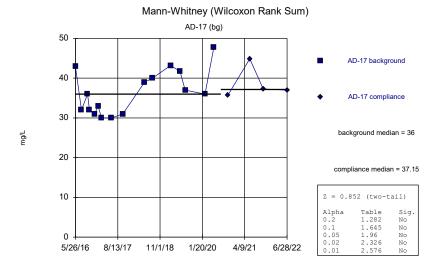
Constituent: Calcium, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

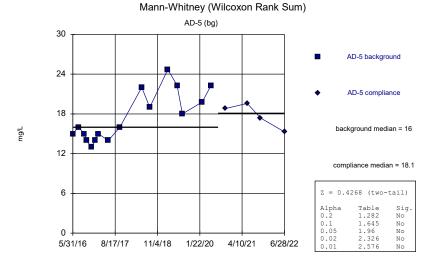

Constituent: Calcium, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


AD-9 300 AD-9 background AD-9 compliance 180 background median = 215.5 mg/L 120 compliance median = 11.95 60 Z = -1.732 (two-tail) Alpha 0.2 0.1 0.05 Table 1.282 1.645 Sig. Yes Yes 0.02 2.326 No 8/17/17 4/9/21 6/27/22 5/31/16 11/4/18 1/21/20 No

Mann-Whitney (Wilcoxon Rank Sum)


Constituent: Calcium, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

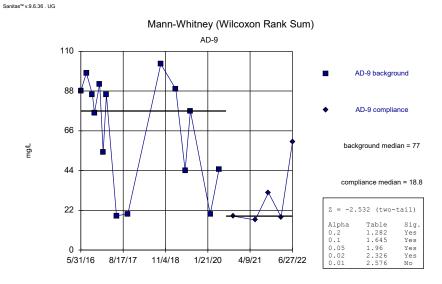
Sanitas™ v.9.6.36 . UG



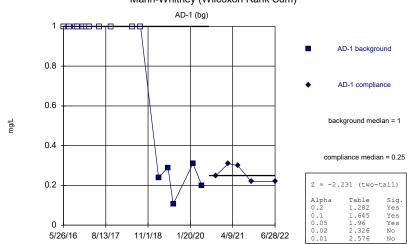
Sanitas™ v.9.6.36 . UG Sanitas™ v.9.6.36 . UG

Constituent: Chloride, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Chloride, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Mann-Whitney (Wilcoxon Rank Sum) AD-8 30 AD-8 background 24 AD-8 compliance 18 background median = 21 12 compliance median = 14.8 Z = -2.886 (two-tail) 6 Alpha Table Sig. 1.282 0.2 Yes Yes 0.05 1.96 Yes 2/20/18 3/24/19 4/24/20 5/26/21 6/27/22 1/20/17

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

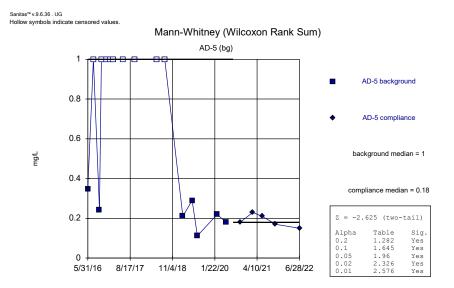

Sanitas™ v.9.6.36 . UG

Constituent: Chloride, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney

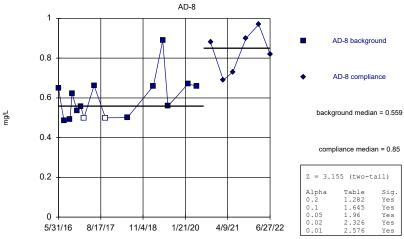
2.576

Constituent: Chloride, total Analysis Run 2/7/2023 4:27 AM View: Mann-Whitney Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Fluoride, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

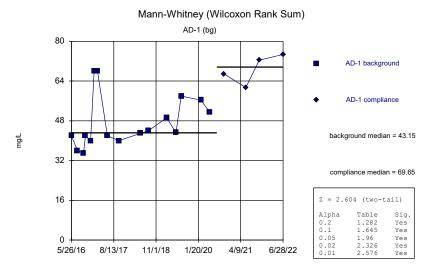

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values. Mann-Whitney (Wilcoxon Rank Sum) AD-17 (bg) 0.4 AD-17 background 0.32 AD-17 compliance 0.24 background median = 0.2 0.16 compliance median = 0.17 0.08 Z = -0.8884 (two-tail) Alpha Table Sig. 0.2 1.282 No 1.645 No 0.05 1.96 No 0.02 No 2/21/18 3/25/19 4/25/20 6/28/22 1/20/17 5/27/21 2.576

AD-15 AD-15 background 0.8 AD-15 compliance 0.6 background median = 1 mg/L 0.4 compliance median = 0.09 Z = -2.315 (two-tail) 0.2 Alpha Table Sig. Yes 1.282 0.1 Yes Yes 0.02 2.326 No 8/17/17 4/9/21 6/27/22 5/31/16 11/4/18 1/21/20 No

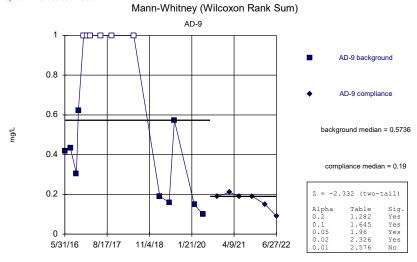

Mann-Whitney (Wilcoxon Rank Sum)

Constituent: Fluoride, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney

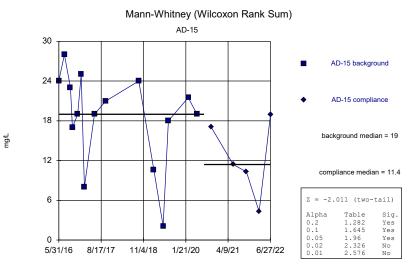
Welsh PBAP Client: Geosyntec Data: Welsh PBAP



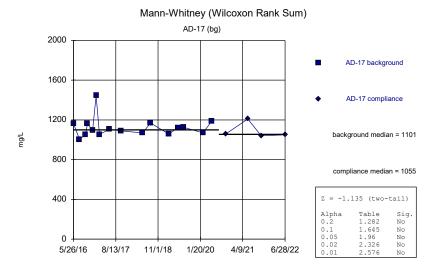
Constituent: Fluoride, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: Fluoride, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG


Constituent: Sulfate, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values


Constituent: Fluoride, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

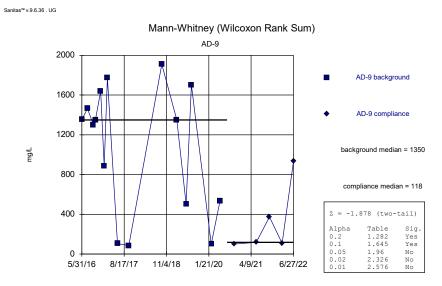
Constituent: Sulfate, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Sulfate, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney

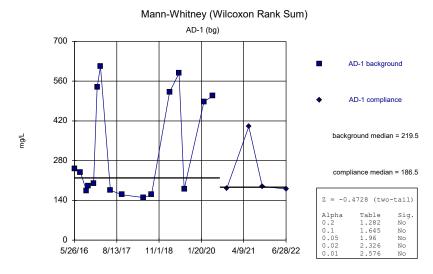
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

300 AD-5 background 240 AD-5 compliance 180 background median = 106.5 mg/L 120 compliance median = 147 60 Z = 0.04726 (two-tail)Alpha 0.2 0.1 0.05 Table Sig. 1.282 No No 0.02 2.326 No 8/17/17 4/10/21 6/28/22 5/31/16 11/4/18 1/22/20 No


Mann-Whitney (Wilcoxon Rank Sum)

AD-5 (bg)

Constituent: Sulfate, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG Mann-Whitney (Wilcoxon Rank Sum) AD-8 300 AD-8 background 240 AD-8 compliance 180 background median = 159 120 compliance median = 139 Z = -1.485 (two-tail) 60 Alpha Table Sig. 1.282 0.2 Yes No 0.05 1.96 No 1/21/20 4/9/21 6/27/22 5/31/16 8/17/17 11/4/18 2.576

Constituent: Sulfate, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Sulfate, total Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG Mann-Whitney (Wilcoxon Rank Sum) AD-17 (bg) 2000 AD-17 background 1600 AD-17 compliance 1200 background median = 1675 800 compliance median = 1730 Z = 1.088 (two-tail) 400 Alpha Table Sig. 1.282 0.2 No No

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

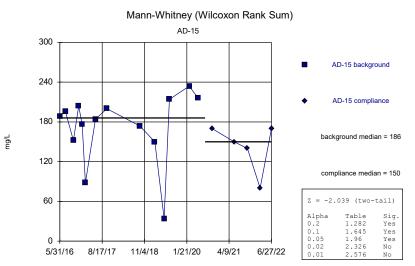
4/9/21

1/20/20

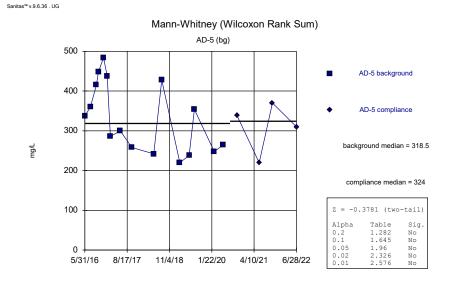
5/26/16

8/13/17 11/1/18

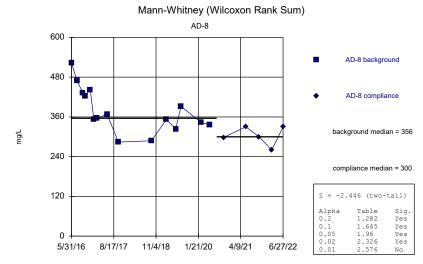
0.05

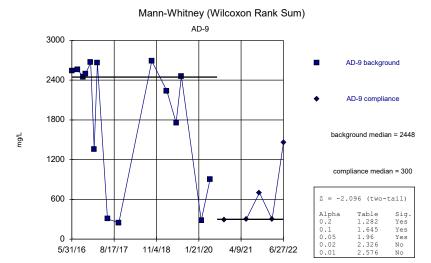

0.02

6/28/22


1.96

2.576


No


Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

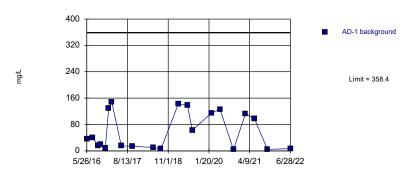
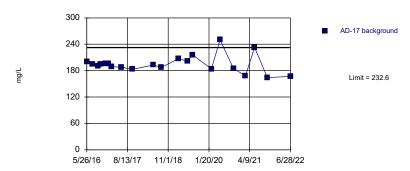

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:28 AM View: Mann-Whitney
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE E Intrawell PL

Appendix III - Intrawell Prediction Limits - All Results

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/7/2023, 4:36 AM Constituent <u>Well</u> Upper Lim. Lower Lim. Date Observ. $\underline{\text{Sig.}} \ \underline{\text{Bg N}} \ \underline{\text{Bg Mean}} \ \underline{\text{Std. Dev.}}$ %NDs ND Adj. <u>Alpha</u> Method AD-1 358.4 n/a 21 0.002505 Param Intra 1 of 2 Calcium, total (mg/L) n/a n/a 1 future 3.437 1.3 0 None In(x) Calcium, total (mg/L) AD-15 4.646 n/a 21 0.7109 0.002505 Param Intra 1 of 2 n/a n/a 1 future 3.309 None Calcium, total (mg/L) AD-17 232.6 n/a n/a 1 future n/a 21 194.7 20.17 n None No 0.002505 Param Intra 1 of 2 AD-5 0 0.002505 Calcium, total (mg/L) 53.13 n/a 21 38.6 7.729 Param Intra 1 of 2 n/a n/a 1 future None No Calcium, total (mg/L) AD-8 28.06 n/a 1 future n/a 22 4.368 0.4972 sqrt(x) 0.002505 Param Intra 1 of 2 Calcium, total (mg/L) AD-9 258 n/a n/a 1 future n/a 22 n/a n/a 0 n/a 0.003707 NP Intra (normality) 1 of 2 Chloride, total (mg/L) AD-1 6.989 n/a 1 future n/a 20 1.862 0.413 0 None sqrt(x) 0.002505 Param Intra 1 of 2 n/a Chloride, total (mg/L) AD-15 36.94 n/a n/a 1 future n/a 20 28.94 4.232 None No 0.002505 Param Intra 1 of 2 Chloride, total (mg/L) AD-17 46.83 n/a n/a 1 future n/a 20 36.88 5.261 0 None No 0.002505 Param Intra 1 of 2 AD-5 n/a 20 0 None 0.002505 Chloride, total (mg/L) 23.96 n/a n/a 1 future 17.56 3.38 No Param Intra 1 of 2 Chloride, total (mg/L) AD-8 26.11 n/a n/a 1 future n/a 15 18.47 3.809 0 None No 0.002505 Param Intra 1 of 2 Chloride, total (mg/L) AD-9 117.2 n/a n/a 1 future n/a 20 57.11 31.78 0 None No 0.002505 Param Intra 1 of 2 Fluoride, total (mg/L) AD-1 NP Intra (NDs) 1 of 2 1 n/a n/a 1 future n/a 21 n/a n/a 52.38 n/a n/a 0.003999 AD-15 Fluoride, total (mg/L) n/a 1 future n/a 21 n/a 42.86 0.003999 NP Intra (normality) 1 of 2 Fluoride, total (mg/L) AD-17 0.2552 n/a n/a 1 future n/a 16 0.1438 0.05653 43.75 Kaplan-Meier Nο 0.002505 Param Intra 1 of 2 Fluoride, total (mg/L) AD-5 n/a 21 42.86 0.003999 NP Intra (normality) 1 of 2 n/a n/a 1 future n/a n/a n/a n/a Fluoride, total (mg/L) AD-8 0.9486 n/a 21 0.6636 0.1516 9.524 0.002505 Param Intra 1 of 2 n/a n/a 1 future None -1.628 Fluoride, total (mg/L) AD-9 0.6846 n/a 1 future n/a 21 0.6642 28.57 Kaplan-Meier 0.002505 Param Intra 1 of 2 AD-1 Sulfate, total (mg/L) 76 11 n/a n/a 1 future n/a 20 51 68 12 91 n None Nο 0.002505 Param Intra 1 of 2 Sulfate, total (mg/L) AD-15 30.46 n/a n/a 1 future n/a 20 17.06 7.084 None No 0.002505 Param Intra 1 of 2 n/a Sulfate, total (mg/L) AD-17 1445 n/a 1 future n/a 20 n/a n/a 0 n/a n/a 0.004291 NP Intra (normality) 1 of 2 AD-5 73.02 0 Sulfate, total (mg/L) 267.7 n/a n/a 1 future n/a 20 129.5 None No 0.002505 Param Intra 1 of 2 Sulfate, total (mg/L) AD-8 203.7 n/a 1 future n/a 20 158.7 23.82 0 None 0.002505 Param Intra 1 of 2 n/a No Sulfate, total (mg/L) AD-9 2145 n/a 1 future n/a 20 884.5 666.3 0 None No 0.002505 Param Intra 1 of 2 Total Dissolved Solids (mg/L) AD-1 612 n/a n/a 1 future n/a 20 n/a n/a 0 n/a n/a 0.004291 NP Intra (normality) 1 of 2 Total Dissolved Solids (mg/L) AD-15 261 n/a 1 future n/a 19 164.2 50.64 None No 0.002505 Param Intra 1 of 2 n/a n/a Total Dissolved Solids (mg/L) AD-17 1921 n/a 1 future n/a 20 1704 114.5 0 None Nο 0.002505 Param Intra 1 of 2 Total Dissolved Solids (mg/L) AD-5 484 n/a n/a 1 future n/a 20 328 82.5 0 None No 0.002505 Param Intra 1 of 2 Total Dissolved Solids (mg/L) AD-8 489.3 n/a 1 future n/a 20 360.3 68.19 0 None No 0.002505 Param Intra 1 of 2 n/a Total Dissolved Solids (mg/L) AD-9 2690 n/a 1 future n/a 20 0 0.004291 NP Intra (normality) 1 of 2

Prediction Limit Intrawell Parametric, AD-1 (bg)

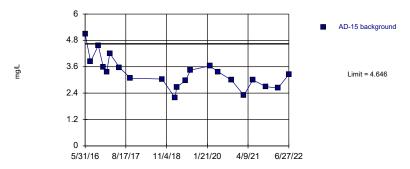

Background Data Summary (based on natural log transformation): Mean=3.437, Std. Dev.=1.3, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8865, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Calcium, total Analysis Run 2/7/2023 4:33 AM View: Intrawell PLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Parametric, AD-17 (bg)

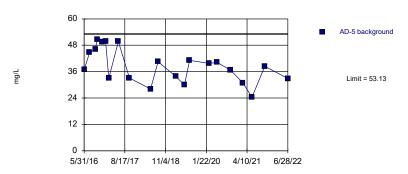


Background Data Summary: Mean=194.7, Std. Dev.=20.17, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9017, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

-

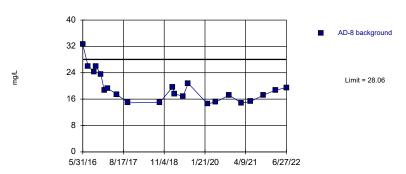
Prediction Limit

Intrawell Parametric, AD-15


Background Data Summary: Mean=3.309, Std. Dev.=0.7109, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9525, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Calcium, total Analysis Run 2/7/2023 4:33 AM View: Intrawell PLs

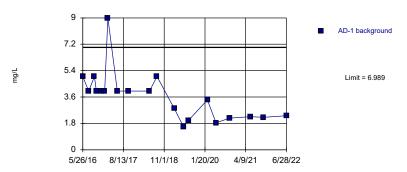
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Parametric, AD-5 (bg)

Background Data Summary: Mean=38.6, Std. Dev.=7.729, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9562, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

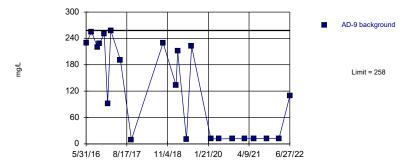
Prediction Limit Intrawell Parametric, AD-8


Background Data Summary (based on square root transformation): Mean=4.368, Std. Dev.=0.4972, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8896, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Calcium, total Analysis Run 2/7/2023 4:33 AM View: Intrawell PLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

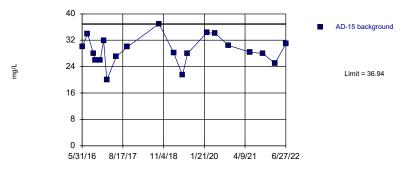

Prediction Limit Intrawell Parametric, AD-1 (bg)

Background Data Summary (based on square root transformation): Mean=1.862, Std. Dev.=0.413, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

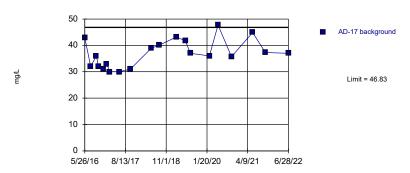
Intrawell Non-parametric, AD-9

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 22 background values. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2). Assumes 1 future value.


Constituent: Calcium, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs

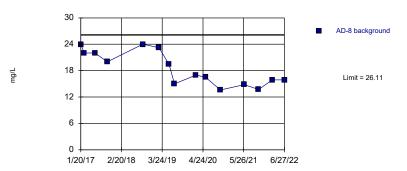
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG


Prediction Limit

Background Data Summary: Mean=28.94, Std. Dev.=4.232, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9729, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-17 (bg)



Background Data Summary: Mean=36.88, Std. Dev.=5.261, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9435, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

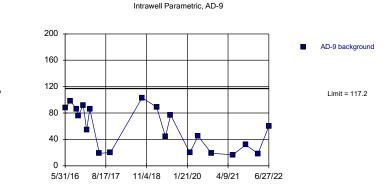
> Constituent: Chloride, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Parametric, AD-8

Background Data Summary: Mean=18.47, Std. Dev.=3.809, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8957, critical = 0.835. Kappa = 2.006 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-5 (bg)



Background Data Summary: Mean=17.56, Std. Dev.=3.38, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9265, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

> Constituent: Chloride, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

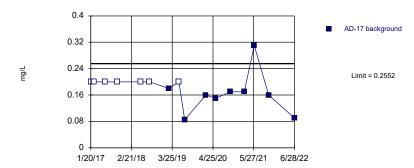
Sanitas™ v.9.6.36 . UG

Prediction Limit

Background Data Summary: Mean=57.11, Std. Dev.=31.78, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8717, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

Prediction Limit Intrawell Non-parametric, AD-1 (bg)



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 21 background values. 52.38% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

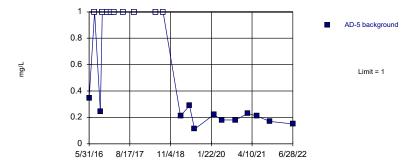
Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

Prediction Limit Intrawell Parametric, AD-17 (bg)

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.1438, Std. Dev.=0.05653, n=16, 43,75% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8487, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

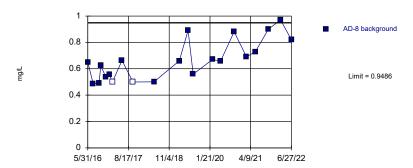
Intrawell Non-parametric, AD-15


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 21 background values. 42.86% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

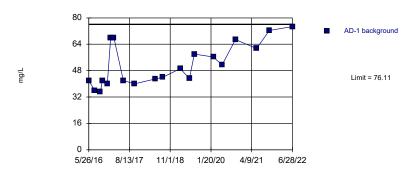
Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.


Prediction Limit Intrawell Non-parametric, AD-5 (bg)

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 21 background values. 42.86% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

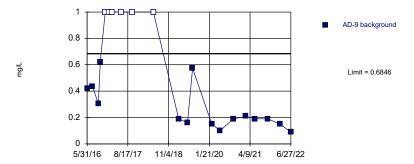
Prediction Limit Intrawell Parametric, AD-8


Background Data Summary: Mean=0.6636, Std. Dev.=0.1516, n=21, 9.524% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9048, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

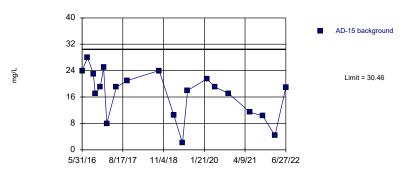


Background Data Summary: Mean=51.68, Std. Dev.=12.91, n=20. Normality test: Shapiro Wilk @alpha = 0.01, collaited = 0.8957, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

Intrawell Parametric, AD-9

Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=1.628, Std. Dev.=0.6642, n=21, 28.57% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8809, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.


Constituent: Fluoride, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

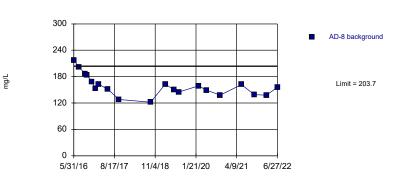
Prediction Limit

Intrawell Parametric, AD-15

Background Data Summary: Mean=17.06, Std. Dev.=7.084, n=20. Normality test: Shapiro Wilk @alpha = 0.01, culculated = 0.9371, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Non-parametric, AD-17 (bg)

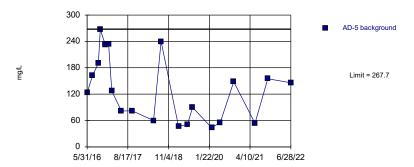

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2). Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Parametric, AD-8

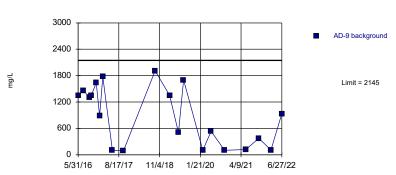


Background Data Summary: Mean=158.7, Std. Dev.=23.82, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.938, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.36 . UG

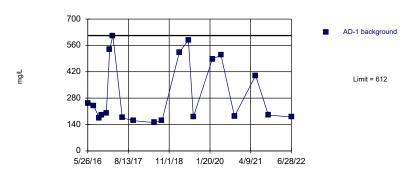
Prediction Limit

Intrawell Parametric, AD-5 (bg)


Background Data Summary: Mean=129.5, Std. Dev.=73.02, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9061, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG


Prediction Limit

Intrawell Parametric, AD-9

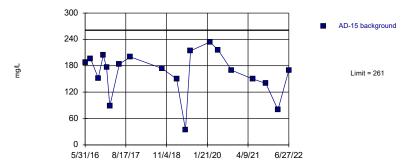
Background Data Summary: Mean=884.5, Std. Dev.=666.3, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8749, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Non-parametric, AD-1 (bg)

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2). Assumes 1 future value.

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

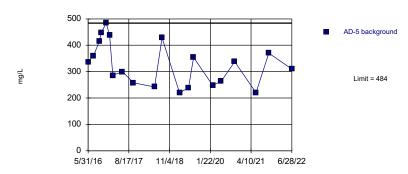
Sanitas™ v.9.6.36 . UG


Prediction Limit Intrawell Parametric, AD-17 (bg)

Background Data Summary: Mean=1704, Std. Dev.=114.5, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9349, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

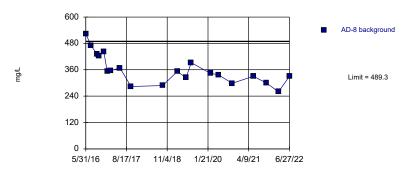
Intrawell Parametric, AD-15



Background Data Summary: Mean=164.2, Std. Dev.=50.64, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9016, critical = 0.863. Kappa = 1.912 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

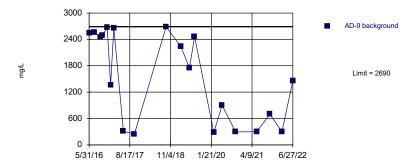
Sanitas™ v.9.6.36 . UG


Prediction Limit Intrawell Parametric, AD-5 (bg)

Background Data Summary: Mean=328, Std. Dev.=82.5, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9369, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Parametric, AD-8



Background Data Summary: Mean=360.3, Std. Dev.=68.19, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9407, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

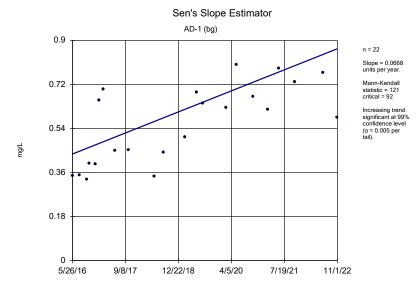
Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Non-parametric, AD-9

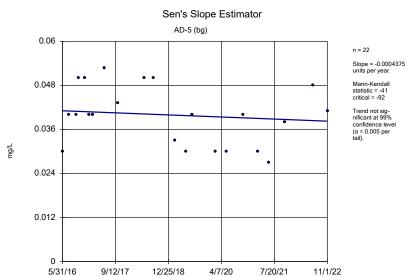
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2). Assumes 1 future value.

Constituent: Total Dissolved Solids Analysis Run 2/7/2023 4:34 AM View: Intrawell PLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

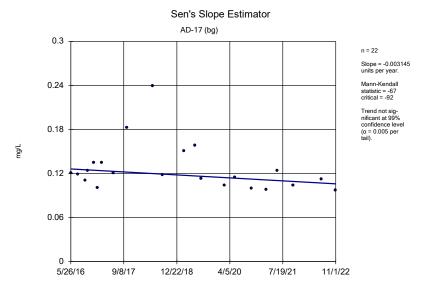

FIGURE F Upgradient Trend Test

Trend Tests - Upgradient Wells - Significant Results

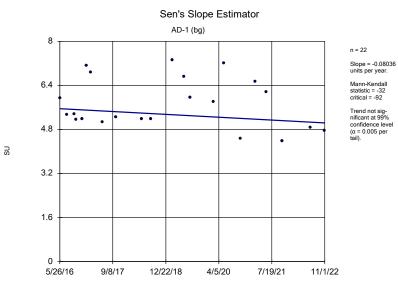
	Welsh PBAP Client: Geosy	ntec Data: Welsh Pl	BAP	Printed 2/9/	2023,	11:04 A	M				
Constituent	Well	<u>Slope</u> <u>C</u>	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	AD-1 (bg)	0.0668 1	121	92	Yes	22	0	n/a	n/a	0.01	NP
pH, field (SU)	AD-17 (bg)	-0.1264 -	-112	-92	Yes	22	0	n/a	n/a	0.01	NP


Trend Tests - Upgradient Wells - All Results Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/9/2023, 11:04 AM

	Welsh PBAP	Client: Geosyntec	Data: Welsh	PBAP	Printed 2/9/2	2023, 1	11:04 AI	VI				
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	AD-1 (bg)		0.0668	121	92	Yes	22	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	AD-17 (bg)		-0.003145	-67	-92	No	22	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	AD-5 (bg)		-0.0004375	-41	-92	No	22	0	n/a	n/a	0.01	NP
pH, field (SU)	AD-1 (bg)		-0.08036	-32	-92	No	22	0	n/a	n/a	0.01	NP
pH, field (SU)	AD-17 (bg)		-0.1264	-112	-92	Yes	22	0	n/a	n/a	0.01	NP
pH, field (SU)	AD-5 (bg)		0.02743	19	92	No	22	0	n/a	n/a	0.01	NP

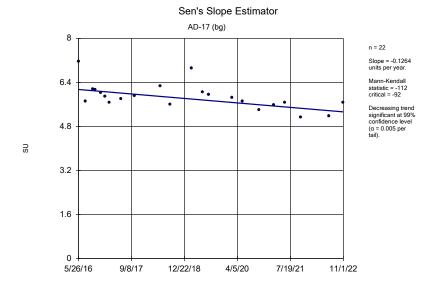


Constituent: Boron, total Analysis Run 2/9/2023 11:03 AM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP



Constituent: Boron, total Analysis Run 2/9/2023 11:03 AM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

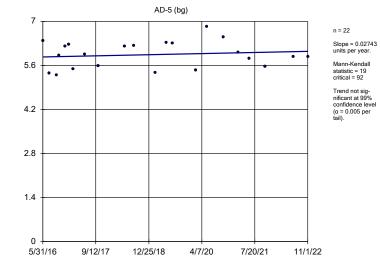
Constituent: Boron, total Analysis Run 2/9/2023 11:03 AM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 2/9/2023 11:03 AM View: Upgradient Well Trend Test

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

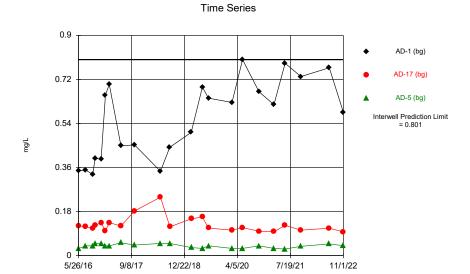


Constituent: pH, field Analysis Run 2/9/2023 11:03 AM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

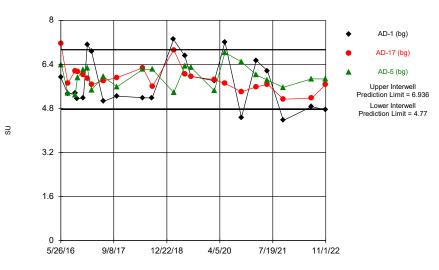
S

Constituent: pH, field Analysis Run 2/9/2023 11:03 AM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


FIGURE G Interwell PL

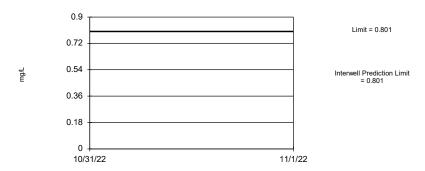
Appendix III - Intrawell Prediction Limits - All Results

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/2/2023, 4:31 AM


Constituent	<u>Well</u>	Upper Lim. Lov	ver Lim. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	n/a	0.801 n/a	n/a	3 future	n/a 66	n/a	n/a	0	n/a	n/a	0.0004437	NP Inter (normality) 1 of 2
pH, field (SU)	n/a	6.936 4.7	7 n/a	3 future	n/a 66	5.853	0.637	0	None	No	0.001253	Param Inter 1 of 2

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

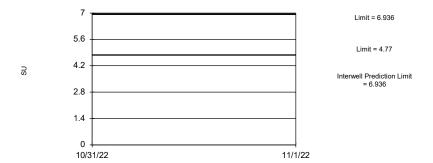
Constituent: Boron, total Analysis Run 2/9/2023 10:40 AM View: Interwell Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Time Series

Constituent: pH, field Analysis Run 2/9/2023 10:40 AM View: Interwell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Prediction Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 66 background values. Annual per-constituent alpha = 0.002659. Individual comparison alpha = 0.004437 (1 of 2). Assumes 3 future values.

Constituent: Boron, total Analysis Run 2/2/2023 4:31 AM View: Interwell PLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Prediction Limit Interwell Parametric

Background Data Summary: Mean=5.853, Std. Dev.=0.637, n=66. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9836, critical = 0.948. Mappa = 1.7 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.0074981. Assumes 3 future values.

Constituent: pH, field Analysis Run 2/2/2023 4:31 AM View: Interwell PLs
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE H UTL

Upper Tolerance Limits Summary Table Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 3/3/2023, 1:02 PM

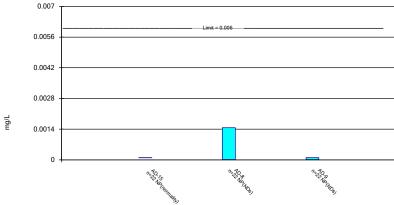
			Welsh PBAP	Client: G	eosyntec	Data: We	sh PBAP	Printed 3/3/202	23, 1:02	PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method
Antimony, total (mg/L)	n/a	0.00317	n/a	n/a	n/a	n/a 63	n/a	n/a	68.25	n/a	n/a	0.0395	NP Inter(NDs)
Arsenic, total (mg/L)	n/a	0.00628	n/a	n/a	n/a	n/a 63	n/a	n/a	30.16	n/a	n/a	0.0395	NP Inter(normality)
Barium, total (mg/L)	n/a	0.5643	n/a	n/a	n/a	n/a 63	-2.859	1.14	0	None	In(x)	0.05	Inter
Beryllium, total (mg/L)	n/a	0.001123	n/a	n/a	n/a	n/a 63	-8.998	1.099	6.349	None	In(x)	0.05	Inter
Cadmium, total (mg/L)	n/a	0.004	n/a	n/a	n/a	n/a 61	n/a	n/a	32.79	n/a	n/a	0.04377	NP Inter(normality)
Chromium, total (mg/L)	n/a	0.002329	n/a	n/a	n/a	n/a 62	-7.943	0.9355	14.52	None	In(x)	0.05	Inter
Cobalt, total (mg/L)	n/a	0.0748	n/a	n/a	n/a	n/a 63	n/a	n/a	0	n/a	n/a	0.0395	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	4.605	n/a	n/a	n/a	n/a 63	1.464	0.3399	0	None	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	n/a	0.583	n/a	n/a	n/a	n/a 66	n/a	n/a	40.91	n/a	n/a	0.03387	NP Inter(normality)
Lead, total (mg/L)	n/a	0.003384	n/a	n/a	n/a	n/a 63	n/a	n/a	52.38	n/a	n/a	0.0395	NP Inter(NDs)
Lithium, total (mg/L)	n/a	0.394	n/a	n/a	n/a	n/a 63	n/a	n/a	1.587	n/a	n/a	0.0395	NP Inter(normality)
Mercury, total (mg/L)	n/a	0.000033	n/a	n/a	n/a	n/a 63	n/a	n/a	60.32	n/a	n/a	0.0395	NP Inter(NDs)
Molybdenum, total (mg/L)	n/a	0.00243	n/a	n/a	n/a	n/a 62	n/a	n/a	67.74	n/a	n/a	0.04158	NP Inter(NDs)
Selenium, total (mg/L)	n/a	0.00835	n/a	n/a	n/a	n/a 63	n/a	n/a	39.68	n/a	n/a	0.0395	NP Inter(normality)
Thallium, total (mg/L)	n/a	0.001251	n/a	n/a	n/a	n/a 63	n/a	n/a	88.89	n/a	n/a	0.0395	NP Inter(NDs)

FIGURE I GWPS

WELSH PBAP GWPS								
		Background						
Constituent Name	MCL	Limit	GWPS					
Antimony, Total (mg/L)	0.006	0.0032	0.006					
Arsenic, Total (mg/L)	0.01	0.0063	0.01					
Barium, Total (mg/L)	2	0.56	2					
Beryllium, Total (mg/L)	0.004	0.0011	0.004					
Cadmium, Total (mg/L)	0.005	0.004	0.005					
Chromium, Total (mg/L)	0.1	0.0023	0.1					
Cobalt, Total (mg/L)	n/a	0.075	0.075					
Combined Radium, Total (pCi/L)	5	4.61	5					
Fluoride, Total (mg/L)	4	0.58	4					
Lead, Total (mg/L)	n/a	0.0034	0.0034					
Lithium, Total (mg/L)	n/a	0.39	0.39					
Mercury, Total (mg/L)	0.002	0.000033	0.002					
Molybdenum, Total (mg/L)	n/a	0.0024	0.0024					
Selenium, Total (mg/L)	0.05	0.0084	0.05					
Thallium, Total (mg/L)	0.002	0.0013	0.002					

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

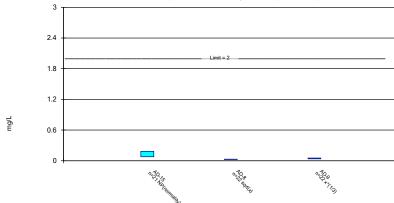

FIGURE J Confidence Intervals

Appendix IV - Confidence Intervals - All Results (No Significant)

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 2/2/2023, 4:19 AM Constituent <u>Well</u> Upper Lim. Lower Lim. Compliance $\underline{\text{Sig.}} \ \underline{N}$ Std. Dev. %NDs Transform <u>Alpha</u> Method AD-15 0.0001 0.00009 No 22 0.00002938 NP (normality) Antimony, total (mg/L) 0.006 72.73 No 0.01 AD-8 0.001461 0.0007086 NP (NDs) Antimony, total (mg/L) 0.00001 0.006 No 22 86.36 0.01 Antimony, total (mg/L) AD-9 0.0001 0.00001 0.006 No 22 0.00001919 95.45 No 0.01 NP (NDs) 0.007535 0.003008 No 21 0.005803 AD-15 0.01 0 x^(1/3) 0.01 Arsenic, total (mg/L) Param. Arsenic, total (mg/L) AD-8 0.005 No 22 0.002273 36.36 0.01 Arsenic, total (mg/L) AD-9 0.005 0.00027 0.01 Nο 22 0.002247 40.91 Nο 0.01 NP (normality) Barium, total (mg/L) AD-15 0.184 0.0766 No 21 0.09365 0 0.01 NP (normality) 2 No Barium, total (mg/L) AD-8 0.02942 0.02256 No 22 0.006932 0 sqrt(x) 0.01 Param. Barium, total (mg/L) AD-9 0.05228 0.0354 2 No 22 0.01669 0 x^(1/3) 0.01 Param. AD-15 0.0006964 0.0001887 0.004 Nο 21 0.0006016 0 Beryllium, total (mg/L) sqrt(x) 0.01 Param. Beryllium, total (mg/L) AD-8 0.00001 0.004 No 22 0.00004267 68.18 No 0.01 NP (normality) Beryllium, total (mg/L) AD-9 0.001105 0.0006244 0.004 No 22 0.0004479 0 Nο 0.01 AD-15 0.000011 21 0.0001893 NP (normality) Cadmium, total (mg/L) 0.0003194 0.005 No 4.762 No 0.01 Cadmium, total (mg/L) AD-8 0.001 0.000021 No 22 0.0004888 40.91 No 0.01 NP (normality) Cadmium, total (mg/L) AD-9 0.0008404 0.0002356 0.005 Nο 22 0.0008166 0 x^(1/3) 0.01 Param. 21 0.01517 AD-15 0.005615 0.0006464 No 0 0.01 Param. Chromium, total (mg/L) 0.1 In(x) Chromium, total (mg/L) 0.0007512 No 22 0.0004789 22.73 No 0.01 NP (Cohens/xfrm) 0.1 Chromium, total (mg/L) AD-9 0.001045 0.0005609 0.1 No 22 0.0003123 36.36 0.01 No AD-15 21 0.005008 Cobalt, total (mg/L) 0.007174 0.003608 0.075 Nο n In(x) 0.01 Param Cobalt, total (mg/L) AD-8 0.006276 0.00359 0.075 No 22 0.002503 0 No 0.01 Param. Cobalt, total (mg/L) AD-9 0.02315 0.01655 0.075 No 22 0.006617 0 sqrt(x) 0.01 Param. Combined Radium 226 + 228 (pCi/L) Nο 21 0.8019 0 AD-15 2.463 1.578 5 Nο 0.01 Param. Combined Radium 226 + 228 (pCi/L) AD-8 1.32 0.5853 5 No 22 1.32 0 0.01 ln(x) Param. Combined Radium 226 + 228 (pCi/L) AD-9 2.559 1.78 5 No 22 0.7254 0 0.01 Fluoride, total (mg/L) AD-15 0.086 4 No 22 0.4563 40.91 No 0.01 NP (normality) Fluoride, total (mg/L) AD-8 0.7608 0.5907 No 22 0.1584 9.091 No 0.01 Param. Fluoride, total (mg/L) AD-9 0.6227 0.17 No 22 0.3653 27.27 No 0.01 NP (normality) 0.006215 Lead, total (mg/L) AD-15 0.0048 0.00009 0.0034 No 21 14.29 No 0.01 NP (normality) AD-8 0.0002 0.00007 No 22 0.00006645 59.09 0.01 NP (normality) Lead, total (mg/L) No AD-9 0.005 0.00008 0.0034 No 22 0.002442 40.91 0.01 NP (normality) Lead, total (mg/L) No AD-15 22 0.03109 Lithium, total (mg/L) 0.01275 0.004018 0.39 Nο 0 In(x) 0.01 Param Lithium, total (mg/L) AD-8 0.1012 0.07666 0.39 No 22 0.02288 0 No 0.01 Param. Lithium, total (mg/L) AD-9 No 22 0.5132 NP (normality) 1.2 0.205 0.01 0.000026 0.00002814 NP (Cohens/xfrm) Mercury, total (mg/L) AD-15 0.000005 0.002 No 20 40 No 0.01 AD-8 No 21 0.000003661 80.95 0.01 NP (NDs) Mercury, total (mg/L) 8000008 0.000005 0.002 No AD-9 0.002 No 21 0.00001056 0.01 NP (Cohens/xfrm) Mercury, total (mg/L) 0.00000739 28.57 No Molybdenum, total (mg/L) AD-15 0.0005868 0.0004635 0.0024 No 22 0.0009226 63.64 No 0.01 NP (normality) NP (NDs) Molybdenum, total (mg/L) AD-8 0.00016 0.0024 No 22 0.0004009 77.27 0.01 No Molybdenum, total (mg/L) AD-9 0.0005 0.00011 0.0024 No 22 0.00008315 95.45 0.01 NP (NDs) Selenium, total (mg/L) AD-15 0.00186 0.0007017 0.05 Nο 21 0.001235 9 524 sart(x) 0.01 Param AD-8 0.00137 0.00008 0.05 No 22 0.0005208 Selenium, total (mg/L) 54.55 No 0.01 NP (normality) AD-9 0.003528 No 22 0.002324 0.01 Selenium, total (mg/L) 0.0003 No Thallium, total (mg/L) AD-15 0.0005 0.00009 0.002 Nο 22 0.0003935 54.55 No 0.01 NP (normality) AD-8 0.0005 0.00011 22 0.0003799 NP (normality) Thallium, total (mg/L) 0.002 No 50 No 0.01 Thallium, total (mg/L) AD-9 0.0005 0.0002 0.0004252 NP (Cohens/xfrm) 0.002 0.01

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

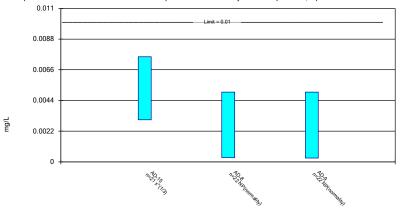

Constituent: Antimony, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

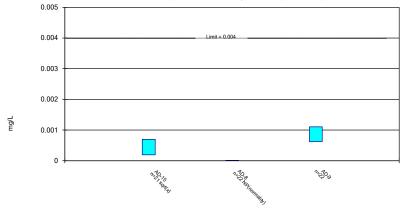


Constituent: Barium, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Parametric and Non-Parametric (NP) Confidence Interval

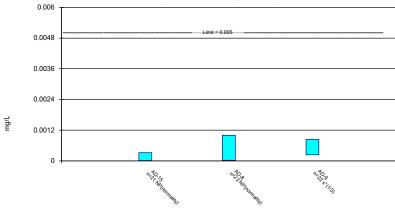
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

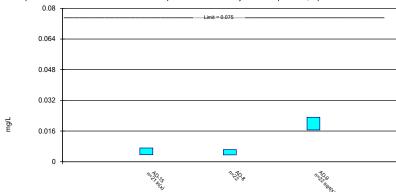
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.36 . UG

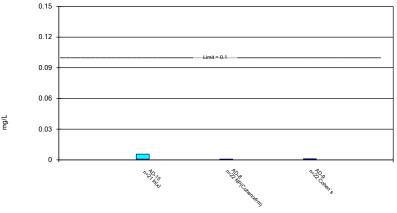
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Cadmium, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

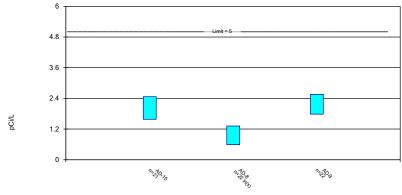
Sanitas™ v.9.6.36 . UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

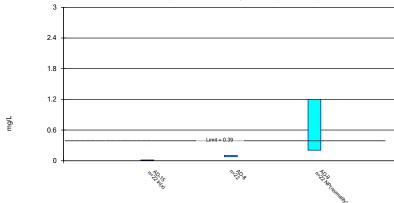
Sanitas™ v.9.6.36 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

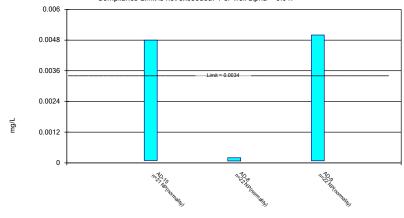

Constituent: Fluoride, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

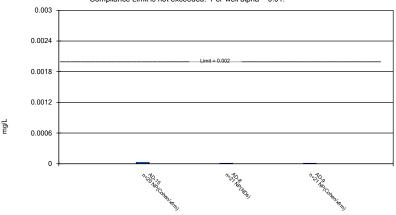


Constituent: Lithium, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Lead, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Sanitas™ v.9.6.36 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.003

0.0024

Limit = 0.0024

0.0018

0.0012

0.0006

Constituent: Molybdenum, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.003

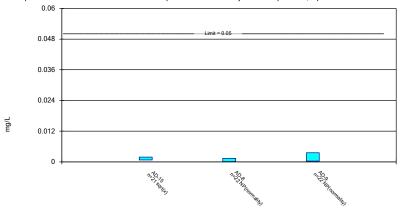
0.0024

0.0018

0.0012

0.0006

0.0006


Constituent: Thallium, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 2/2/2023 4:15 AM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

engineers | scientists | innovators

STATISTICAL ANALYSIS SUMMARY, PRIMARY BOTTOM ASH POND

J. Robert Welsh Plant Pittsburg, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: CHA8500B

October 3, 2023

TABLE OF CONTENTS

1. INTR	ODUCTION	1				
2. PRIM	IARY BOTTOM ASH POND EVALUATION	2				
	2.1 Data Validation and QA/QC					
	2.2.1 Evaluation of Potential Appendix IV SSLs					
	2.2.2 Evaluation of Potential Appendix III SSIs					
						
3. REFE	ERENCES	4				
	LIST OF TABLES					
Table 1:	Groundwater Data Summary					
Table 2:	Appendix IV Groundwater Protection Standards					
Table 3:	Appendix III Data Summary					
	LIST OF ATTACHMENTS					
Attachmen	nt A: Certification by Qualified Professional Engineer					
Attachmer	nt B: Data Quality Review Memorandum					

Data Quality Review Memorandum

Statistical Analysis Output

Attachment C:

ACRONYMS AND ABBREVIATIONS

CCR coal combustion residuals

GWPS groundwater protection standard

LPL lower prediction limit

PBAP Primary Bottom Ash Pond

QA/QC quality assurance and quality control

SSI statistically significant increase

SSL statistically significant level

SU standard units

TCEQ Texas Commission on Environmental Quality

UPL upper prediction limit

1. INTRODUCTION

In accordance with Texas Commission on Environmental Quality (TCEQ) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule"), groundwater monitoring has been conducted at the Primary Bottom Ash Pond (PBAP), an existing CCR unit at the Welsh Power Plant in Pittsburg, Texas. Recent groundwater monitoring results were compared to site-specific groundwater protection standards (GWPSs) to identify potential exceedances.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron at the PBAP. An alternative source was not identified at the time, so assessment monitoring was initiated and GWPS were set in accordance with § 352.951(b). Two assessment monitoring events were conducted at the PBAP in February and June 2023 in accordance with § 352.951(a). The results of these assessment events are documented in this report.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above previously established GWPS. No SSLs were identified; however, concentrations of Appendix III parameters remained above background. Thus, the unit will remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A. The statistical analysis and certification of the selected methods were completed within 90 days of obtaining the data.

2. PRIMARY BOTTOM ASH POND EVALUATION

2.1 Data Validation and QA/QC

During the assessment monitoring program in 2023, two sets of samples (February 2023 and June 2023) were collected for analysis. Samples were collected from each background and compliance well during the June 2023 event, whereas samples were collected only from the compliance well locations during the February 2023 event. Samples from both events were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during these assessment monitoring events may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program. Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks, continuing calibration verification samples, and laboratory fortified blanks.

A data quality review was completed to assess if the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ 2020). As noted in the review memoranda (Attachment B), the data were determined usable for supporting project objectives. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.36 statistics software. The export file was checked against the analytical data for transcription errors and completeness.

2.2 Statistical Analysis

Statistical analyses for the PBAP were conducted in accordance with the Statistical Analysis Plan (Geosyntec 2021), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment C.

The data obtained in February and June 2023 were screened for potential outliers. No outliers were identified for these events.

2.2.1 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$), but nonparametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the nondetect frequency was too high). An SSL was concluded if the lower confidence limit was above the GWPS (i.e., if the entire confidence interval was above the GWPS). Calculated confidence limits are shown in Attachment C. The calculated confidence limits were compared to the GWPSs provided in Table 2. The GWPSs were established as either the greater value of the background concentration calculated during a previous statistical analysis or the maximum contaminant level (Geosyntec 2023).

No SSLs were identified at the PBAP.

2.2.2 Evaluation of Potential Appendix III SSIs

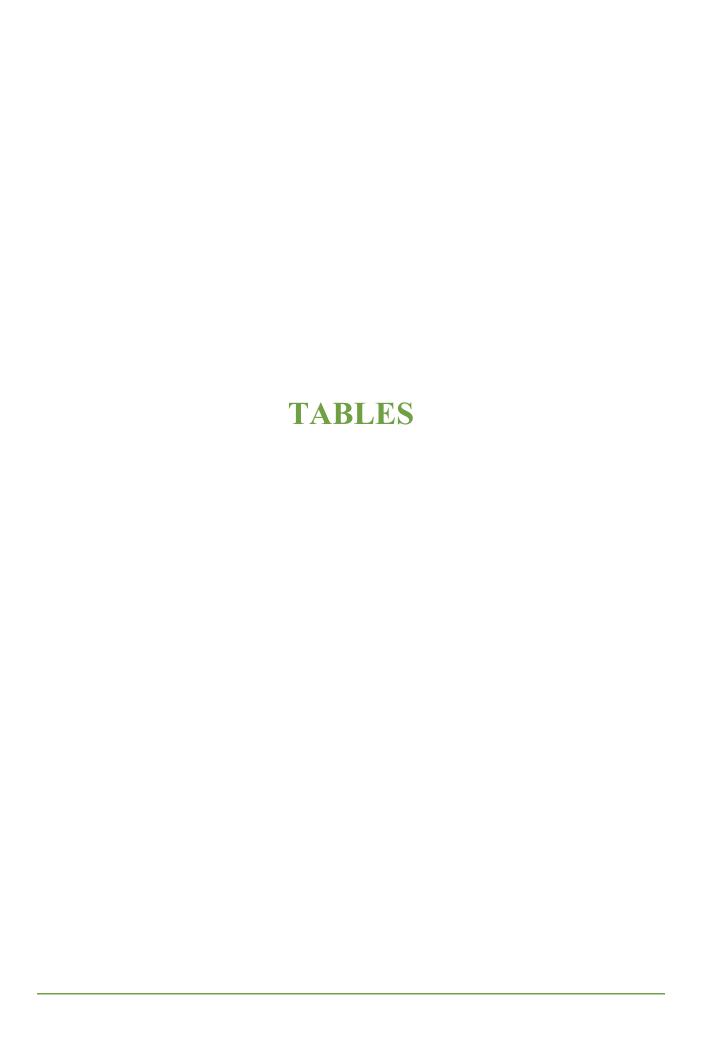
A review of the Appendix III results was also completed to assess whether concentrations of Appendix III parameters at the compliance wells were above background concentrations. Data collected during the June 2023 assessment monitoring event from each compliance well were compared to previously established prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following exceedances of the upper prediction limits (UPLs) or, in the case of pH, values below the lower prediction limits (LPLs) were noted:

- Boron concentrations were above the interwell UPL of 0.801 mg/L at AD-8 (0.932 mg/L).
- The reported pH values were below the interwell LPL of 4.8 SU mg/L at AD-15 (4.3 SU).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the initial (June 2023) sample was above the UPL or below the LPL. Based on these results, concentrations of boron appear to be above background concentrations, and pH values appear to be below background values. Therefore, the unit will remain in assessment monitoring.

2.3 Conclusions

An annual and semiannual assessment monitoring event were conducted in accordance with the TCEQ CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that prevented data usage. A review of outliers identified no potential outliers in the February or June 2023 data. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. No SSLs were identified.


The Appendix III results were evaluated to assess whether concentrations of Appendix III parameters were above background levels. Boron concentrations were above and pH values were below background levels at select downgradient wells.

Based on this evaluation, the PBAP CCR unit will remain in assessment monitoring.

3. REFERENCES

- Geosyntec. 2021. Statistical Analysis Plan J. Robert Welsh Plant. Geosyntec Consultants, Inc. September.
- Geosyntec. 2023. Statistical Analysis Summary Primary Bottom Ash Pond, J. Robert Welsh Plant. Geosyntec Consultants, Inc. March.
- TCEQ. 2020. Draft Technical Guidance No. 32. Coal Combustion Residuals Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality. May

Table 1. Groundwater Data Summary Statistical Analysis Summary Welsh Plant - Primary Bottom Ash Pond

		AD-1	AD-5	Al)-8	AD-9		AD	AD-17	
Parameter	Unit	Background	Background	Comp	oliance	Comp	Compliance 2/6/2023 6/6/2023		oliance	Background
		6/6/2023	6/6/2023	2/6/2023	6/5/2023	2/6/2023			6/5/2023	6/6/2023
Antimony	μg/L	0.041 J1	0.010 J1	0.10 U1	0.012 J1	0.10 U1	0.008 J1	0.10 U1	0.056 J1	1.0 U1
Arsenic	μg/L	0.21	4.30	0.28	0.24	0.33	1.15	3.26	7.67	1.1
Barium	μg/L	83.4	45.5	32.5	25.9	49.0	39.8	73.9	86.9	19.6
Beryllium	μg/L	1.11	0.055	0.021 J1	0.011 J1	1.60	0.502	0.162	0.237	0.11 J1
Boron	mg/L	0.729	0.030 J1	1.16	0.932	0.337	0.083	0.174	0.194	0.10 J1
Cadmium	μg/L	0.034	0.02 U1	0.031	0.020	0.379	0.135	0.019 J1	0.024	0.20 U1
Calcium	mg/L	6.59	26.5	24.6 M1	19.3	12.4	164	2.70	2.92	150
Chloride	mg/L	3.03	16.1	19.5	21.1	15.5	78.3	27.5	28.6	35.6
Chromium	μg/L	0.35	0.24 J1	0.23	0.27 J1	0.58	0.33	0.33	2.27	1.1 J1
Cobalt	μg/L	2.67	9.47	5.08	3.65	22.1	15.8	2.77	3.49	36.8
Combined Radium	pCi/L	0.95	1.72	3.47	0.68	3.05	1.86	1.77	1.37	1.42
Fluoride	mg/L	0.24	0.15	0.72	0.86	0.17	0.17	0.06	0.08	0.15 U1
Lead	μg/L	0.37	0.20 U1	0.05 J1	0.12 J1	0.18 J1	0.12 J1	0.15 J1	1.94	0.70 J1
Lithium	mg/L	0.0081	0.106	0.0821	0.0664	0.181	0.661	0.00373	0.0042	0.254
Mercury	μg/L	0.002 J1	0.005 U1	0.005 U1	0.005 U1	0.003 J1	0.005 U1	0.005 U1	0.006	0.003 J1
Molybdenum	μg/L	0.5 U1	0.5 U1	0.5 U1	0.5 U1	0.1 J1	0.5 U1	0.5 U1	0.1 J1	5 U1
Selenium	μg/L	10.1	0.06 J1	0.50 U1	0.07 J1	0.46 J1	0.51	0.45 J1	1.23	0.50 J1
Sulfate	mg/L	91.1	114	182	155	137	1,230	9.85	12.4	1,190
Thallium	μg/L	0.04 J1	0.20 U1	0.10 J1	0.10 J1	0.28	0.14 J1	0.07 J1	0.08 J1	2.0 U1
Total Dissolved Solids	mg/L	210	280	370	300	340	1,950	130	140	1,510
pН	SU	4.91	5.80	6.33	6.13	4.87	5.10	4.33	4.33	5.33

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U1: Non-detect value. For statistical analysis, parameters that were not detected were replaced with the reporting limit.

J1: Estimated value. Parameter was detected in concentrations below the reporting limit.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

Table 2. Appendix IV Groundwater Protection Standards Statistical Analysis Summary

Welsh Plant - Primary Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.00317	0.00600
Arsenic, Total (mg/L)	0.0100	0.00628	0.0100
Barium, Total (mg/L)	2.00	0.564	2.00
Beryllium, Total (mg/L)	0.00400	0.00112	0.00400
Cadmium, Total (mg/L)	0.00500	0.00400	0.00500
Chromium, Total (mg/L)	0.100	0.00233	0.100
Cobalt, Total (mg/L)	n/a	0.0748	0.0748
Combined Radium, Total (pCi/L)	5.00	4.61	5.00
Fluoride, Total (mg/L)	4.00	0.583	4.00
Lead, Total (mg/L)	n/a	0.00338	0.00338
Lithium, Total (mg/L)	n/a	0.394	0.394
Mercury, Total (mg/L)	0.00200	0.0000330	0.00200
Molybdenum, Total (mg/L)	n/a	0.00243	0.00243
Selenium, Total (mg/L)	0.0500	0.00835	0.0500
Thallium, Total (mg/L)	0.00200	0.00125	0.00200

Notes:

- 1. Calculated UTL (Upper Tolerance Limit) represents site-specific background values.
- 2. Grey cells indicate the GWPS is based on the calculated UTL. Either the UTL is higher than the MCL or an MCL does not exist.

GWPS: Groundwater Protection Standard

MCL: Maximum Contaminant Level

mg/L: milligrams per liter pCi/L: picocuries per liter

n/a: not applicable

Table 3. Appendix III Data Summary Statistical Analysis Summary Welsh - Primary Bottom Ash Pond

Analyte	Unit	Description	AD-8	AD-9	AD-15			
Analyte	Oilit	Description	6/5/2023	6/6/2023	6/5/2023			
Boron	mg/L	Interwell Background Value (UPL)	0.801					
Doron	mg/L	Analytical Result	0.932	0.083	0.194			
Calcium	mg/L	Intrawell Background Value (UPL)	28.1	258	4.65			
Calcium	mg/L	Analytical Result	19.3	6/6/2023 6/5/2023 0.801 0.083 0.194 258 4.65 164 2.92 117 36.9 78.3 28.6 0.685 1.00 0.17 0.08 6.9 4.8 5.1 4.3 2,150 30.5 1,230 12.4				
Chloride	mg/L	Intrawell Background Value (UPL)	26.1	117	36.9			
Cilioride	mg/L	Analytical Result	21.1	78.3	0.801 0.083 0.194 258 4.65 164 2.92 117 36.9 78.3 28.6 0.685 1.00 0.17 0.08 6.9 4.8 5.1 4.3 2,150 30.5			
Fluoride	mg/L	Intrawell Background Value (UPL)	0.949	0.685	1.00			
Pluoride	mg/L	Analytical Result	0.86	0.17	0.08			
		Interwell Background Value (UPL)	6.9					
pН	SU	Interwell Background Value (LPL)		4.8				
		Analytical Result	6.1	5.1	4.3			
Sulfate	mg/L	Intrawell Background Value (UPL)	204	2,150	30.5			
Sulfate	mg/L	Analytical Result	155	1,230	0.194 4.65 2.92 36.9 28.6 1.00 0.08			
Total Dissolved Solids	ma/I	Intrawell Background Value (UPL)	489	2,690	261			
Total Dissolved Solids	mg/L	Analytical Result	300	1,950	140			

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

LPL: lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Welsh Primary Bottom Ash Pond CCR management area and that the requirements of § 352.931(a) have been met.

David Anthony M	liller	J. STA	A GOLD
Printed Name of Licens	sed Professional Engineer	DAVIDA	THONY MILLER
David Anthon	Miller	1887	ONAL ENG
Signature			
112498	Texas	10.04.2023	
License Number	Licensing State	Date	

ATTACHMENT B Data Quality Review Memorandum

Memorandum

Date: September 22, 2023

To: David Miller (AEP)

Copies to: Rebecca Jones (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Welsh Power Plant

February 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Welsh Power Plant, located in Pittsburg, Texas in February 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III and IV constituents were analyzed.

The following sample data groups (SDGs) were associated with the groundwater samples collected during the February 2023 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 230430
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 230470

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

 Mercury data for SDG 230470 had an inconsistent number of significant figures reported between the electronic data deliverable and the published laboratory report. The published

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

Data Quality Review – Welsh February 2023 Data September 22, 2023 Page 2

laboratory report for SDG 230470 was reissued with the appropriate number of significant figures for mercury.

- As reported in SDG 230470, beryllium, boron, chromium, cobalt, lead, and lithium were detected in the equipment blank sample "EQUIPMENT BLANK" collected on 2/13/2023. The detected beryllium concentration in the equipment blank (0.011 μg/L) was more than 10% of the detected value in sample AD-8 (0.021 μg/L), which could result in high bias in the AD-8 beryllium results. The detected chromium concentration in the equipment blank (0.27 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results. The detected lead concentration in the equipment blank (0.37 μg/L) was more than 10% of the detected values for lead in all groundwater samples, which could result in high bias for all groundwater lead results.
- As reported in SDG 230430, the relative percent difference (RPD) for bromide concentrations from parent sample "AD-11" and duplicate sample "DUPLICATE" was 33%. The AD-11 bromide results should be considered estimated.
- As reported in SDG 230470, the RPD for chromium concentrations from parent sample (AD-11) and duplicate sample "DUPLICATE" was 46%. The AD-11 chromium results should be considered estimated.
- As reported in SDG 230470, the matrix spike duplicate (MSD) recovery for calcium (63.6%), sodium (26.4%), and strontium (69.6%) were below the acceptable limit of 75%. The associated sample (AD-8) was flagged M1: the associated matrix spike (MS) or MSD recovery was outside acceptance limits. The AD-8 calcium, sodium, and strontium results should be considered estimated.
- As reported in SDG 230470, the MSD recovery for calcium (135%), sodium (232%), and strontium (145%) were above the acceptable limit of 125%. The associated sample (AD-13) was flagged M1: the associated matrix spike (MS) or MSD recovery was outside acceptance limits. The AD-13 calcium, sodium, and strontium results should be considered estimated.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

Memorandum

Date: October 3, 2023

To: David Miller (AEP)

Copies to: Rebecca Jones (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Welsh Power Plant

June 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Welsh Power Plant, located in Pittsburg, Texas in February 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III and IV constituents were analyzed.

The following sample data groups (SDGs) were associated with the groundwater samples collected during the June 2023 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231693
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231696
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231698
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231716
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231719
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231720

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

Data Quality Review – Welsh June 2023 Data October 3, 2023 Page 2

The following data quality issues were identified:

- Mercury data for SDGs 231716, 231719, and 231720 had an inconsistent number of significant figures reported between the electronic data deliverables and the published laboratory reports. The published laboratory reports for SDGs 231716, 231719, and 231720 were reissued with the appropriate number of significant figures for mercury.
- As reported in SDG 231716, calcium, chromium, and cobalt were detected in the equipment blank sample "EB-BACKGROUND" collected on 6/6/2023. The detected chromium concentration in the equipment blank (0.26 µg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 231719, calcium, chromium, and cobalt were detected in the equipment blank sample "EQUIPMENT BLANK-PBAP" collected on 6/5/2023. The estimated detected chromium concentration in the equipment blank (0.29 µg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 231720, antimony, beryllium, calcium, chromium, and cobalt were detected in the equipment blank sample "EQUIPMENT BLANK-LANDFILL" collected on 6/5/2023. The estimated detected antimony concentration in the equipment blank (0.025 μg/L) was more than 10% of the detected values for antimony in all groundwater samples, which could result in high bias for all groundwater antimony results. The estimated detected chromium concentration in the equipment blank (0.22 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 231716, barium, beryllium, calcium, chromium, cobalt, and lead were detected in the field blank sample "FIELD BLANK BACKGROUND" collected on 6/6/2023. The detected beryllium concentration in the field blank (0.020 μg/L) was more than 10% of the detected value in samples AD-5 (0.055 μg/L) and AD-17 (estimated value of 0.11 μg/L), which could result in high bias in the AD-5 and AD-17 beryllium results. The detected chromium concentration in the field blank (0.27 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results. The detected lead concentration in the field blank (0.22 μg/L) was more than 10% of the detected values in samples AD-1 (0.37 μg/L) and AD-17 (estimated value of 0.7 μg/L), which could result in high bias in the AD-1 and AD-17 lead results.

Data Quality Review – Welsh June 2023 Data October 3, 2023 Page 3

- As reported in SDG 231719, calcium, chromium, and cobalt were detected in the field blank sample "FIELD BLANK PBAP" collected on 6/6/2023. The estimated detected chromium concentration in the field blank (0.23 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 231720, calcium, chromium, and cobalt were detected in the field blank sample "FIELD BLANK LANDFILL" collected on 6/5/2023. The detected chromium concentration in the field blank (0.30 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 231716, the relative percent difference (RPD) for lead concentrations from parent sample "AD-1" and duplicate sample "DUPLICATE-BACKGROUND" was 25%. The AD-1 lead result should be considered estimated.
- As reported in SDG 231719, the RPD for chromium concentrations from parent sample "AD-8" and duplicate sample "DUPLICATE - PBAP" was 41%. The AD-8 chromium result should be considered estimated. The RPD for lead concentrations from parent sample "AD-8" and duplicate sample "DUPLICATE - PBAP" was 96%. The AD-8 lead result should be considered estimated.
- The quality control data provided with SDG 231716 noted that the recovery on the matrix spike for radium-228 associated with sample "AD-1" had a low recovery, which resulted in poor precision for the matrix spike (MS)/matrix spike duplicate (MSD) pair. The radium-228 result for sample "AD-1" was not qualified in the provided laboratory report. The laboratory report should be amended to note the poor precision for the MSD.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

SWFPR=

September 7, 2023

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Suite 250 Worthington, OH 43085

Re: Welsh PBAP – February & June 2023 Assessment Monitoring Report

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the February and June 2023 Assessment Monitoring report for American Electric Power Inc.'s Welsh PBAP. The analysis complies with the Texas Commission of Environmental Quality Rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at the site for the Coal Combustion Residual (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

Upgradient wells: AD-1, AD-5, and AD-17

o **Downgradient wells:** AD-8, AD-9, and AD-15

Data were sent electronically, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting (GSC). The analysis was conducted according to the Statistical Analysis Plan prepared by GSC and approved by Dr. Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

Note that according to Geosyntec Consultants, the upgradient wells were not sampled in February 2023, but were sampled during the June 2023 sample event.

The CCR Assessment Monitoring program consists of the following constituents:

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series plots for Appendix IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). For all constituents, a substitution of the most recent reporting limit is used for non-detect data. While the reporting limits may vary from well to well, a single reporting limit substitution is used across all wells for a given parameter in the time series plots since the wells are plotted as a group. Note that while dilution factors for antimony, molybdenum, and thallium resulted in elevated reporting limits at upgradient well AD-17 for the respective June 2023 observations, no changes occurred in Groundwater Protection Standards.

The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values previously identified and flagged as outliers may be seen in the Outlier Summary following this letter (Figure C) and are plotted in a lighter font and disconnected symbol on the time series graphs. Note that the measured concentrations of most metals for the September 30, 2016 sample event at well AD-15 are very high compared to the rest of the observations and resulted from elevated turbidity levels of >1000 mg/L. These values were flagged as outliers as they do not represent the population at this well.

Summary of Statistical Methods – Appendix IV Parameters

Parametric tolerance limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (USEPA, 2009), data are analyzed using either parametric or non-parametric tolerance limits as appropriate.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for

- non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric tolerance limits are used on data containing greater than 50% nondetects.

Summary of Background Update – Conducted in February 2023

Outlier Analysis

Prior to evaluating Appendix IV parameters, upgradient well data are screened through both visual screening and Tukey's outlier test for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits. High outliers are also cautiously flagged in the downgradient wells when they are clearly much different from the rest of the data. This is generally a regulatory conservative approach in that it will reduce the variance and thus reduce the width of parametric confidence intervals, although it will also reduce the mean and thus lower the entire interval. The intent is to better represent the actual downgradient mean. No changes to previously flagged outliers were made.

Tukey's outlier test on pooled upgradient well data through October/November 2022 identified outliers for chromium, fluoride, lead, and mercury. The values identified by Tukey's test, with the exception of the highest value for chromium at AD-17, were either similar to concentrations upgradient of the facility or were lower than the respective Maximum Contaminant Level (MCL); therefore, these values were not flagged as outliers.

Previously flagged values were confirmed by visual screening and Tukey's outlier test. The highest value for chromium at upgradient well AD-17, molybdenum in upgradient well AD-1, and two highest values for cadmium in upgradient well AD-17 remain flagged in order to maintain statistical limits that are conservative (i.e., lower) from a regulatory perspective.

Additionally, downgradient well data through October/November 2022 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. No additional outliers among downgradient

wells were flagged during this analysis. All flagged values may be seen on the Outlier Summary following this letter.

Interwell Upper Tolerance Limits

Upper tolerance limits were used to calculate background limits from pooled upgradient well data through October/November 2022 for Appendix IV parameters (Figure D). These limits are updated on an annual basis and will be updated again during the Fall 2023 sample event. Parametric tolerance limits are calculated, with a target of 95% confidence and 95% coverage, when data follow a normal or transformed-normal distribution. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were constructed using the highest background measurement. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

These background limits were compared to the Maximum Contaminant Levels (MCLs) as shown in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the confidence interval comparisons (Figure E).

Evaluation of Appendix IV Parameters – February & June 2023

Time series plots were used to visually identify potential outliers in downgradient wells during the February and June 2023 sample events. When suspected outliers are identified, Tukey's outlier test is used to formally test whether measurements are statistically significant. As mentioned above, high outliers are 'cautiously' flagged in the downgradient wells when measurements are clearly much different from remaining data within a given well. This is intended to be a regulatory conservative approach in that it will reduce the variance and thus reduce the width of parametric confidence intervals; although it will also reduce the mean and thus lower the entire interval. The intent is to better represent the actual downgradient mean. No additional suspected outliers were identified.

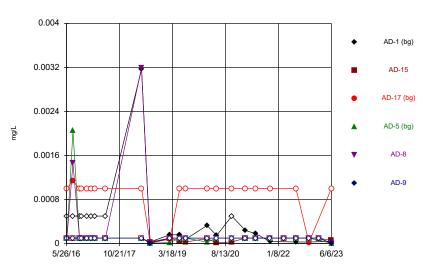
Confidence intervals were then constructed with data through June 2023 on downgradient wells for each of the Appendix IV parameters and compared to the GWPS (i.e., the highest limit of the MCL or background limit as discussed above). When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the largest and smallest order statistics depending on the sample size as interval limits,

were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above. The confidence level associated with nonparametric confidence intervals is dependent upon the number samples available.

Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No exceedances were noted for any of the well/constituent pairs. A summary of the confidence interval results follows this letter (Figure F).

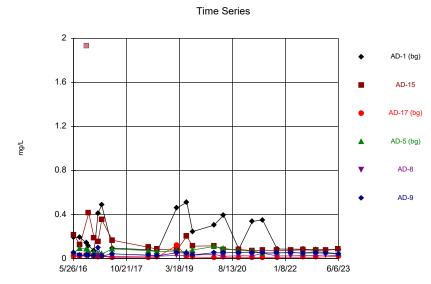
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Welsh PBAP. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

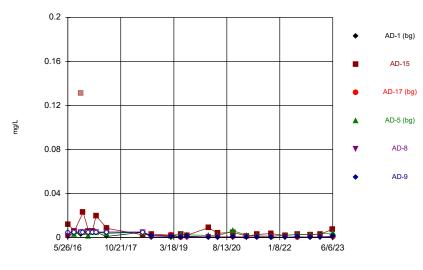

Abdul Diane

Groundwater Analyst

Andrew T. Collins
Project Manager

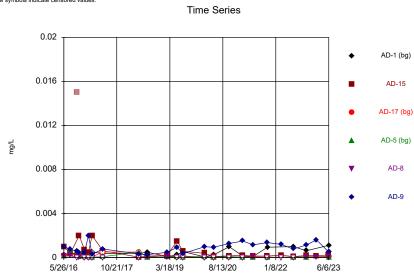

FIGURE A Time Series

Constituent: Antimony, total Analysis Run 9/1/2023 12:56 PM View: Appendix IV


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Barium, total Analysis Run 9/1/2023 12:56 PM View: Appendix IV

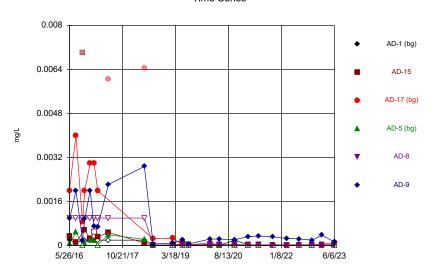
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Time Series

Constituent: Arsenic, total Analysis Run 9/1/2023 12:56 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

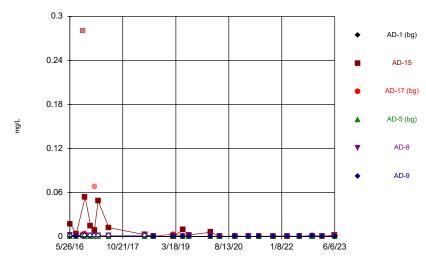
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.



Constituent: Beryllium, total Analysis Run 9/1/2023 12:56 PM View: Appendix IV

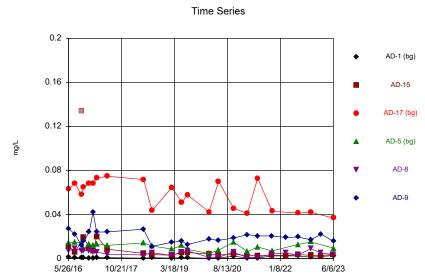
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG
Hollow symbols indicate censored values



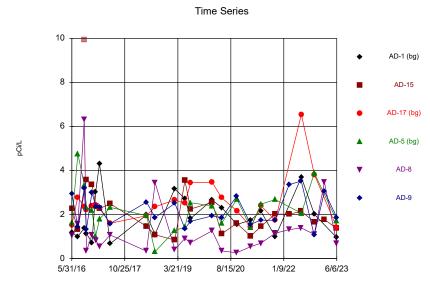
Constituent: Cadmium, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Time Series

Constituent: Chromium, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

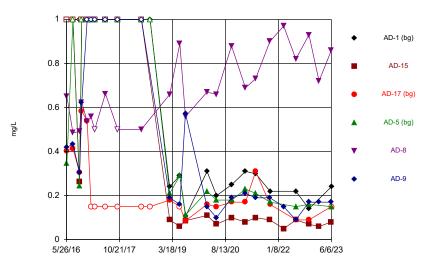
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.37 . UG

Constituent: Cobalt, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

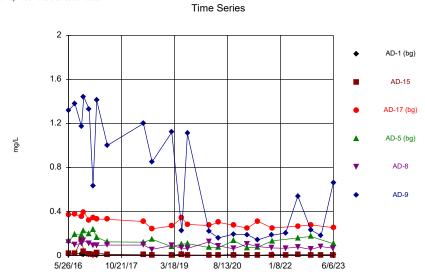
Sanitas™ v.9.6.37 . UG



Constituent: Combined Radium 226 + 228 Analysis Run 9/1/2023 12:57 PM View: Appendix IV

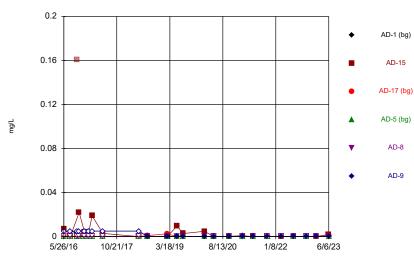
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG
Hollow symbols indicate censored values



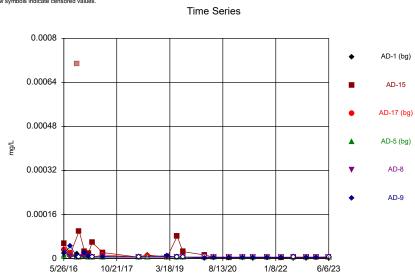
Constituent: Fluoride, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

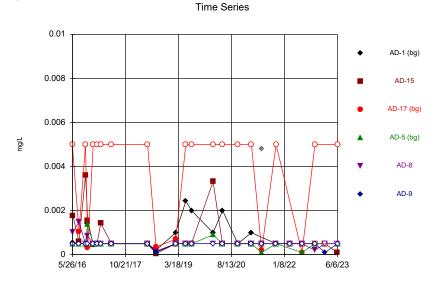
Constituent: Lithium, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Time Series

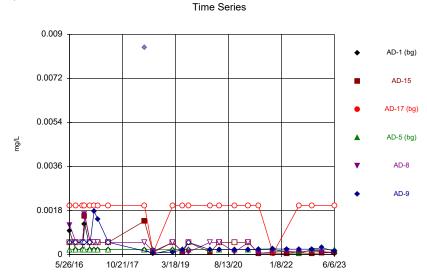
Constituent: Lead, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Constituent: Mercury, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

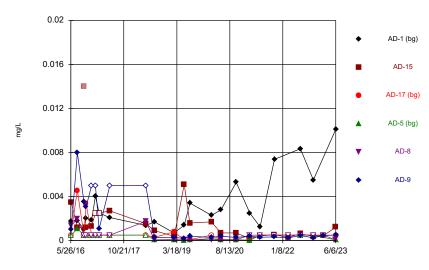
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values

Constituent: Molybdenum, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

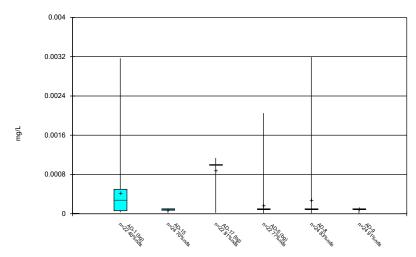
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.



Constituent: Thallium, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

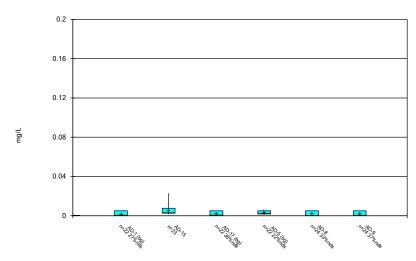
Sanitas™ v.9.6.37 . UG



Constituent: Selenium, total Analysis Run 9/1/2023 12:57 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

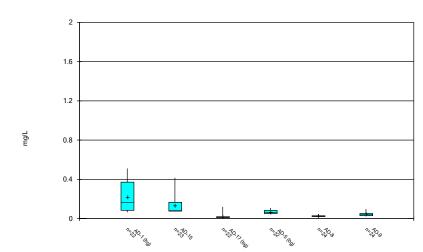
FIGURE B Box Plots



Constituent: Antimony, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Box & Whiskers Plot

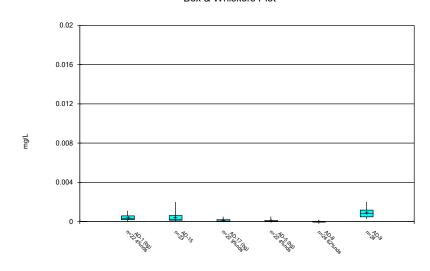


Constituent: Arsenic, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG

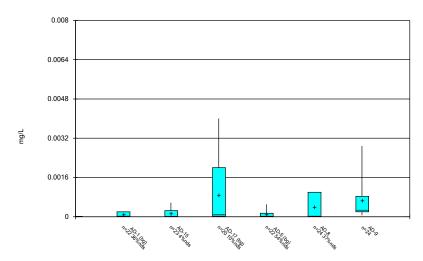
Box & Whiskers Plot



Constituent: Barium, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

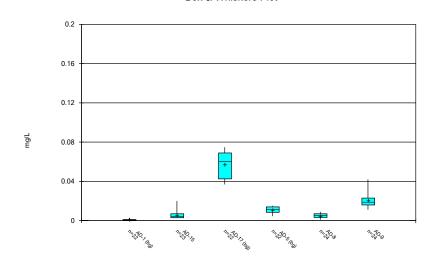
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG


Box & Whiskers Plot

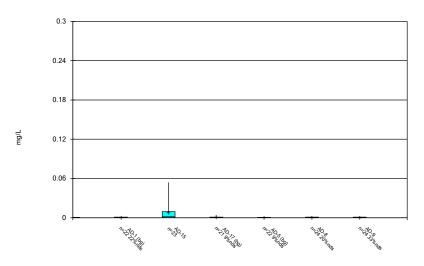
Constituent: Beryllium, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP



Constituent: Cadmium, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

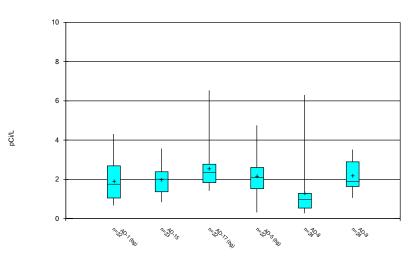
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

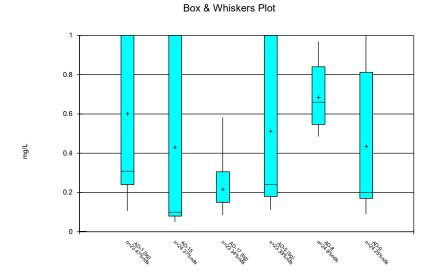

Box & Whiskers Plot

Constituent: Cobalt, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

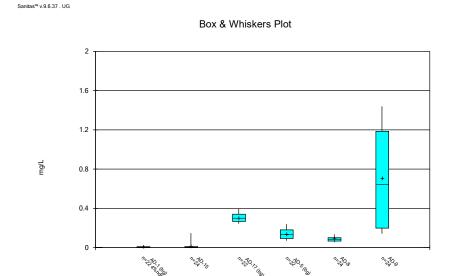
Box & Whiskers Plot

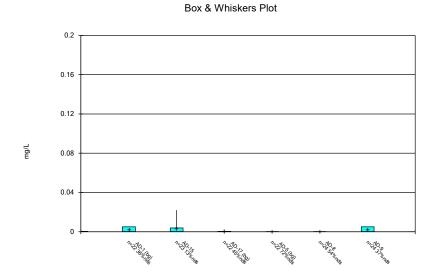



Constituent: Chromium, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

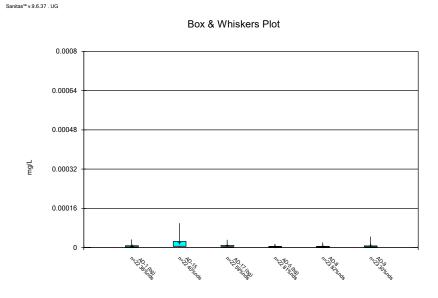
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG


Box & Whiskers Plot

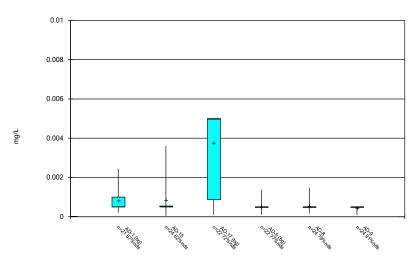

Constituent: Fluoride, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: Lithium, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

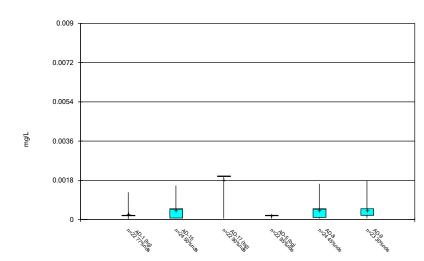
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Lead, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Mercury, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

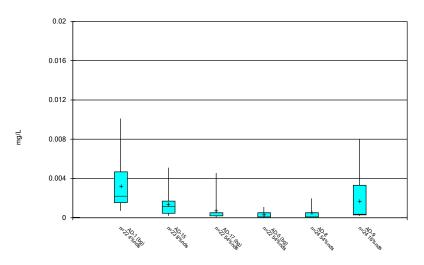


Constituent: Molybdenum, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot



Constituent: Thallium, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Box & Whiskers Plot

Sanitas™ v.9.6.37 . UG

Constituent: Selenium, total Analysis Run 9/1/2023 1:00 PM View: Appendix IV

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE C Outlier Summary

Outlier Summary

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 9/1/2023, 1:01 PM

	AD-15 Arsenic	, _{total} (mg/L) AD-15 Barium	_{, total (mg/L)} AD-15 Berylliu	_{m, total} (mg/L) AD-15 Cadmiul	_{m, total} (mg/L) AD-17 Cadmiu	_{m, total} (mg/L) AD-15 Chromiu	_{um, total} (mg/L) AD-17 Chromiu	_{im, total} (mg/L) AD-15 Cobalt,	_{total} (mg/L) AD-15 Combin	ed Radium 226 + 228 (pCil AD-15 Lead, total (mg/L)
9/29/2016									9.92 (o)	
9/30/2016	0.131 (o)	1.93 (o)	0.015 (o)	0.007 (o)		0.28 (o)		0.134 (o)		0.161 (o)
1/20/2017							0.068 (o)			
6/8/2017					0.00606 (o)					
5/23/2018										
5/24/2018					0.00646 (o)					
6/2/2021										

AD-15 Mercury, total (mg/L)
AD-1 Molybdenum, total (mg/L)
AD-1 Molybdenum, total (mg/L)
AD-9 Thallium, total (mg/L)

9/29/2016

9/30/2016 0.000707 (o) 0.014 (o)

1/20/2017

6/8/2017

5/23/2018 0.00846 (o)

5/24/2018

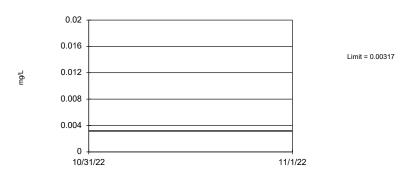
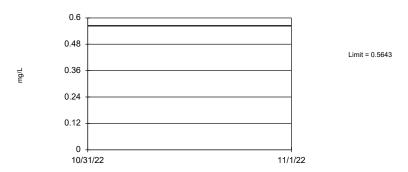

6/2/2021 0.0048 (o)

FIGURE D UTLs

Upper Tolerance Limits Summary Table Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 3/3/2023, 1:02 PM

			Welsh PBAP	Client: G	ieosyntec	Data: We	lsh PBAP	Printed 3/3/202	23, 1:02	PM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n <u>Alpha</u>	Method
Antimony, total (mg/L)	n/a	0.00317	n/a	n/a	n/a	n/a 63	n/a	n/a	68.25	n/a	n/a	0.0395	NP Inter(NDs)
Arsenic, total (mg/L)	n/a	0.00628	n/a	n/a	n/a	n/a 63	n/a	n/a	30.16	n/a	n/a	0.0395	NP Inter(normality)
Barium, total (mg/L)	n/a	0.5643	n/a	n/a	n/a	n/a 63	-2.859	1.14	0	None	In(x)	0.05	Inter
Beryllium, total (mg/L)	n/a	0.001123	n/a	n/a	n/a	n/a 63	-8.998	1.099	6.349	None	In(x)	0.05	Inter
Cadmium, total (mg/L)	n/a	0.004	n/a	n/a	n/a	n/a 61	n/a	n/a	32.79	n/a	n/a	0.04377	NP Inter(normality)
Chromium, total (mg/L)	n/a	0.002329	n/a	n/a	n/a	n/a 62	-7.943	0.9355	14.52	None	In(x)	0.05	Inter
Cobalt, total (mg/L)	n/a	0.0748	n/a	n/a	n/a	n/a 63	n/a	n/a	0	n/a	n/a	0.0395	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	4.605	n/a	n/a	n/a	n/a 63	1.464	0.3399	0	None	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	n/a	0.583	n/a	n/a	n/a	n/a 66	n/a	n/a	40.91	n/a	n/a	0.03387	NP Inter(normality)
Lead, total (mg/L)	n/a	0.003384	n/a	n/a	n/a	n/a 63	n/a	n/a	52.38	n/a	n/a	0.0395	NP Inter(NDs)
Lithium, total (mg/L)	n/a	0.394	n/a	n/a	n/a	n/a 63	n/a	n/a	1.587	n/a	n/a	0.0395	NP Inter(normality)
Mercury, total (mg/L)	n/a	0.000033	n/a	n/a	n/a	n/a 63	n/a	n/a	60.32	n/a	n/a	0.0395	NP Inter(NDs)
Molybdenum, total (mg/L)	n/a	0.00243	n/a	n/a	n/a	n/a 62	n/a	n/a	67.74	n/a	n/a	0.04158	NP Inter(NDs)
Selenium, total (mg/L)	n/a	0.00835	n/a	n/a	n/a	n/a 63	n/a	n/a	39.68	n/a	n/a	0.0395	NP Inter(normality)
Thallium, total (mg/L)	n/a	0.001251	n/a	n/a	n/a	n/a 63	n/a	n/a	88.89	n/a	n/a	0.0395	NP Inter(NDs)

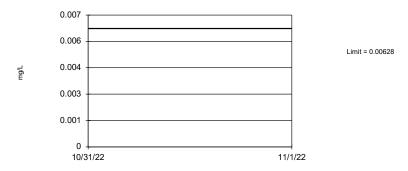
Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 63 background values. 68.25% NDs. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0395.

Constituent: Antimony, total Analysis Run 3/3/2023 1:00 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

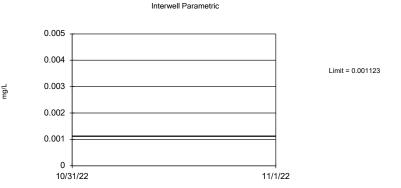
Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on natural log transformation): Mean=-2.859, Std. Dev.=1.14, n=63. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9546, critical = 0.947. Report alpha = 0.05.

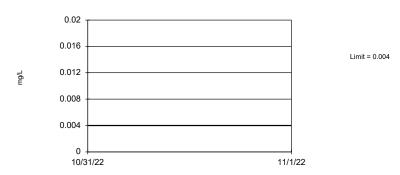
Tolerance Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 63 background values. 30.16% NDs. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.05. Report alpha = 0.0395.

Constituent: Arsenic, total Analysis Run 3/3/2023 1:00 PM View: UTLs

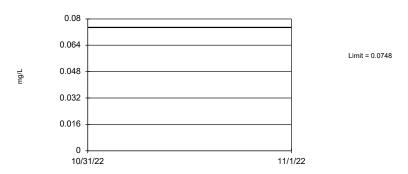
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

Tolerance Limit

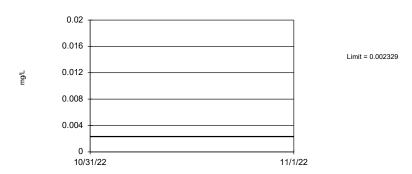
95% coverage. Background Data Summary (based on natural log transformation): Mean=-8.998, Std. Dev.=1.099, n=63, 6.349% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9693, critical = 0.947. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 61 background values. 32.79% NDs. 92.77% coverage at alpha=0.01; 95.12% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.04377.

Constituent: Cadmium, total Analysis Run 3/3/2023 1:00 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

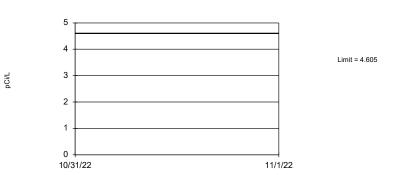

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 63 background values. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05. Report alpha = 0.0395.

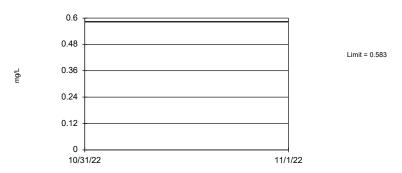
Tolerance Limit

Interwell Parametric


95% coverage. Background Data Summary (based on natural log transformation): Mean=-7.943, Std. Dev.=0.9355, n=62, 14.52% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9592, critical = 0.947. Report alpha = 0.05.

Constituent: Chromium, total Analysis Run 3/3/2023 1:00 PM View: UTLs

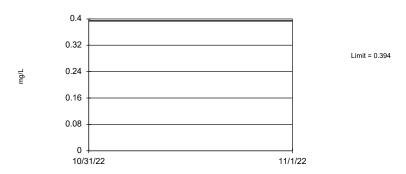
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on square root transformation): Mean=1.464, Std. Dev.=0.3399, n=63. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9691, critical = 0.947. Report alpha = 0.05.

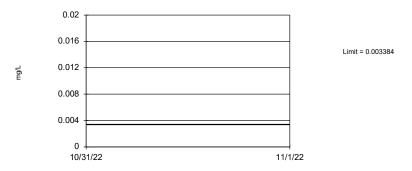
Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 66 background values. 40.91% NDs. 93.16% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.03387.

Constituent: Fluoride, total Analysis Run 3/3/2023 1:00 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

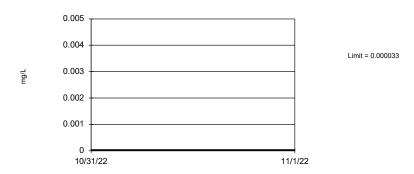
Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 63 background values. 1.587% NDs. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0395.

Tolerance Limit

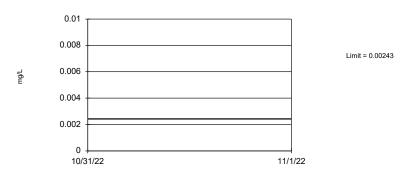
Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 63 background values. 52.38% NDs. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0395.

Constituent: Lead, total Analysis Run 3/3/2023 1:00 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 63 background values. 60.32% NDs. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0395.

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

Tolerance Limit
Interwell Non-parametric

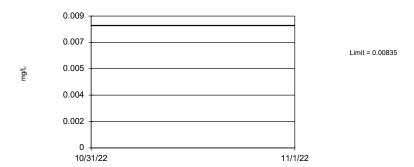
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 62 background values. 67.74% NDs. 92.77% coverage at alpha=0.01; 95.12% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.04158.

Constituent: Molybdenum, total Analysis Run 3/3/2023 1:00 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

Tolerance Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 63 background values. 88.89% NDs. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0395.

Constituent: Thallium, total Analysis Run 3/3/2023 1:00 PM View: UTLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.36 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 63 background values. 39.68% NDs. 92.77% coverage at alpha=0.01; 95.51% coverage at alpha=0.05. Report alpha = 0.0395.

Constituent: Selenium, total Analysis Run 3/3/2023 1:00 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE E GWPS

WELSH PBAP GWPS										
		Background								
Constituent Name	MCL	Limit	GWPS							
Antimony, Total (mg/L)	0.006	0.0032	0.006							
Arsenic, Total (mg/L)	0.01	0.0063	0.01							
Barium, Total (mg/L)	2	0.56	2							
Beryllium, Total (mg/L)	0.004	0.0011	0.004							
Cadmium, Total (mg/L)	0.005	0.004	0.005							
Chromium, Total (mg/L)	0.1	0.0023	0.1							
Cobalt, Total (mg/L)	n/a	0.075	0.075							
Combined Radium, Total (pCi/L)	5	4.61	5							
Fluoride, Total (mg/L)	4	0.58	4							
Lead, Total (mg/L)	n/a	0.0034	0.0034							
Lithium, Total (mg/L)	n/a	0.39	0.39							
Mercury, Total (mg/L)	0.002	0.000033	0.002							
Molybdenum, Total (mg/L)	n/a	0.0024	0.0024							
Selenium, Total (mg/L)	0.05	0.0084	0.05							
Thallium, Total (mg/L)	0.002	0.0013	0.002							

^{*}MCL = Maximum Contaminant Level

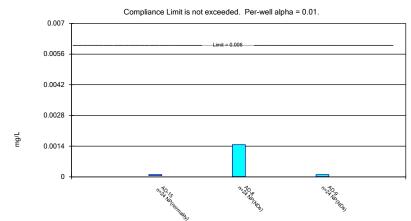
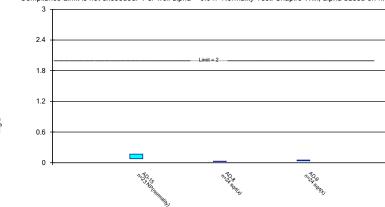

^{*}GWPS = Groundwater Protection Standard

FIGURE F Confidence Interval

Appendix IV - Confidence Intervals - All Results (No Significant) Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 9/6/2023, 12:17 PM

		Welsh PBAP	Client: Geo	osyntec Data	: Wels	h PBAP	Printed 9/6/20	23, 12:17	PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	AD-15	0.0001	0.000056	0.006	No	24	0.00002887	70.83	No	0.01	NP (normality)
Antimony, total (mg/L)	AD-8	0.001461	0.000012	0.006	No	24	0.0006807	83.33	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-9	0.0001	0.00001	0.006	No	24	0.00002569	91.67	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-15	0.007313	0.00316	0.01	No	23	0.005576	0	x^(1/3)	0.01	Param.
Arsenic, total (mg/L)	AD-8	0.005	0.00028	0.01	No	24	0.002232	33.33	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-9	0.005	0.00027	0.01	No	24	0.002201	37.5	No	0.01	NP (normality)
Barium, total (mg/L)	AD-15	0.166	0.0766	2	No	23	0.0909	0	No	0.01	NP (normality)
Barium, total (mg/L)	AD-8	0.02944	0.02303	2	No	24	0.006747	0	sqrt(x)	0.01	Param.
Barium, total (mg/L)	AD-9	0.05192	0.03635	2	No	24	0.01601	0	sqrt(x)	0.01	Param.
Beryllium, total (mg/L)	AD-15	0.0005918	0.0001825	0.004	No	23	0.0005815	0	x^(1/3)	0.01	Param.
Beryllium, total (mg/L)	AD-8	0.000011	0	0.004	No	24	0.0000408	62.5	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-9	0.001115	0.0006453	0.004	No	24	0.0004606	0	No	0.01	Param.
Cadmium, total (mg/L)	AD-15	0.0002465	0.000011	0.005	No	23	0.0001837	4.348	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-8	0.001	0.000021	0.005	No	24	0.0004806	37.5	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-9	0.0006482	0.0002121	0.005	No	24	0.0007912	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-15	0.004816	0.0006571	0.1	No	23	0.01463	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-8	0.000644	0.0002414	0.1	No	24	0.0004645	20.83	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	AD-9	0.0008319	0.0005174	0.1	No	24	0.0003082	33.33	No	0.01	Param.
Cobalt, total (mg/L)	AD-15	0.007	0.0029	0.075	No	23	0.004863	0	No	0.01	NP (normality)
Cobalt, total (mg/L)	AD-8	0.006113	0.003658	0.075	No	24	0.002406	0	No	0.01	Param.
Cobalt, total (mg/L)	AD-9	0.02279	0.01672	0.075	No	24	0.0064	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-15	2.388	1.575	5	No	23	0.7779	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-8	1.37	0.6188	5	No	24	1.349	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-9	2.56	1.826	5	No	24	0.7196	0	No	0.01	Param.
Fluoride, total (mg/L)	AD-15	1	0.08	4	No	24	0.4501	37.5	No	0.01	NP (normality)
Fluoride, total (mg/L)	AD-8	0.7649	0.6056	4	No	24	0.1562	8.333	No	0.01	Param.
Fluoride, total (mg/L)	AD-9	0.6227	0.17	4	No	24	0.3586	25	No	0.01	NP (normality)
Lead, total (mg/L)	AD-15	0.003961	0.0001	0.0034	No	23	0.00598	13.04	No	0.01	NP (normality)
Lead, total (mg/L)	AD-8	0.0002	0.00007	0.0034	No	24	0.00006715	54.17	No	0.01	NP (normality)
Lead, total (mg/L)	AD-9	0.005	0.0001	0.0034	No	24	0.0024	37.5	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-15	0.01159	0.004004	0.39	No	24	0.02988	0	ln(x)	0.01	Param.
Lithium, total (mg/L)	AD-8	0.09913	0.0763	0.39	No	24	0.02237	0	No	0.01	Param.
Lithium, total (mg/L)	AD-9	1.2	0.194	0.39	No	24	0.5035	0	No	0.01	NP (normality)
Mercury, total (mg/L)	AD-15	0.000025	0.000005	0.002	No	22	0.00002726	40.91	No	0.01	NP (normality)
Mercury, total (mg/L)	AD-8	0.000008	0.000005	0.002	No	23	0.000003511	82.61	No	0.01	NP (NDs)
Mercury, total (mg/L)	AD-9	0.00000717	0.000003	0.002	No	23	0.000009467	30.43	No	0.01	NP (normality)
Molybdenum, total (mg/L)	AD-15	0.0005868	0.0004635	0.0024	No	24	0.0008995	62.5	No	0.01	NP (normality)
Molybdenum, total (mg/L)	AD-8	0.0008389	0.0002	0.0024	No	24	0.0002546	79.17	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-9	0.0005	0.00011	0.0024	No	24	0.0001115	91.67	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-15	0.001755	0.0007056	0.05	No	23	0.001196	8.696	sqrt(x)	0.01	Param.
Selenium, total (mg/L)	AD-8	0.00137	0.00008	0.05	No	24	0.0005063	54.17	No	0.01	NP (normality)
Selenium, total (mg/L)	AD-9	0.003528	0.0003	0.05	No	24	0.002254	16.67	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-15	0.0005	0.00008	0.002	No	24	0.0003893	50	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-8	0.0005	0.00011	0.002	No	24	0.0003743	45.83	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-9	0.0004466	0.0001996	0.002	No	23	0.0004108	30.43	ln(x)	0.01	Param.

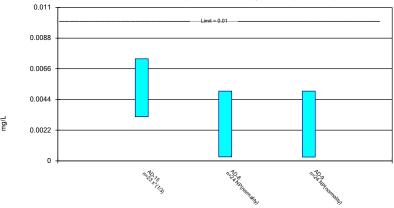
Non-Parametric Confidence Interval



Constituent: Antimony, total Analysis Run 9/6/2023 12:14 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG

Parametric and Non-Parametric (NP) Confidence Interval

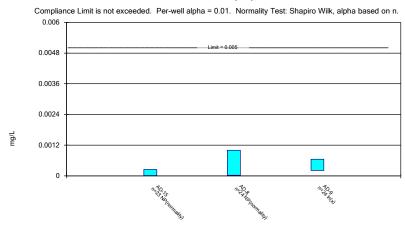

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium, total Analysis Run 9/6/2023 12:14 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

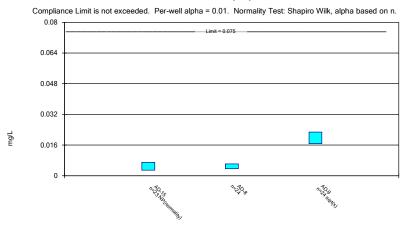
Constituent: Arsenic, total Analysis Run 9/6/2023 12:14 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.37 . UG

Parametric and Non-Parametric (NP) Confidence Interval

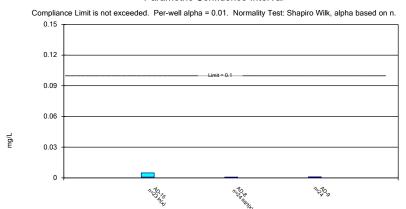
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval



Constituent: Cadmium, total Analysis Run 9/6/2023 12:14 PM View: Confidence Intervals

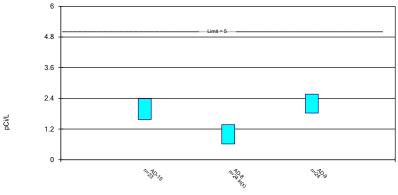
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.9.6.37 . UG

Parametric and Non-Parametric (NP) Confidence Interval

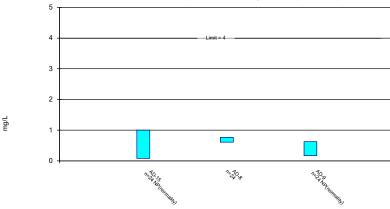
Constituent: Cobalt, total Analysis Run 9/6/2023 12:14 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Parametric Confidence Interval


Constituent: Chromium, total Analysis Run 9/6/2023 12:14 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

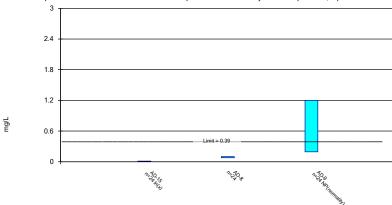
Sanitas™ v.9.6.37 . UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

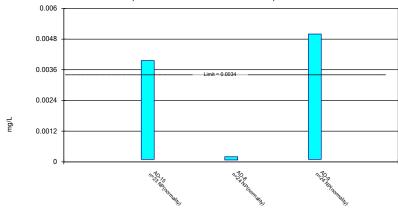
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 9/6/2023 12:15 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG

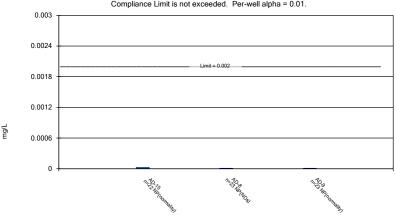
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium, total Analysis Run 9/6/2023 12:15 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Lead, total Analysis Run 9/6/2023 12:15 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Sanitas™ v.9.6.37 . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.003

0.0024

Limit = 0.0024

0.0018

0.0012

0.0006

Constituent: Molybdenum, total Analysis Run 9/6/2023 12:15 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

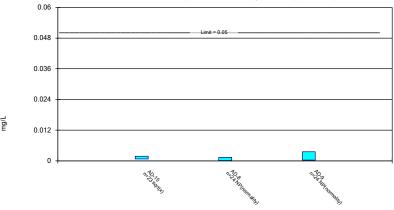
0.003

0.0024

0.0018

0.0012

0.0006


Constituent: Thallium, total Analysis Run 9/6/2023 12:15 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.9.6.37 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 9/6/2023 12:15 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

engineers | scientists | innovators

STATISTICAL ANALYSIS SUMMARY, PRIMARY BOTTOM ASH POND

J. Robert Welsh Plant Pittsburg, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: CHA8500B

January 23, 2024

TABLE OF CONTENTS

1.	EXE	CUTIV	VE SUMMARY	1
2.	PRIN 2.1 2.2	Data \	2 2 2	
		2.2.1 Establishment of GWPSs		2
		2.2.2	Evaluation of Potential Appendix IV SSLs	2
		2.2.3	Establishment of Appendix III Prediction Limits	3
		2.2.4	Evaluation of Potential Appendix III SSIs	4
	2.3	4		
3.	REF	EREN	CES	5
			LIST OF TABLES	
Tab	ole 1:	C	Groundwater Data Summary	
Table 2:		2: Appendix IV Groundwater Protection Standards		
Table 3:		3: Appendix III Data Summary		
			LIST OF ATTACHMENTS	

Attachment A: Certification by Qualified Professional Engineer

Attachment B: Data Quality Review Memorandum

Attachment C: Statistical Analysis Output

ACRONYMS AND ABBREVIATIONS

CCR coal combustion residuals

GWPS groundwater protection standard

LPL lower prediction limit

mg/L milligram per liter

PBAP Primary Bottom Ash Pond PQL practical quantitation limit

QA/QC quality assurance/quality control

SSI statistically significant increase

SSL statistically significant level

TCEQ Texas Commission on Environmental Quality

TDS total dissolved solids

UPL upper prediction limit

1. EXECUTIVE SUMMARY

In accordance with Texas Commission on Environmental Quality's (TCEQ) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule"), groundwater monitoring has been conducted at the Primary Bottom Ash Pond (PBAP), an existing CCR unit at the Welsh Power Plant in Pittsburg, Texas. Recent groundwater monitoring results were used to identify concentrations of Appendix IV constituents that are above site-specific groundwater protection standards (GWPSs).

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron at the PBAP. An alternative source was not identified at the time, so assessment monitoring was initiated and GWPSs were set in accordance with § 352.951(b) (Geosyntec 2018). A semiannual sampling event for Appendix III parameters and Appendix IV parameters, as required by § 352.951(a), was completed in October 2023. The results of the October 2023 assessment sampling event are documented in this report.

Before the statistical analyses were conducted, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues that would impact data usability were identified.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. GWPSs were reestablished for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether any were present at statistically significant levels (SSLs) above the corresponding GWPS. No SSLs were identified; however, concentrations of Appendix III parameters remained above background. Therefore, the unit will remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

2. PRIMARY BOTTOM ASH POND EVALUATION

2.1 Data Validation and QA/QC

During the October 2023 assessment monitoring event, one set of samples was collected for analysis from each background and compliance well. Samples from October 2023 were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event may be found in Table 1.

Chemical analysis was completed by a National Environmental Laboratory Accreditation Program—certified analytical laboratory. The laboratory completed analysis of quality assurance and quality control (QA/QC) samples such as laboratory reagent blanks, continuing calibration verification samples, and laboratory fortified blanks.

A data quality review was completed to assess whether the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ 2020). As noted in the review memorandum (Attachment B), the data were determined usable for supporting project objectives. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.10.0.15 statistics software. The export file was checked against the analytical data for transcription errors and completeness.

2.2 Statistical Analysis

Statistical analyses for the PBAP were conducted in accordance with the December 2021 Statistical Analysis Plan (Geosyntec 2021). Time series plots and results for all completed statistical tests are provided in Attachment C. The data obtained in October 2023 were screened for potential outliers. No outliers were identified for this event.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with § 352.951(b) and the Statistical Analysis Plan (Geosyntec 2021). The established GWPS was set to whichever was greater of the background concentration and the maximum contaminant level for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit was calculated using data that were pooled from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for barium, beryllium, chromium, and combined radium. Nonparametric tolerance limits were calculated for arsenic, cadmium, cobalt, fluoride, lithium, and selenium, due to apparent nonnormal distributions, and for antimony, lead, mercury, molybdenum, and thallium, due to a high nondetect frequency. Upper tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$), but nonparametric

confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the nondetect frequency was too high). An SSL was concluded if the lower confidence limit was above the GWPS (i.e., if the entire confidence interval was above the GWPS). The calculated confidence limits (Attachment C) were compared to the GWPS provided in Table 2.

No SSLs were identified at the PBAP.

2.2.3 Establishment of Appendix III Prediction Limits

Upper prediction limits (UPLs) were previously established for all Appendix III parameters following the background monitoring period (Geosyntec 2018). Intrawell tests were used to evaluate potential SSIs for calcium, chloride, fluoride, sulfate, and total dissolved solids (TDS). Interwell tests were used to evaluate potential SSIs for boron and pH. Interwell and intrawell prediction limits are updated periodically during the assessment monitoring period as sufficient data become available.

For intrawell tests, insufficient data was available to compare against the existing background dataset, and so the prediction limits were not updated for the intrawell calcium, chloride, sulfate, and TDS tests at this time. The intrawell prediction limits for these constituents were previously calculated using historical data through June 2022 (Geosyntec 2023). The established intrawell prediction limits were used to evaluate potential SSIs for calcium, chloride, sulfate, and TDS. While the background dataset was not updated, the intrawell prediction limits were revised slightly due to the substitution of more recent reporting limits for nondetect results.

Prediction limits for the interwell tests were calculated using data collected through the October 2023 assessment monitoring event. New background well data were tested for outliers before being added to the background data set. Background well data were also evaluated for statistically significant trends using the Sen's Slope/Mann-Kendall trend test, and the results are included in Attachment C. The boron and pH prediction limits were calculated using a one-of-two retesting procedure, as during detection monitoring.

After the revised background set was established, a parametric or nonparametric analysis was selected based on the distribution of the data and the frequency of nondetect data. Estimated results under the reporting limit (i.e., practical quantitation limit [PQL]) but above the method detection limit (i.e., "J-flagged" data) were considered detections and the estimated results were used in the statistical analyses. Nonparametric analyses were selected for data sets with at least 50% nondetect data or data sets that could not be normalized. Parametric analyses were selected for data sets (either transformed or untransformed) that passed the Shapiro-Wilk/Shapiro-Francía test for normality. The Kaplan-Meier nondetect adjustment was applied to data sets with between 15% and 50% nondetect data. For data sets with fewer than 15% nondetect data, nondetect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or nonparametric) and transformation (where applicable) for each background data set are shown in Attachment C.

Interwell UPLs were updated for boron and pH, and lower prediction limits (LPLs) were also updated for pH using historical data through October 2023. The intrawell UPLs for fluoride were also updated due to a change in reporting limits. The updated prediction limits are summarized in Table 3. Intrawell UPLs were previously established for calcium, chloride, sulfate, and TDS using

the historical data through June 2022. The prediction limits were calculated for a one-of-two retesting procedure: If at least one sample in a series of two is not above the UPL (or, in the case of pH, is neither less than the LPL nor greater than the UPL), then it can be concluded that an SSI has not occurred. In practice, where the initial result is not above the UPL (or, in the case of pH, is neither under the LPL nor above the UPL), a second sample will not be collected. The retesting procedures allowed for an acceptably high statistical power that could detect changes at compliance wells for constituents evaluated using intrawell prediction limits.

2.2.4 Evaluation of Potential Appendix III SSIs

The Appendix III results was analyzed to assess whether concentrations of Appendix III parameters at the compliance wells were above background concentrations. Data collected during the October 2023 assessment monitoring event from each compliance well were compared to calculated prediction limits to assess whether the results were above background limits. The results from this event and the prediction limits are summarized in Table 3. The following were detected above the UPLs:

• Boron concentrations were detected above the interwell UPL of 0.901 milligrams per liter (mg/L) at AD-8 (1.06 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the October 2023 sample was above the UPL or, in the case of pH, below the LPL. Based on this evaluation, concentrations of boron appear to be above background concentrations. Therefore, the unit will remain in assessment monitoring.

2.3 Conclusions

A semiannual assessment monitoring event was conducted in accordance with the TCEQ CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that prevented data usage. A review of outliers identified no potential outliers in the October 2023 data. GWPSs were reestablished for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval was above the GWPS. No SSLs were identified. Appendix III results were compared to calculated prediction limits, with values above the UPL detected for boron.

Based on this evaluation, the Welsh PBAP CCR unit will remain in assessment monitoring.

3. REFERENCES

- Geosyntec. 2018. Statistical Analysis Summary Primary Bottom Ash Pond, J. Robert Welsh Plant, Pittsburg, Texas. Geosyntec Consultants, Inc. January.
- Geosyntec. 2021. Statistical Analysis Plan J. Robert Welsh Plant. Geosyntec Consultants, Inc. December.
- Geosyntec. 2023. Statistical Analysis Summary Primary Bottom Ash Pond, J. Robert Welsh Plant. Geosyntec Consultants, Inc. March.
- TCEQ. 2020. Draft Technical Guidance No. 32. Coal Combustion Residuals Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality. May.

TABLES

Table 1. Groundwater Data Summary Statistical Analysis Summary Welsh Plant – Primary Bottom Ash Pond

		AD-1	AD-5	AD-8	AD-9	AD-15	AD-17
Parameter	Unit	Background	Background	Compliance	Compliance	Compliance	Background
		10/4/2023	10/4/2023	10/3/2023	10/3/2023	10/3/2023	10/4/2023
Antimony	μg/L	0.029 J1	0.1 U1	0.009 J1	0.1 U1	0.014 J1	1 U1
Arsenic	μg/L	0.19	2.94	0.21	1.57	3.01	0.5 J1
Barium	μg/L	80.0	63.9	24.2	37.0	69.8	11.8
Beryllium	μg/L	1.06	0.049 J1	0.05 U1	0.788	0.139	0.5 U1
Boron	mg/L	0.901	0.042 J1	1.06	0.168	0.179	0.14 J1
Cadmium	μg/L	0.027	0.02 U1	0.020	0.195	0.013 J1	0.2 U1
Calcium	mg/L	6.56	35.2	18.9	168	2.47	176 M1
Chloride	mg/L	3.03	17.5	21.5	75.4	27.5	37.9
Chromium	μg/L	0.38	0.30	0.40	0.48	0.37	1.3 J1
Cobalt	μg/L	2.25	12.8	3.95	17.4	3.06	41.2
Combined Radium	pCi/L	1.86	3.57	1.24	2.11	2.1	2.05
Fluoride	mg/L	0.2	0.17	0.94	0.1	0.06	0.06 J1
Lead	μg/L	0.44	0.2 U1	0.2 U1	0.47	0.08 J1	2 U1
Lithium	mg/L	0.0103	0.143	0.0732	0.777	0.00398	0.305 M1
Mercury	μg/L	0.002 J1	0.005 U1				
Molybdenum	μg/L	0.5 U1	5 U1				
Selenium	μg/L	9.26	0.05 J1	0.05 J1	0.44 J1	0.54	5 U1
Sulfate	mg/L	80.7	132	137	1,200	9.9	1,180
Thallium	μg/L	0.05 J1	0.2 U1	0.10 J1	0.16 J1	0.06 J1	2 U1
Total Dissolved Solids	mg/L	200	290	310	1,910	140	1,520
рН	SU	5.3	6.6	6.7	5.8	4.9	5.8

Notes:

J1: Estimated value. Parameter was detected in concentrations below the reporting limit.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U1: Non-detect value. For statistical analysis, parameters that were not detected were replaced with the reporting limit.

μg/L: micrograms per liter

Table 2. Appendix IV Groundwater Protection Standards Statistical Analysis Summary Welch Bland - Brimany Battern Ash Band

Welsh Plant - Primary Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.00317	0.00600
Arsenic, Total (mg/L)	0.0100	0.00628	0.0100
Barium, Total (mg/L)	2.00	0.510	2.00
Beryllium, Total (mg/L)	0.00400	0.00108	0.00400
Cadmium, Total (mg/L)	0.00500	0.00400	0.00500
Chromium, Total (mg/L)	0.100	0.00227	0.100
Cobalt, Total (mg/L)	n/a	0.0748	0.0748
Combined Radium, Total (pCi/L)	5.00	4.51	5.00
Fluoride, Total (mg/L)	4.00	0.583	4.00
Lead, Total (mg/L)	n/a	0.00338	0.00338
Lithium, Total (mg/L)	n/a	0.394	0.394
Mercury, Total (mg/L)	0.00200	0.0000330	0.00200
Molybdenum, Total (mg/L)	n/a	0.00243	0.00243
Selenium, Total (mg/L)	0.0500	0.01010	0.0500
Thallium, Total (mg/L)	0.00200	0.00125	0.00200

Notes:

1. Calculated UTL (upper tolerance limit) represents site-specific background values.

2. Grey cells indicate the GWPS is based on the calculated UTL. Either the UTL is higher than the MCL or an MCL does not exist.

GWPS: groundwater protection standard

MCL: maximum contaminant level

mg/L: milligrams per liter

n/a: not applicable

pCi/L: picocuries per liter

Table 3. Appendix III Data Summary Statistical Analysis Summary Welsh Plant – Primary Bottom Ash Pond

Analyte	Unit	Description	AD-8	AD-9	AD-15	
Analyte	Omt	Description	10/3/2023	10/3/2023	10/3/2023	
Boron	mg/L	Interwell Background Value (UPL)	0.901			
DOIOII	mg/L	Analytical Result	1.06	0.168	0.179	
Calcium	mg/L	Intrawell Background Value (UPL)	28.1	258	4.65	
Calcium	mg/L	Analytical Result	18.9	168	2.47	
Chloride	mg/L	Intrawell Background Value (UPL)	26.1	117	36.9	
Cilioride	mg/L	Analytical Result 18.9 168 Intrawell Background Value (UPL) 26.1 117 Analytical Result 21.5 75.4 Intrawell Background Value (UPL) 1.06 0.623 Analytical Result 0.94 0.1 Interwell Background Value (UPL) 6.9	27.5			
Fluoride	/I	Intrawell Background Value (UPL)	1.06	0.623	0.16	
Fluoride	mg/L	Analytical Result	0.94	0.1	0.06	
		Interwell Background Value (UPL) 6.9				
pН	SU	Interwell Background Value (LPL)	4.8			
		Analytical Result	Description terwell Background Value (UPL) Analytical Result Indextrawell Background Value (UPL) Analytical Result Analytical Result Itrawell Background Value (UPL) Analytical Result Itrawell Background Value (UPL) Analytical Result Itrawell Background Value (UPL) Analytical Result Iterwell Background Value (UPL)	5.8	4.9	
Sulfate	mg/L	Intrawell Background Value (UPL)	204	2,150	30.5	
Sullate	mg/L	Analytical Result	137	1,200	9.9	
Total Dissolved Solids	ma/I	Intrawell Background Value (UPL)	489	2,690	261	
Total Dissolved Solids	mg/L	Analytical Result	310	1,910	140	

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

LPL: lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Welsh Primary Bottom Ash Pond CCR management area and that the requirements of § 352.951(a) have been met.

David Anthony Mille	er	ger STA	A CONTRACTOR OF THE PARTY OF TH
Printed Name of Licens	sed Professional Engineer	•	ONY MILLER
David Lothony	Miller	SSION	L ENGINEER
Signature			
112498	Texas	01.24.2024	_
License Number	Licensing State	Date	

ATTACHMENT B Data Quality Review Memorandum

Memorandum

Date: January 12, 2024

To: David Miller (AEP)

Copies to: Rebecca Jones (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Welsh Power Plant

October 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Welsh Power Plant, located in Pittsburg, Texas in October 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III and IV constituents were analyzed.

The following sample data groups (SDGs) were associated with the groundwater samples collected during the October 2023 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 233091
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 233092
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 233093
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 233117
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 233118
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 233119

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

Data Quality Review – Welsh October 2023 Data January 12, 2024 Page 2

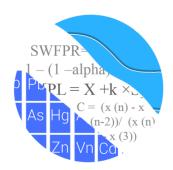
The following data quality issues were identified:

- As reported in SDG 233117, chromium and cobalt were detected in the equipment blank sample "EB-BACKGROUND" collected on 10/4/2023. The detected chromium concentration in the equipment blank (0.51 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 233118, calcium, lithium, chromium, and cobalt were detected in the equipment blank sample "EQUIPMENT BLANK-PBAP" collected on 10/3/2023. The detected chromium concentration in the equipment blank (0.37 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 233119, boron, calcium, chromium, and cobalt were detected in the equipment blank sample "EQUIPMENT BLANK-LF" collected on 10/3/2023. The estimated detected chromium concentration in the equipment blank (0.29 µg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 233117, chromium and cobalt were detected in the field blank sample "FIELD BLANK - BACKGROUND" collected on 10/4/2023. The detected chromium concentration in the field blank (0.35 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 233118, lithium, chromium, and cobalt were detected in the field blank sample "FIELD BLANK - PBAP" collected on 10/3/2023. The detected chromium concentration in the field blank (0.35 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.
- As reported in SDG 233119, boron, lithium, beryllium, chromium, and cobalt were detected in the field blank sample "FIELD BLANK LF" collected on 10/3/2023. The detected chromium concentration in the field blank (0.31 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias for all groundwater chromium results.

Data Quality Review – Welsh October 2023 Data January 12, 2024 Page 3

- As reported in SDG 233117, the relative percent difference (RPD) for antimony concentrations from parent sample "AD-1" and duplicate sample "DUPLICATE-BACKGROUND" was 29%. The AD-1 antimony result should be considered estimated.
- The quality control data provided with SDG 233117 noted that the recovery on the matrix spike duplicate for calcium and lithium associated with sample "AD-17" had low recoveries. The calcium and lithium results for sample "AD-17" were qualified with "M1: the associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits".
- The quality control data provided with SDG 233119 noted that the recovery on the matrix spike duplicate for beryllium and lithium associated with sample "AD-11" had low recoveries. The beryllium and lithium results for sample "AD-11" were qualified with "M1: the associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits".

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.



ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

January 4, 2023

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Suite 250 Worthington, OH 43085

Re: Welsh PBAP - Assessment Monitoring Event & Background Update 2023

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis and background update of 2023 groundwater data for American Electric Power Inc.'s Welsh PBAP. The analysis complies with the Texas Commission of Environmental Quality Rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at the site for the Coal Combustion Residuals (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

Upgradient wells: AD-1, AD-5, and AD-17
 Downgradient wells: AD-8, AD-9, and AD-15

Data were sent electronically, and the statistical analysis was reviewed by Kristina Rayner, Senior Statistician and Founder of Groundwater Stats Consulting. The analysis was conducted according to the Statistical Analysis Plan prepared by GSC and approved by Dr. Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series plots for Appendix III and IV parameters are provided for all wells and constituents, and are used to evaluate concentrations over the entire record (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values flagged as outliers may be seen in the Outlier Summary following this letter (Figure C) and are plotted in a lighter font and disconnected symbol on the time series graphs.

Due to varying detection limits in background data sets, a substitution of the most recent reporting limit is used for all non-detects. Note that for calculation of intrawell prediction limits, substitution of the most recent reporting limit is performed separately for each well/parameter pair. In some cases, the reporting limit provided by the laboratory contains varying limits for a given parameter; therefore, the substitution may differ from well to well. This generally gives the most conservative limit in each case. Reporting limit changes may occur depending on laboratory capabilities and in the case of fluoride, elevated historic reporting limits were replaced by the most recent reporting limit of 0.15 mg/L and was substituted across all non-detects for all wells.

Summary of Statistical Methods

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for calcium, chloride, fluoride, sulfate, and TDS
- 2) Interwell prediction limits combined with a 1-of-2 resample plan for boron and pH

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of an additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. The distribution of data is tested

using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits will be necessary to accommodate these types of changes. In the interwell case, newer data may be included in background during each sample event after screening the upgradient well data for any new outliers. Data will also be periodically evaluated for statistically significant trends, and earlier data may be deselected prior to construction of statistical limits so that limits represent-day conditions.

In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, the earlier portion of data are deselected prior to construction of limits in order to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening Conducted in December 2017

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate

statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

As a result of the screening, intrawell prediction limits were determined to be most appropriate for calcium, chloride, fluoride, sulfate, and TDS while interwell prediction limits were appropriate for boron and pH. A summary of those findings was included with the report.

Appendix III Background Update Summary – Conducted in January 2024

Outlier Analysis

Prior to updating interwell prediction limits for the Fall 2023 analysis, data were evaluated using Tukey's outlier test and visual screening on pooled upgradient well data for boron and pH. Results of the outlier tests follow this report (Figure C).

Tukey's outlier test on pooled upgradient well data did not identify any outliers for boron or pH among upgradient wells; therefore, no measurements were flagged as outliers. A list of all flagged values follows this report (Figure C).

For parameters which use intrawell prediction limits (calcium, chloride, fluoride, sulfate, and TDS), values were not re-evaluated for new outliers as these records had insufficient samples for updating background during this evaluation period.

<u>Intrawell – Prediction Li</u>mits

Intrawell prediction limits, combined with a 1-of-2 resample plan, are constructed using historical data through June 2022 for calcium, chloride, fluoride, sulfate, and TDS. A summary of the limits follows this letter (Figure D). Note that slight changes in statistical limits occurred for fluoride as a result of the reporting limit decreasing from 1 mg/L to 0.15 mg/L. No comparisons of the October 2023 observations were performed in this analysis.

<u>Interwell – Trend Test Evaluation</u>

For parameters which are tested using interwell prediction limits, the Sen's Slope/Mann-Kendall trend test was used to evaluate data in upgradient wells and determine whether concentrations are statistically increasing, decreasing or stable at the 99% confidence level (Figure E). Statistically significant trends were identified for the following well/constituent pairs:

Increasing

• Boron: AD-1 (upgradient)

Decreasing

• pH: AD-17 (upgradient)

Although statistically significant trends were identified for boron in upgradient well AD-1 and pH in upgradient well AD-17, the magnitudes of the trends are marginal relative to the respective concentrations; therefore, no adjustments were required for these well/constituent pairs at this time. Therefore, all data from upgradient wells were used to construct interwell prediction limits for boron and pH.

Interwell – Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data from upgradient wells through October 2023 for boron and pH (Figure F). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. Time series plots were included with the interwell prediction limit graphs to display concentrations at upgradient wells that were used to construct the statistical limits. A summary table of the updated limits may be found following this letter in the Prediction Limit Summary Tables. No comparison of the October 2023 compliance observations was performed in this analysis.

Evaluation of Appendix IV Parameters – October 2023

Outlier Analysis

Prior to evaluating Appendix IV parameters, upgradient well data are screened through both visual screening and Tukey's outlier test for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits. All flagged values may be seen on the Outlier Summary following this letter (Figure C) and no changes to previously flagged outliers for Appendix IV parameters were made. Note that due to elevated reporting limits in upgradient well AD-17 for antimony, lead, molybdenum, and selenium,

and thallium during this event, the most recent respective reporting limit from other wells was for substituted across all wells for each of these constituents.

For the current analysis, Tukey's outlier test on pooled upgradient well data through October 2023 identified outliers for chromium, lead, and mercury. The values identified by Tukey's test, except for the highest value for chromium at AD-17, were either similar to concentrations upgradient of the facility or were lower than the respective Maximum Contaminant Level (MCL); therefore, these values were not flagged as outliers. Tukey's outlier test and visual screening confirmed the previously flagged highest measurement of chromium at AD-17 along with other flagged observations. No additional measurements were flagged among upgradient wells for Appendix IV parameters during this analysis.

Additionally, downgradient well data through October 2023 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them, such as the spurious observations at AD-15 during the September 2016 event for several constituents. No additional outliers among downgradient wells were flagged during this analysis. All flagged values may be seen on the Outlier Summary following this letter (Figure C).

Interwell Upper Tolerance Limits

Upper tolerance limits were used to calculate background limits from pooled upgradient well data through October 2023 for Appendix IV parameters (Figure G). These limits are updated on an annual basis and will be updated again during the Fall 2024 sample event. Parametric tolerance limits are calculated, with a target of 95% confidence and 95% coverage, when data follow a normal or transformed-normal distribution. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were constructed using the highest background measurement. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

These background limits were compared to the MCLs as shown in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the confidence interval comparisons (Figure H).

Confidence Intervals

Confidence intervals were then constructed using data through October 2023 on downgradient wells for each of the Appendix IV parameters and compared to the GWPS, (i.e., the highest limit of the MCL or background limit as discussed above). Confidence intervals were constructed as either parametric or nonparametric confidence intervals depending on the data distribution and percentage of non-detects. When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above. The confidence level associated with nonparametric confidence intervals is dependent upon the number samples available.

Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. Complete graphical results of the confidence intervals follow this letter (Figure I). No statistical exceedances were identified.

<u>Trend Test Evaluation – Appendix IV</u>

When confidence interval exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable at the 95% confidence level. Utilizing the 95% confidence level for trend tests readily identifies significant trends and is more sensitive than the 99% confidence level without drastically increasing the false negative rate. Upgradient wells are included in the trend analyses for all parameters found to exceed their confidence interval in downgradient wells. When similar patterns exist upgradient of the site, it is an indication of variability in groundwater which may be unrelated to practices at the site. Since no confidence interval exceedances were identified, trend tests were not required.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Welsh PBAP. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew Collins

Project Manager

Kristina Rayner Senior Statistician

Kristina Rayner

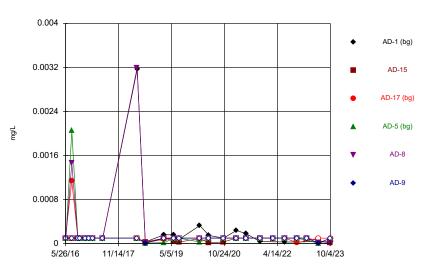
Sanitas™ v.10.0.15 Software licensed to . UC

Page 1

Date Ranges

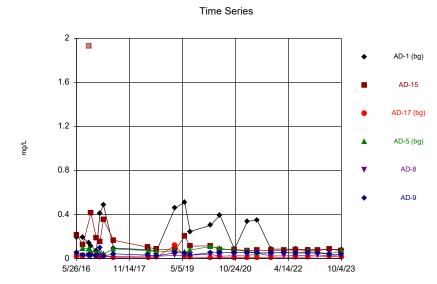
Date: 1/3/2024 2:30 PM

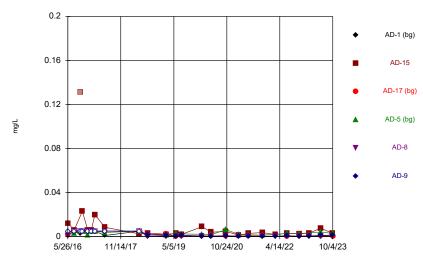
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Chloride, total (mg/L)

AD-8 background:1/20/2017-6/28/2022
Fluoride, total (mg/L)

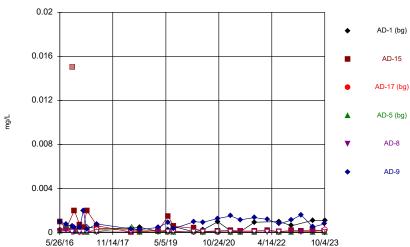
AD-17 background:1/20/2017-6/28/2022


FIGURE A
Time Series

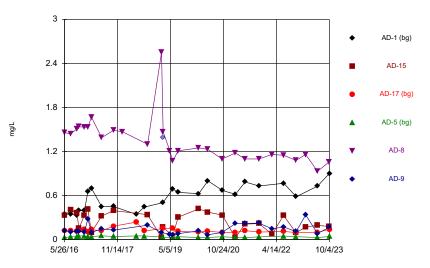

Constituent: Antimony, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

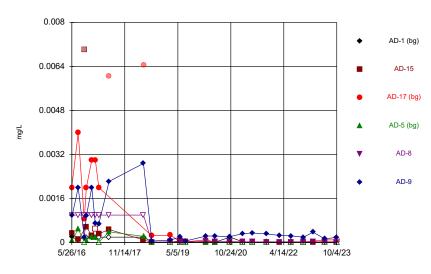
Constituent: Barium, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

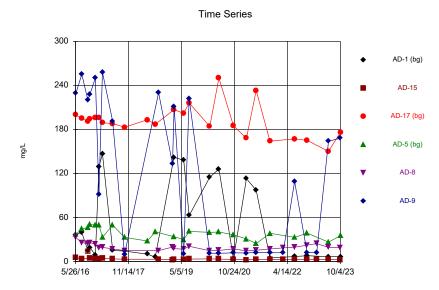

Time Series

Constituent: Arsenic, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

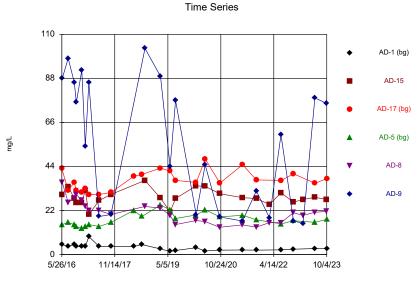

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

Time Series

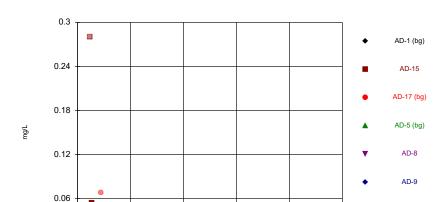

Constituent: Beryllium, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: Boron, total Analysis Run 1/3/2024 12:53 PM Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Time Series


Constituent: Cadmium, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG



Constituent: Calcium, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

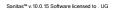
Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Chloride, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Time Series

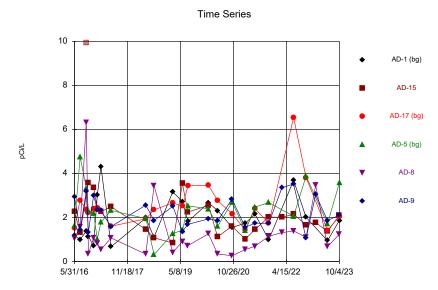
Constituent: Chromium, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

10/24/20

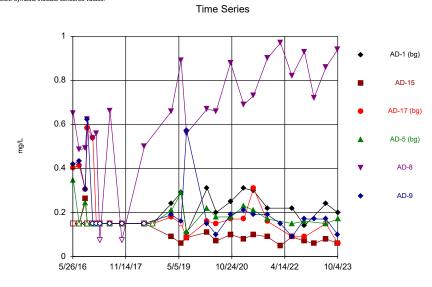

4/14/22

5/5/19

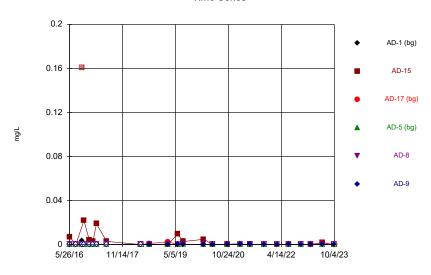
0.2 AD-1 (bg) 0.16 AD-15 繳 AD-17 (bg) 0.12 AD-5 (bg) mg/L 0.08 AD-8 AD-9 0.04 10/24/20 5/26/16 11/14/17 10/4/23


Time Series

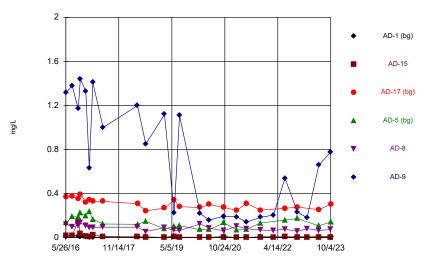
Constituent: Cobalt, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

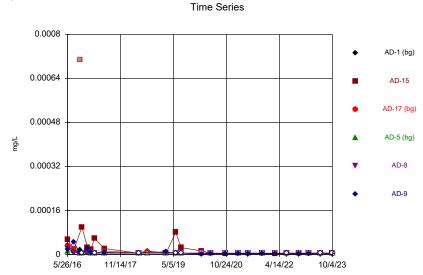

5/26/16

11/14/17

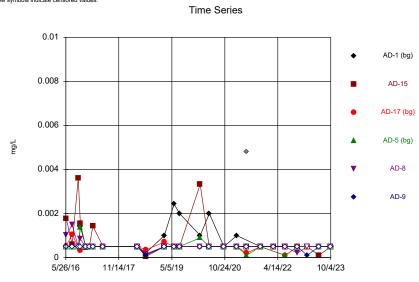

Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

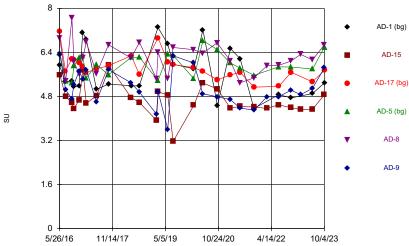

Constituent: Fluoride, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Constituent: Lead, total Analysis Run 1/3/2024 12:53 PM Welsh PBAP Client: Geosyntec Data: Welsh PBAP

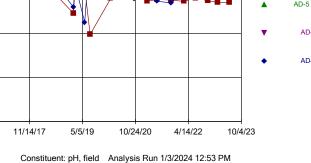
Time Series


Constituent: Lithium, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

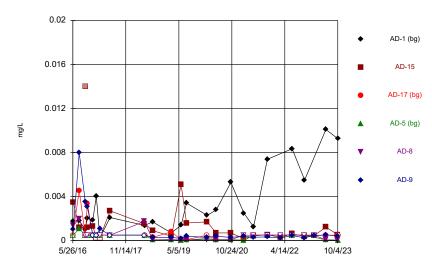
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.


Constituent: Mercury, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

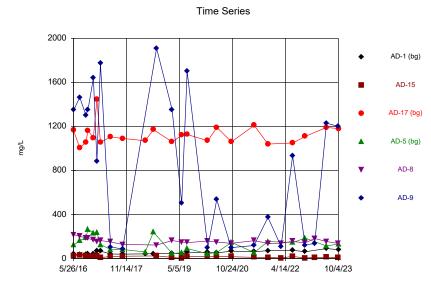
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.



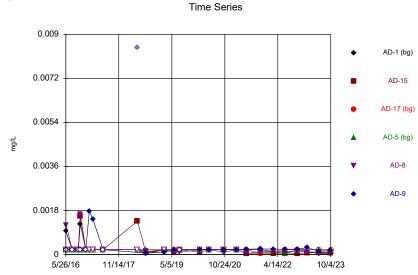
Constituent: Molybdenum, total Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Time Series

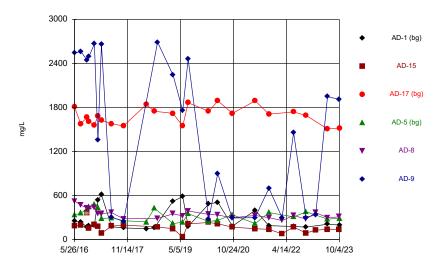
Welsh PBAP Client: Geosyntec Data: Welsh PBAP



Time Series

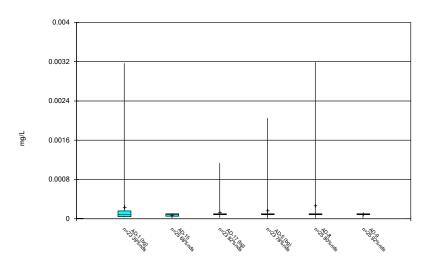

Constituent: Selenium, total Analysis Run 1/3/2024 12:53 PM Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

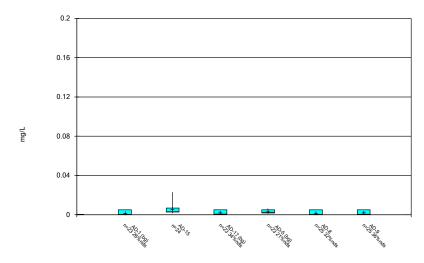

Constituent: Sulfate, total Analysis Run 1/3/2024 12:53 PM Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Thallium, total Analysis Run 1/3/2024 12:53 PM Welsh PBAP Client: Geosyntec Data: Welsh PBAP

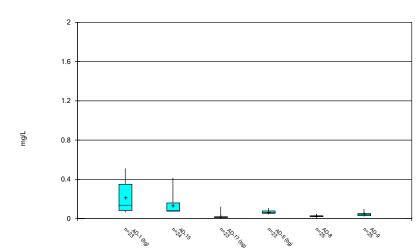

Time Series

Constituent: Total Dissolved Solids Analysis Run 1/3/2024 12:53 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


FIGURE B
Box Plots

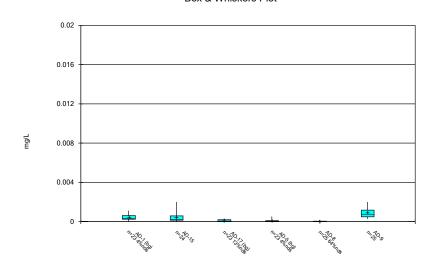
Box & Whiskers Plot

Constituent: Antimony, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

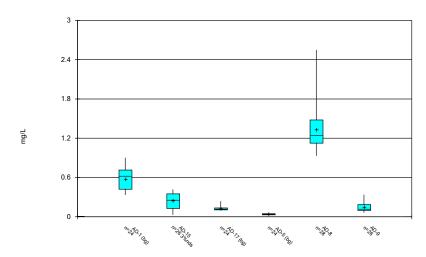

Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

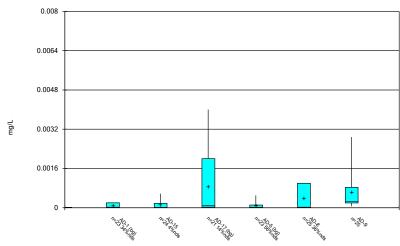
Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

Constituent: Barium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

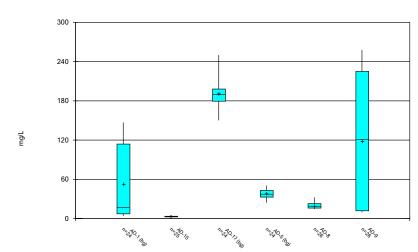

Sanitas™ v.10.0.15 Software licensed to . UG

Box & Whiskers Plot


Constituent: Beryllium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

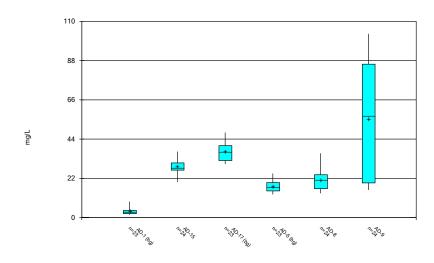
Box & Whiskers Plot

Constituent: Boron, total Analysis Run 1/3/2024 12:56 PM Welsh PBAP Client: Geosyntec Data: Welsh PBAP

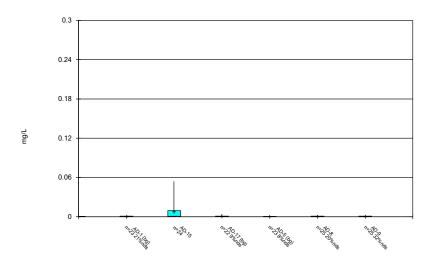

Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

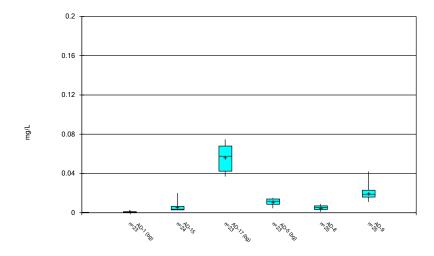
Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

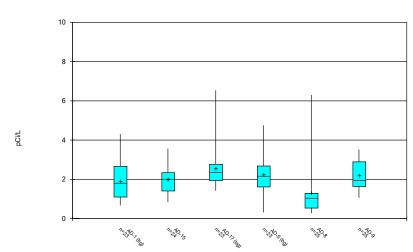

Sanitas™ v.10.0.15 Software licensed to . UG

Box & Whiskers Plot


Constituent: Chloride, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

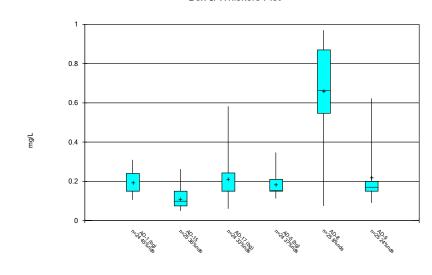
Box & Whiskers Plot

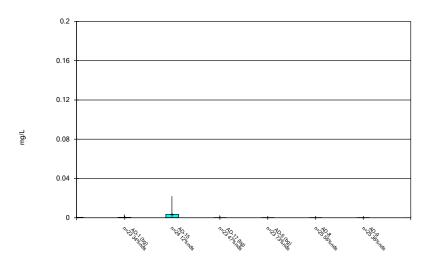
Constituent: Chromium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Box & Whiskers Plot

Constituent: Cobalt, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

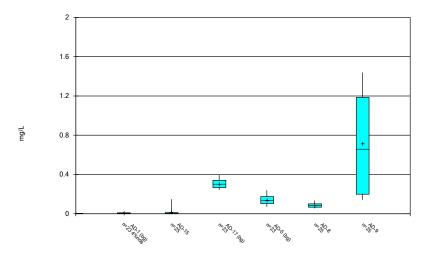
Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot


Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

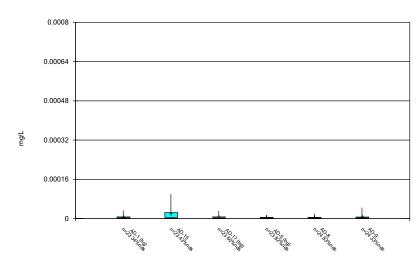
Sanitas™ v.10.0.15 Software licensed to . UG

Box & Whiskers Plot



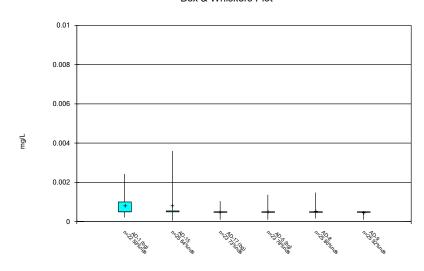
Box & Whiskers Plot

Constituent: Lead, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

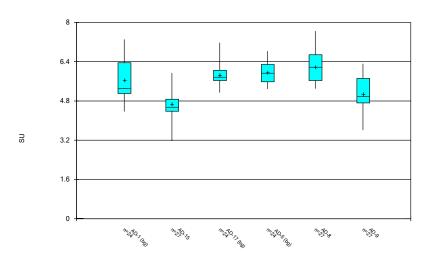

Box & Whiskers Plot

Constituent: Lithium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

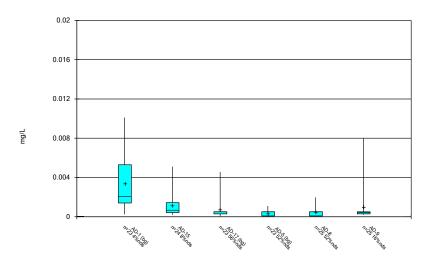
Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

Constituent: Mercury, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

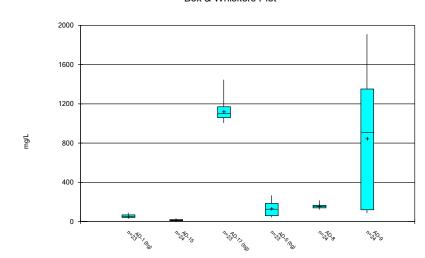

Sanitas™ v.10.0.15 Software licensed to . UG

Box & Whiskers Plot


Constituent: Molybdenum, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

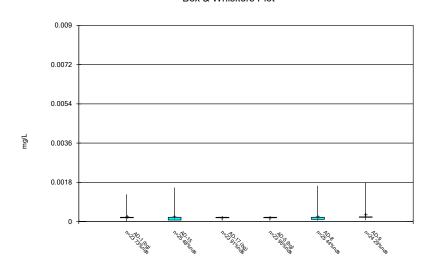
Box & Whiskers Plot

Constituent: pH, field Analysis Run 1/3/2024 12:56 PM Welsh PBAP Client: Geosyntec Data: Welsh PBAP

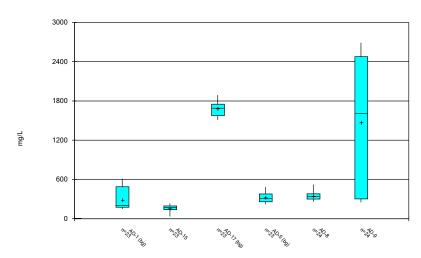

Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

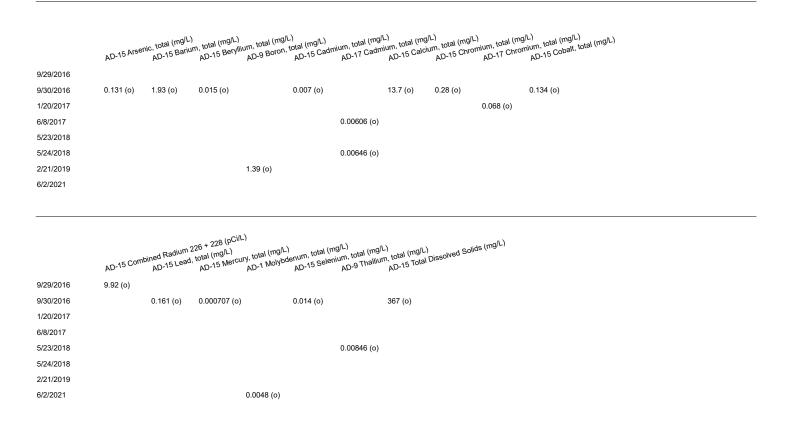
Constituent: Sulfate, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Box & Whiskers Plot



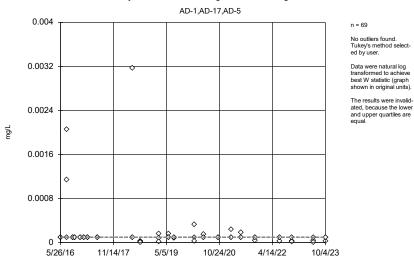
Constituent: Total Dissolved Solids Analysis Run 1/3/2024 12:56 PM
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE C Outlier Summary and Tukey's Outlier Test

Outlier Summary

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 12:58 PM

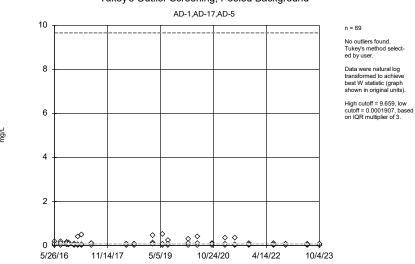
Tukey's Outlier Test - Upgradient Wells - Significant Results


Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 1:00 PM

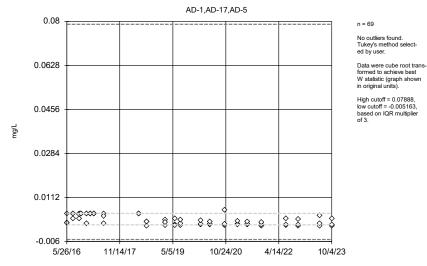
Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	Metho	odAlpha N	<u>Mean</u>	Std. Dev.	Distributio	n Normality Test
Chromium, total (mg/L)	AD-1,AD-17,AD-5	Yes	0.068	NP	NaN 69	0.001542	0.008147	In(x)	ShapiroFrancia
Lead, total (mg/L)	AD-1,AD-17,AD-5	Yes	0.003384, 0.0001, 0.0001, 0.0001, 0.000852, 0.00009, 0.	NP	NaN 69	0.0002942	0.0004942	In(x)	ShapiroFrancia
Mercury, total (mg/L)	AD-1,AD-17,AD-5	Yes	0.000033,0.00001773,0.00001521,0.000013,0.000013	, NP	NaN 69	0.00000689	7 0.00000580	6 ln(x)	ShapiroFrancia

Tukey's Outlier Test - Upgradient Wells - All Results

		Welsh PBAP	Client: Geosyntec	Data: Welsh PBAP	Printed 1/3/2	2024, 1:	00 PM				
Constituent	Well	Outlier	Value(s)			Metho	dAlpha N	Mean	Std. Dev.	Distributio	n Normality Test
Antimony, total (mg/L)	AD-1,AD-17,AD-5	n/a	n/a			NP	NaN 69	0.0001833	0.0004535	unknown	ShapiroFrancia
Arsenic, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	0.002468	0.001942	x^(1/3)	ShapiroFrancia
Barium, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	0.1007	0.1227	ln(x)	ShapiroFrancia
Beryllium, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	0.0002223	0.0002643	ln(x)	ShapiroFrancia
Boron, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 72	0.2484	0.2585	ln(x)	ShapiroFrancia
Cadmium, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	0.0004765	0.001273	ln(x)	ShapiroFrancia
Chromium, total (mg/L)	AD-1,AD-17,AD-5	Yes	0.068			NP	NaN 69	0.001542	0.008147	ln(x)	ShapiroFrancia
Cobalt, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	0.02294	0.02555	x^(1/3)	ShapiroFrancia
Combined Radium 226 + 228 (pCi/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	2.228	1.03	x^(1/3)	ShapiroFrancia
Fluoride, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 72	0.1961	0.09322	ln(x)	ShapiroFrancia
Lead, total (mg/L)	AD-1,AD-17,AD-5	Yes	0.003384,0.0001,0	0.0001,0.0001,0.00085	2,0.00009,0.	NP	NaN 69	0.0002942	0.0004942	ln(x)	ShapiroFrancia
Lithium, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	0.1501	0.1285	sqrt(x)	ShapiroFrancia
Mercury, total (mg/L)	AD-1,AD-17,AD-5	Yes	0.000033,0.00001	773,0.00001521,0.000	013,0.000013	, NP	NaN 69	0.00000689	7 0.00000580	6 ln(x)	ShapiroFrancia
Molybdenum, total (mg/L)	AD-1,AD-17,AD-5	n/a	n/a			NP	NaN 69	0.0006621	0.000648	unknown	ShapiroFrancia
pH, field (SU)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 72	5.833	0.6322	x^(1/3)	ShapiroFrancia
Selenium, total (mg/L)	AD-1,AD-17,AD-5	No	n/a			NP	NaN 69	0.001489	0.002216	ln(x)	ShapiroFrancia
Thallium, total (mg/L)	AD-1,AD-17,AD-5	n/a	n/a			NP	NaN 69	0.0002109	0.0001642	unknown	ShapiroFrancia

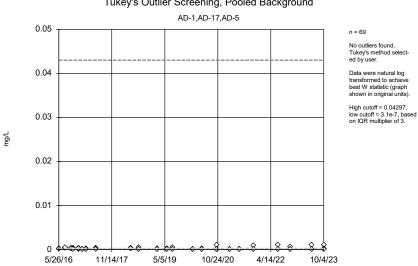

Tukey's Outlier Screening, Pooled Background

Constituent: Antimony, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

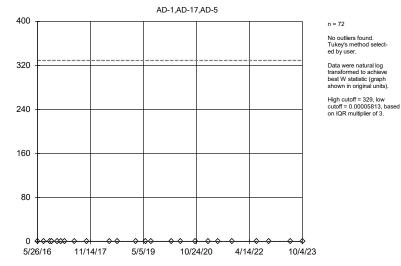
Tukey's Outlier Screening, Pooled Background

Constituent: Barium, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Tukey's Outlier Screening, Pooled Background

Constituent: Arsenic, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

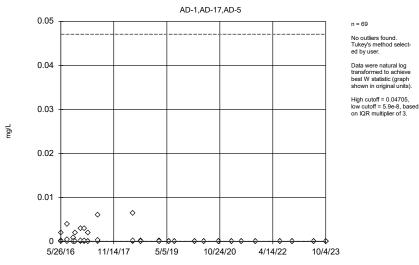
Sanitas™ v.10.0.15 Software licensed to . UG


Tukey's Outlier Screening, Pooled Background

Constituent: Beryllium, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

mg/L

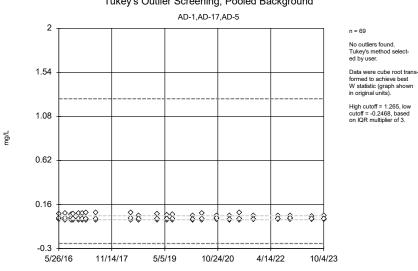
Tukey's Outlier Screening, Pooled Background


Constituent: Boron, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

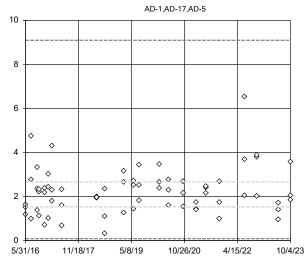
Tukey's Outlier Screening, Pooled Background AD-1,AD-17,AD-5 0.07 n = 69 Outlier is drawn as solid. Tukev's method selected by user. 0.056 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.01217. low cutoff = 0.00001221, 0.042 based on IQR multiplier 0.028 0.014 \Diamond 0 4 5/26/16 11/14/17 5/5/19 10/24/20 4/14/22 10/4/23

Constituent: Chromium, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Tukey's Outlier Screening, Pooled Background

Constituent: Cadmium, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG


Tukey's Outlier Screening, Pooled Background

Constituent: Cobalt, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

pCi/L

Tukey's Outlier Screening, Pooled Background

High cutoff = 9.099, low cutoff = 0.09387, based on IQR multiplier of 3.

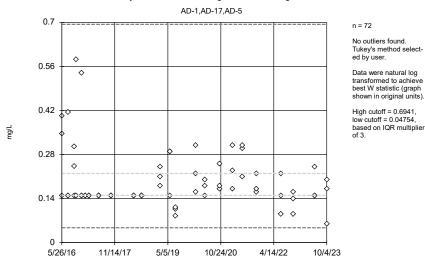
No outliers found. Tukey's method select-

Data were cube root trans-

formed to achieve best W statistic (graph shown

in original units).

n = 69

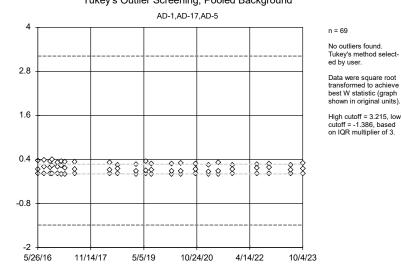

Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background AD-1,AD-17,AD-5 0.004 n = 69 Outliers are drawn as Tukey's method selected by user. 0.0032 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.0003247, 0.0024 low cutoff = 0.0001048based on IQR multiplier 0.0016 0.0008 **\(\)** 5/26/16 11/14/17 5/5/19 10/24/20 4/14/22 10/4/23

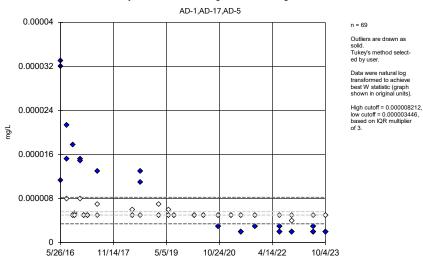
Constituent: Lead, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Tukey's Outlier Screening, Pooled Background



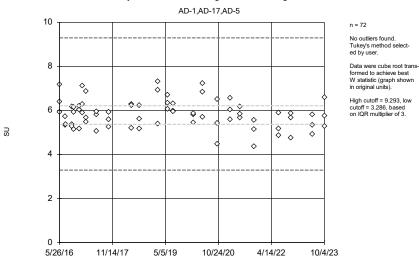
Constituent: Fluoride, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

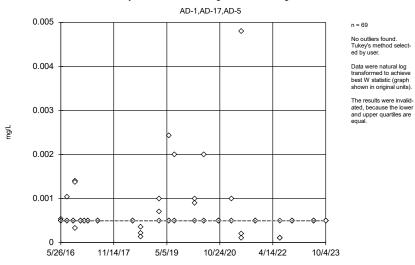

mg/L

Tukey's Outlier Screening, Pooled Background

Constituent: Lithium, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

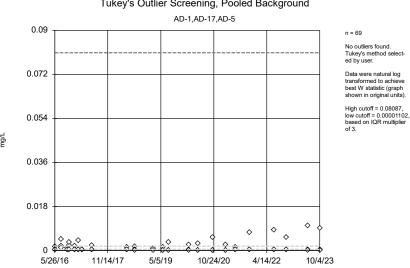

Tukey's Outlier Screening, Pooled Background

Constituent: Mercury, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background

Constituent: pH, field Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

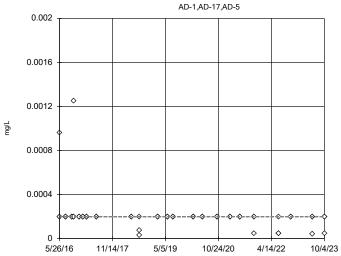

Tukey's Outlier Screening, Pooled Background

Constituent: Molybdenum, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background

Constituent: Selenium, total Analysis Run 1/3/2024 12:59 PM View: Outliers Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Tukey's Outlier Screening, Pooled Background

n = 69

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Thallium, total Analysis Run 1/3/2024 12:59 PM View: Outliers
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE D Intrawell PLs

Appendix III Intrawell Prediction Limits - All Results

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 1:11 PM Constituent Well Upper Lim. Lower Lim.Date Observ. Bg N Bg Mean Std. Dev. %NDs ND Adj. Method Calcium, total (mg/L) AD-1 358.4 1 future 21 3.437 1.3 0 None 0.002505 Param Intra 1 of 2 n/a n/a n/a In(x) Calcium, total (mg/L) AD-15 4.646 n/a n/a 1 future n/a 21 3.309 0.7109 0 None No 0.002505 Param Intra 1 of 2 AD-17 232.6 21 20.17 0.002505 Param Intra 1 of 2 Calcium, total (mg/L) 1 future n/a 194.7 0 None n/a n/a No Calcium, total (mg/L) AD-5 53.13 n/a 1 future n/a 21 38.6 7.729 0 None No 0.002505 Param Intra 1 of 2 Calcium, total (mg/L) AD-8 28.06 1 future n/a 22 4.368 0.4972 0 0.002505 Param Intra 1 of 2 n/a n/a None sqrt(x) Calcium, total (mg/L) AD-9 258 n/a n/a 1 future n/a 22 n/a n/a 0 n/a n/a 0.003707 NP Intra (normality) 1 of 2 Chloride, total (mg/L) AD-1 0.413 Param Intra 1 of 2 6.989 n/a n/a 1 future n/a 20 1.862 0 None sqrt(x) 0.002505 Chloride, total (mg/L) AD-15 36.94 1 future n/a 20 28.94 4.232 0 No 0.002505 Param Intra 1 of 2 Chloride, total (mg/L) AD-17 46.83 n/a n/a 1 future n/a 20 36.88 5.261 0 None Nο 0.002505 Param Intra 1 of 2 Chloride, total (mg/L) AD-5 23.96 n/a 1 future n/a 20 17.56 3.38 0.002505 Param Intra 1 of 2 Chloride, total (mg/L) AD-8 0.002505 Param Intra 1 of 2 26.11 n/a n/a 1 future n/a 15 18.47 3.809 0 None Nο Chloride, total (mg/L) AD-9 117.2 20 57.11 31.78 0 0.002505 Param Intra 1 of 2 1 future n/a No AD-1 0.003999 NP Intra (NDs) 1 of 2 Fluoride, total (mg/L) 0.31 21 n/a n/a 1 future n/a n/a n/a 52.38 n/a n/a Fluoride, total (mg/L) AD-15 0.16 1 future 21 0.2882 0.05947 42.86 Kaplan-Meier sqrt(x) 0.002505 Param Intra 1 of 2 Fluoride, total (mg/L) AD-17 0.31 n/a n/a 1 future n/a 16 n/a n/a 43 75 n/a n/a 0.006456 NP Intra (normality) 1 of 2 Fluoride, total (mg/L) AD-5 1 future n/a 21 -1.893 0.369 42.86 Kaplan-Meier ln(x) Param Intra 1 of 2 n/a n/a AD-8 Fluoride, total (mg/L) 1 057 n/a n/a 1 future n/a 21 0.6231 0.2307 9 524 None No 0.002505 Param Intra 1 of 2 Fluoride, total (mg/L) AD-9 0.6227 1 future 21 28.57 0.003999 NP Intra (normality) 1 of 2 n/a n/a n/a n/a n/a n/a n/a Sulfate, total (mg/L) AD-1 76.11 n/a n/a 1 future n/a 20 51.68 12.91 0 No 0.002505 Param Intra 1 of 2 Sulfate, total (mg/L) AD-15 30.46 n/a 1 future n/a 20 17.06 7.084 0 None No 0.002505 Param Intra 1 of 2 n/a Sulfate, total (mg/L) AD-17 1445 n/a n/a 1 future n/a 20 n/a n/a 0 n/a n/a 0.004291 NP Intra (normality) 1 of 2 Sulfate, total (mg/L) AD-5 267.7 73.02 Param Intra 1 of 2 n/a 1 future 20 129.5 0 None No 0.002505 n/a n/a Sulfate, total (mg/L) AD-8 203.7 n/a 1 future n/a 20 158.7 23.82 0 None No 0.002505 Param Intra 1 of 2 AD-9 20 666.3 Sulfate, total (mg/L) 2145 n/a n/a 1 future n/a 884.5 0 None No 0.002505 Param Intra 1 of 2 Total Dissolved Solids (mg/L) AD-1 612 n/a n/a 1 future n/a 20 n/a n/a 0 n/a 0.004291 NP Intra (normality) 1 of 2 Total Dissolved Solids (mg/L) AD-15 261 1 future n/a 19 164.2 50.64 0 None 0.002505 Param Intra 1 of 2 n/a n/a Nο Total Dissolved Solids (mg/L) AD-17 1921 n/a n/a 1 future n/a 20 1704 114.5 0 No 0.002505 Param Intra 1 of 2 Total Dissolved Solids (mg/L) AD-5 0.002505 484 20 328 82.5 Param Intra 1 of 2 1 future n/a 0 No n/a n/a None Total Dissolved Solids (mg/L) AD-8 489.3 1 future 20 360.3 68.19 0 No 0.002505 Param Intra 1 of 2 n/a

0.004291 NP Intra (normality) 1 of 2

Total Dissolved Solids (mg/L)

AD-9

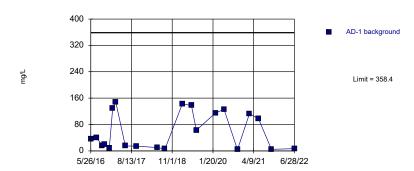
2690

n/a

n/a

1 future

n/a 20 n/a

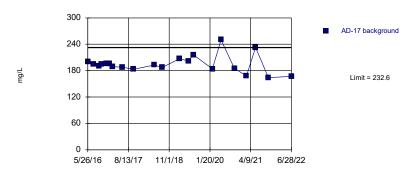

n/a

0

n/a

n/a

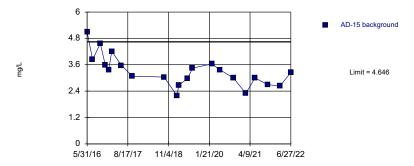
Prediction Limit Intrawell Parametric, AD-1 (bg)



Background Data Summary (based on natural log transformation): Mean=3.437, Std. Dev.=1.3, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8865, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Calcium, total Analysis Run 1/3/2024 1:08 PM View: Intrawell
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

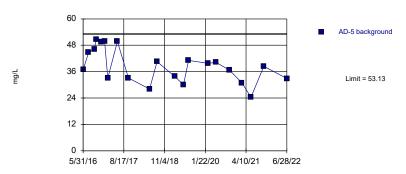
Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-17 (bg)

Background Data Summary: Mean=194.7, Std. Dev.=20.17, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9017, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

Intrawell Parametric, AD-15


Background Data Summary: Mean=3.309, Std. Dev.=0.7109, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9525, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Calcium, total Analysis Run 1/3/2024 1:08 PM View: Intrawell

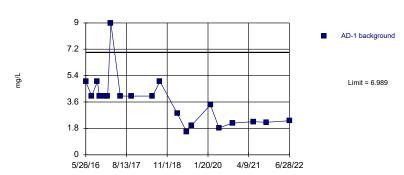
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-5 (bg)

Background Data Summary: Mean=38.6, Std. Dev.=7.729, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9562, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

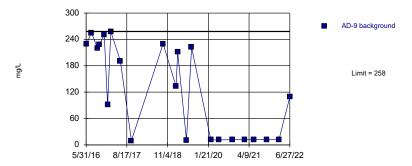
Prediction Limit Intrawell Parametric, AD-8



Background Data Summary (based on square root transformation): Mean=4.368, Std. Dev.=0.4972, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8896, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Constituent: Calcium, total Analysis Run 1/3/2024 1:08 PM View: Intrawell
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

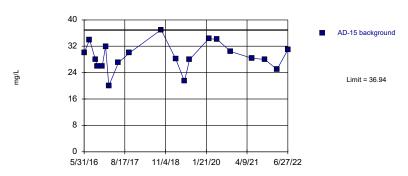
Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-1 (bg)

Background Data Summary (based on square root transformation): Mean=1.862, Std. Dev.=0.413, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.002505. Assumes 1 future value.

Prediction Limit

Intrawell Non-parametric, AD-9



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 22 background values. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2). Assumes 1 future value.

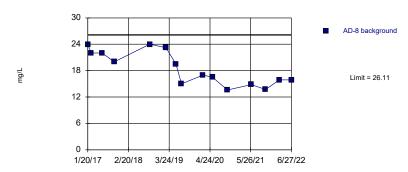
Constituent: Calcium, total Analysis Run 1/3/2024 1:08 PM View: Intrawell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-15

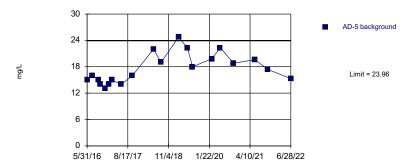
Background Data Summary: Mean=28.94, Std. Dev.=4.232, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9729, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-17 (bg)



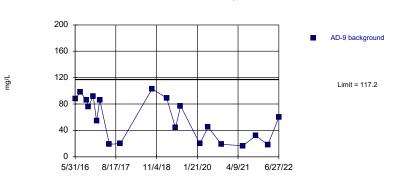
Background Data Summary: Mean=36.88, Std. Dev.=5.261, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9435, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Chloride, total Analysis Run 1/3/2024 1:08 PM View: Intrawell Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

Background Data Summary: Mean=18.47, Std. Dev.=3.809, n=15. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8957, critical = 0.881. Kappa = 2.006 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

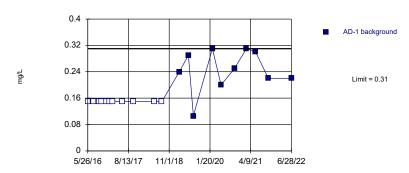
Prediction Limit Intrawell Parametric, AD-5 (bg)


Background Data Summary: Mean=17.56, Std. Dev.=3.38, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9265, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Chloride, total Analysis Run 1/3/2024 1:08 PM View: Intrawell

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

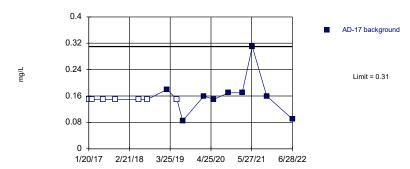
Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-9

Background Data Summary: Mean=57.11, Std. Dev.=31.78, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8717, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values

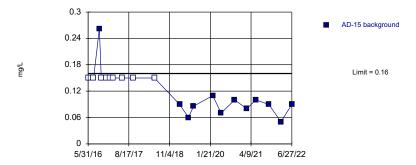
Prediction Limit Intrawell Non-parametric, AD-1 (bg)



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 21 background values. 52.38% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 1/3/2024 1:09 PM View: Intrawell
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

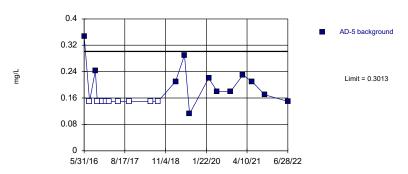
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 16 background values. 43.75% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Assumes 1 future value.

Prediction Limit

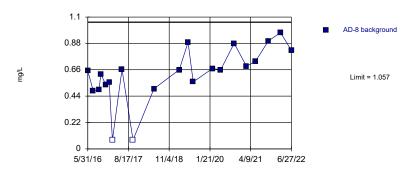
Intrawell Parametric, AD-15


Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=0,2882, Std. Dev.=0.05947, n=21, 42.86% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9006, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 1/3/2024 1:09 PM View: Intrawell

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.


Prediction Limit Intrawell Parametric, AD-5 (bg)

Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-1.893, Std. Dev.=0.369, n=21, 42.86% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.874, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

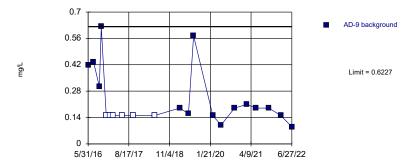
Prediction Limit Intrawell Parametric, AD-8



Background Data Summary: Mean=0.6231, Std. Dev.=0,2307, n=21, 9.524% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8902, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 1/3/2024 1:09 PM View: Intrawell
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

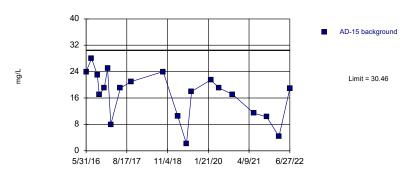
Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-1 (bg)

Background Data Summary: Mean=51.68, Std. Dev.=12.91, n=20. Normality test: Shapiro Wilk @alpha = 0.01, collated = 0.8957, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

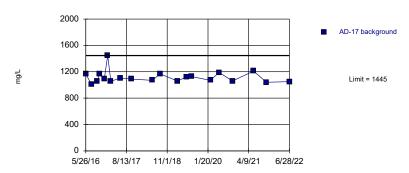
Prediction Limit

Intrawell Non-parametric, AD-9


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 21 background values. 28.57% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 1/3/2024 1:09 PM View: Intrawell

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

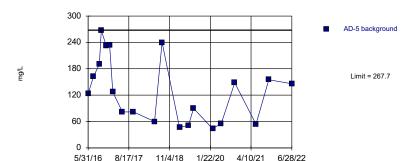

Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-15

Background Data Summary: Mean=17.06, Std. Dev.=7.084, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9371, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Non-parametric, AD-17 (bg)

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2). Assumes 1 future value.


Constituent: Sulfate, total Analysis Run 1/3/2024 1:09 PM View: Intrawell
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

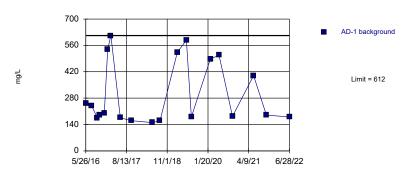
Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-8 AD-8 background 180 Limit = 203.7

Background Data Summary: Mean=158.7, Std. Dev.=23.82, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.938, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-5 (bg)

Background Data Summary: Mean=129.5, Std. Dev.=73.02, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9061, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

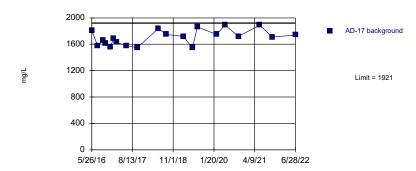

Constituent: Sulfate, total Analysis Run 1/3/2024 1:09 PM View: Intrawell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-9 3000 2400 1800 1200 600 5/31/16 8/17/17 11/4/18 1/21/20 4/9/21 6/27/22

Background Data Summary: Mean=884.5, Std. Dev=666.3, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8749, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

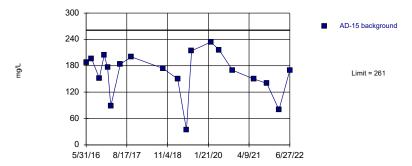
Prediction Limit Intrawell Non-parametric, AD-1 (bg)



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2). Assumes 1 future value.

Constituent: Total Dissolved Solids Analysis Run 1/3/2024 1:09 PM View: Intrawell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

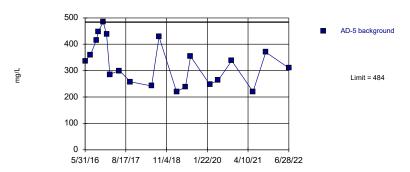
Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-17 (bg)

Background Data Summary: Mean=1704, Std. Dev.=114.5, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9349, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

Intrawell Parametric, AD-15



Background Data Summary: Mean=164.2, Std. Dev.=50.64, n=19. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9016, critical = 0.901. Kappa = 1.912 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Total Dissolved Solids Analysis Run 1/3/2024 1:09 PM View: Intrawell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

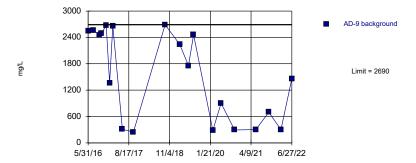
Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-5 (bg)

Background Data Summary: Mean=328, Std. Dev.=82.5, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9369, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v 10 0 15 Software licensed to UC

Prediction Limit
Intrawell Parametric, AD-8


Background Data Summary: Mean=360.3, Std. Dev.=68.19, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9407, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

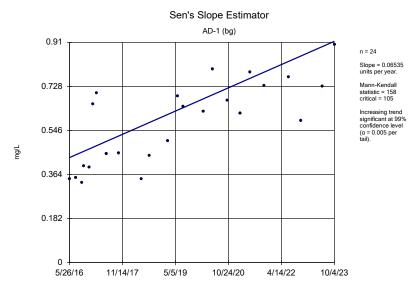
Constituent: Total Dissolved Solids Analysis Run 1/3/2024 1:09 PM View: Intrawell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit

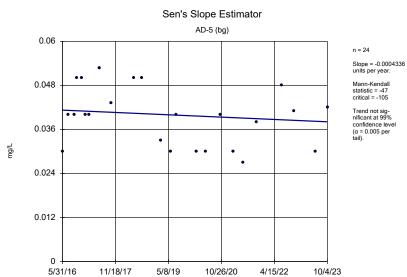
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2). Assumes 1 future value.

Constituent: Total Dissolved Solids Analysis Run 1/3/2024 1:09 PM View: Intrawell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

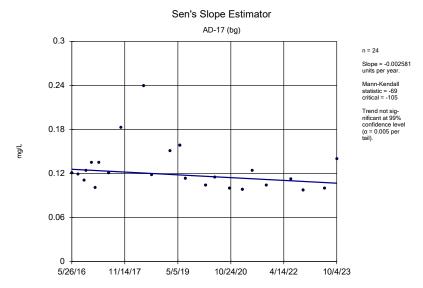

FIGURE E Upgradient Trend Tests

Trend Tests - Upgradient Wells - Significant Results Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 1:21 PM

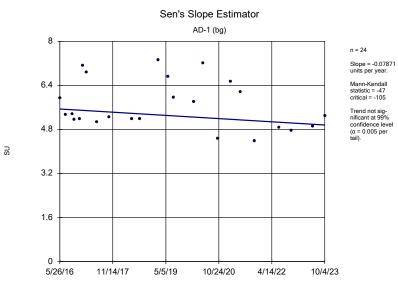
	Welsh PBAP	Client: Geosynteo	Data: V	Velsh PBAP	Printe	d 1/3/2024,	1:21 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method	
Boron, total (mg/L)	AD-1 (bg)	0.06535	158	105	Yes	24	0	n/a	0.01	NP	
nH field (SII)	AD-17 (bg)	-0.106	-131	-105	Voc	24	0	n/a	0.01	ND	


Trend Tests - Upgradient Wells - All Results Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 1:21 PM

	Welsh PBAP	Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 1:21 PM								
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Alpha	Method
Boron, total (mg/L)	AD-1 (bg)	0.06535	158	105	Yes	24	0	n/a	0.01	NP
Boron, total (mg/L)	AD-17 (bg)	-0.002581	-69	-105	No	24	0	n/a	0.01	NP
Boron, total (mg/L)	AD-5 (bg)	-0.0004336	-47	-105	No	24	0	n/a	0.01	NP
pH, field (SU)	AD-1 (bg)	-0.07871	-47	-105	No	24	0	n/a	0.01	NP
pH, field (SU)	AD-17 (bg)	-0.106	-131	-105	Yes	24	0	n/a	0.01	NP
pH, field (SU)	AD-5 (bg)	0.03886	32	105	No	24	0	n/a	0.01	NP



Constituent: Boron, total Analysis Run 1/3/2024 1:19 PM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP



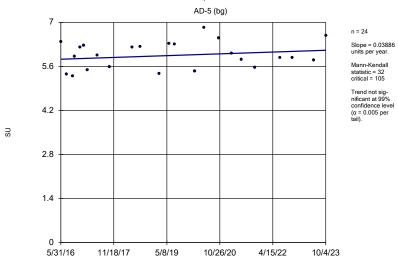
Constituent: Boron, total Analysis Run 1/3/2024 1:19 PM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: Boron, total Analysis Run 1/3/2024 1:19 PM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: pH, field Analysis Run 1/3/2024 1:19 PM View: Upgradient Well Trend Test

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UC

Constituent: pH, field Analysis Run 1/3/2024 1:19 PM View: Upgradient Well Trend Test
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

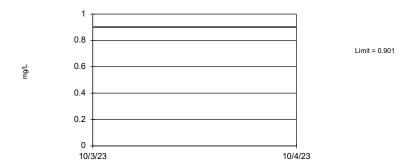
Sanitas™ v.10.0.15 Software licensed to . UG

Sen's Slope Estimator

Constituent: pH, field Analysis Run 1/3/2024 1:19 PM View: Upgradient Well Trend Test

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE F Interwell PLs

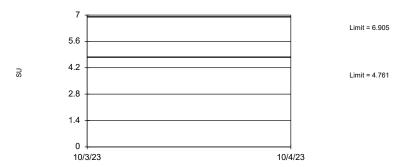

Appendix III Interwell Prediction Limits - All Results

Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 2:33 PM

<u>Constituent</u>	Well	Upper Lim.	Lower L	im.Date	Observ.	Sig	Bg	N Bg Mear	Std. Dev	<u>/. %NE</u>	Os ND Adj.	Transfo	rm Alpha Method
Boron, total (mg/L)	n/a	0.901	n/a	n/a	3 future	n/a	72	n/a	n/a	0	n/a	n/a	0.0003715 NP Inter (normality) 1 of 2
pH, field (SU)	n/a	6.905	4.761	n/a	3 future	n/a	72	5.833	0.6322	0	None	No	0.001253 Param Inter 1 of 2

Sanitas™ v 10 0 15 Software licensed to LIC

Prediction Limit
Interwell Non-parametric

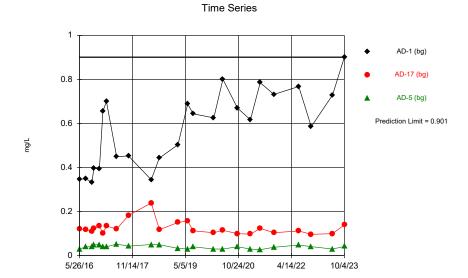


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 72 background values. Annual per-constituent alpha = 0.002227. Individual comparison alpha = 0.0003715 (1 of 2). Assumes 3 future values.

Constituent: Boron, total Analysis Run 1/3/2024 2:31 PM View: Interwell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

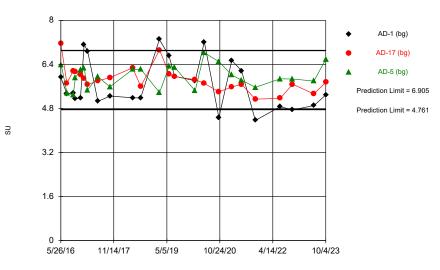
Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Interwell Parametric



Background Data Summary: Mean=5.833, Std. Dev = 0.6322, n=72. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9855, critical = 0.954. Kappa = 1.695 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001253. Assumes 3 future values.

Constituent: pH, field Analysis Run 1/3/2024 2:31 PM View: Interwell


Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas** v.10.0.15 Software licensed to . UG

Constituent: Boron, total Analysis Run 1/3/2024 2:33 PM View: Interwell Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Constituent: pH, field Analysis Run 1/3/2024 2:33 PM View: Interwell

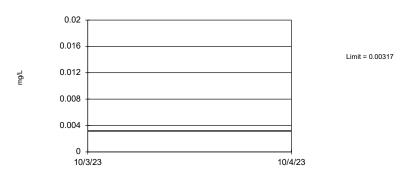
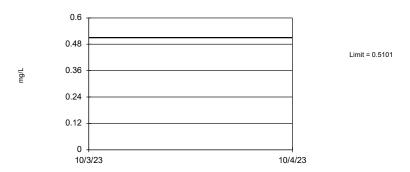

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE G UTLs

Upper Tolerance Limits Summary Table Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 1:35 PM

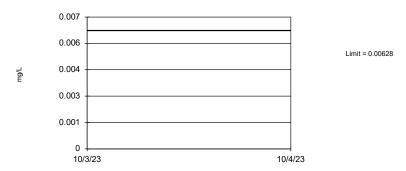
	Welsh PB	AP Clie	ent: Geosynte	ec Data: Wel	sh PBAP	Printed 1/3/2024, 1:	35 PM		
Constituent	Upper Lim.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	0.00317	69	n/a	n/a	66.67	n/a	n/a	0.02904	NP Inter(NDs)
Arsenic, total (mg/L)	0.00628	69	n/a	n/a	27.54	n/a	n/a	0.02904	NP Inter(normality)
Barium, total (mg/L)	0.5101	69	-2.889	1.114	0	None	ln(x)	0.05	Inter
Beryllium, total (mg/L)	0.001084	69	-8.991	1.088	7.246	None	ln(x)	0.05	Inter
Cadmium, total (mg/L)	0.004	67	n/a	n/a	35.82	n/a	n/a	0.03217	NP Inter(normality)
Chromium, total (mg/L)	0.002274	68	-7.915	0.9181	13.24	None	ln(x)	0.05	Inter
Cobalt, total (mg/L)	0.0748	69	n/a	n/a	0	n/a	n/a	0.02904	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	4.509	69	1.455	0.3362	0	None	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	0.583	72	n/a	n/a	38.89	n/a	n/a	0.02489	NP Inter(normality)
Lead, total (mg/L)	0.003384	69	n/a	n/a	52.17	n/a	n/a	0.02904	NP Inter(NDs)
Lithium, total (mg/L)	0.394	69	n/a	n/a	1.449	n/a	n/a	0.02904	NP Inter(normality)
Mercury, total (mg/L)	0.000033	69	n/a	n/a	59.42	n/a	n/a	0.02904	NP Inter(NDs)
Molybdenum, total (mg/L)	0.00243	68	n/a	n/a	70.59	n/a	n/a	0.03056	NP Inter(NDs)
Selenium, total (mg/L)	0.0101	69	n/a	n/a	37.68	n/a	n/a	0.02904	NP Inter(normality)
Thallium, total (mg/L)	0.001251	69	n/a	n/a	86.96	n/a	n/a	0.02904	NP Inter(NDs)

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 69 background values. 66.67% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

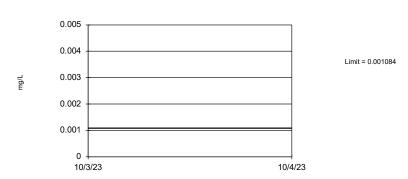
Constituent: Antimony, total Analysis Run 1/3/2024 1:33 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

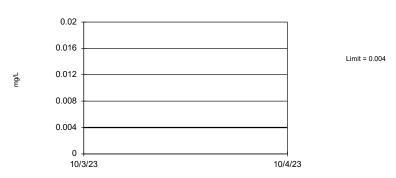
95% coverage. Background Data Summary (based on natural log transformation): Mean=-2.889, Std. Dev.=1.114, n=69. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9527, critical = 0.951. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 69 background values. 27.54% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

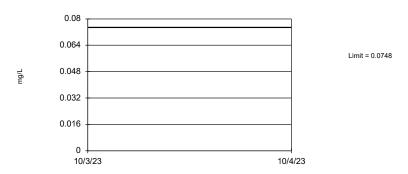
Constituent: Arsenic, total Analysis Run 1/3/2024 1:33 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

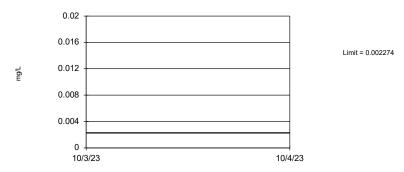
Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on natural log transformation): Mean=-8.991, Std. Dev.=1.088, n=69, 7.246% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9746, critical = 0.951. Report alpha = 0.05.


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 67 background values. 35.82% NDs. 93.16% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.03217.

Constituent: Cadmium, total Analysis Run 1/3/2024 1:33 PM View: UTLs

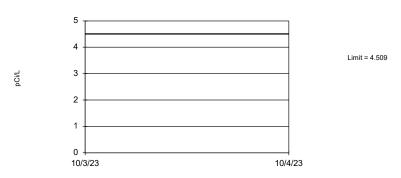
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

Tolerance Limit Interwell Non-parametric

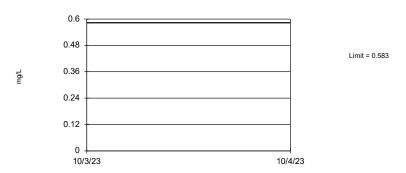
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 69 background values. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

Tolerance Limit Interwell Parametric


95% coverage. Background Data Summary (based on natural log transformation): Mean=-7.915, Std. Dev.=0.9181, n=68, 13.24% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9648, critical = 0.95. Report albha = 0.05.

Constituent: Chromium, total Analysis Run 1/3/2024 1:33 PM View: UTLs

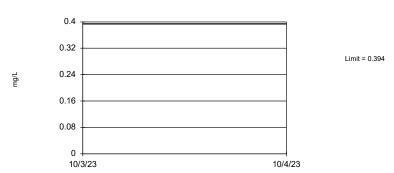
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on square root transformation): Mean=1.455, Std. Dev.=0.3362, n=69. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9728, critical = 0.951. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 72 background values. 38.89% NDs. 93.95% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; P9.02% coverage at alpha=0.5. Report alpha = 0.02489.

Constituent: Fluoride, total Analysis Run 1/3/2024 1:33 PM View: UTLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 69 background values. 1.449% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

Tolerance Limit

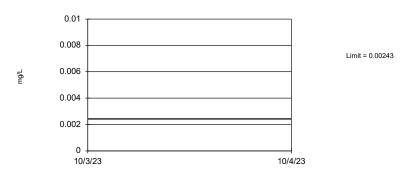
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 69 background values. 52.17% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

Constituent: Lead, total Analysis Run 1/3/2024 1:33 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Tolerance Limit


Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 69 background values. 59.42% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

Sanitas™ v.10.0.15 Software licensed to . UG

Tolerance Limit
Interwell Non-parametric

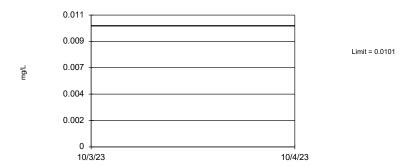

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 68 background values. 70.59% NDs. 93.55% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.03056.

Constituent: Molybdenum, total Analysis Run 1/3/2024 1:33 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Tolerance Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 69 background values. 86.96% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

Constituent: Thallium, total Analysis Run 1/3/2024 1:33 PM View: UTLs Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 69 background values. 37.68% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02904.

Constituent: Selenium, total Analysis Run 1/3/2024 1:33 PM View: UTLs

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

FIGURE H GWPS

WELSH P	BAP GWPS		
		Background	
Constituent Name	MCL	Limit	GWPS
Antimony, Total (mg/L)	0.006	0.0032	0.006
Arsenic, Total (mg/L)	0.01	0.0063	0.01
Barium, Total (mg/L)	2	0.51	2
Beryllium, Total (mg/L)	0.004	0.0011	0.004
Cadmium, Total (mg/L)	0.005	0.004	0.005
Chromium, Total (mg/L)	0.1	0.0023	0.1
Cobalt, Total (mg/L)	n/a	0.075	0.075
Combined Radium, Total (pCi/L)	5	4.51	5
Fluoride, Total (mg/L)	4	0.58	4
Lead, Total (mg/L)	n/a	0.0034	0.0034
Lithium, Total (mg/L)	n/a	0.39	0.39
Mercury, Total (mg/L)	0.002	0.000033	0.002
Molybdenum, Total (mg/L)	n/a	0.0024	0.0024
Selenium, Total (mg/L)	0.05	0.01	0.05
Thallium, Total (mg/L)	0.002	0.0013	0.002

^{*}MCL = Maximum Contaminant Level

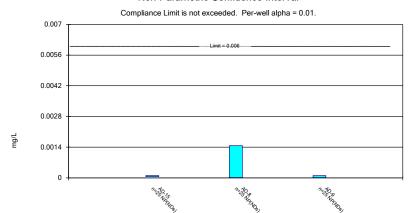
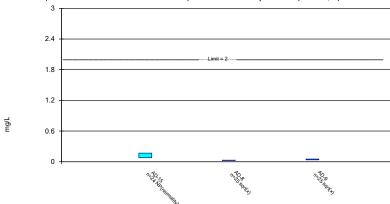

^{*}GWPS = Groundwater Protection Standard

FIGURE I Confidence Intervals

Confidence Intervals - All Results (No Significant) Welsh PBAP Client: Geosyntec Data: Welsh PBAP Printed 1/3/2024, 1:45 PM

		Welsh	PBAP Clie	nt: Geosyntec	Data: \	Welsh PBAP	Printed 1/3/2024	, 1:45 F	PM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Antimony, total (mg/L)	AD-15	0.0001	0.000056	0.006	No 25	0.0000808	0.0000315	68	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-8	0.001461	0.000012	0.006	No 25	0.0002673	0.0006685	80	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-9	0.0001	0.00001	0.006	No 25	0.00009272	0.0000252	92	None	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-15	0.006433	0.003072	0.01	No 24	0.005923	0.005488	0	None	ln(x)	0.01	Param.
Arsenic, total (mg/L)	AD-8	0.005	0.00027	0.01	No 25	0.001851	0.002211	32	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-9	0.005	0.0003	0.01	No 25	0.002236	0.002159	36	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-15	0.166	0.0753	2	No 24	0.1313	0.08986	0	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-8	0.02921	0.02309	2	No 25	0.02641	0.006621	0	None	sqrt(x)	0.01	Param.
Barium, total (mg/L)	AD-9	0.05128	0.03637	2	No 25	0.04474	0.01575	0	None	sqrt(x)	0.01	Param.
Beryllium, total (mg/L)	AD-15	0.0005657	0.0001797	0.004	No 24	0.0004842	0.0005735	0	None	x^(1/3)	0.01	Param.
Beryllium, total (mg/L)	AD-8	0.00005	0.00003	0.004	No 25	0.0000482	0.00003357	64	None	No	0.01	NP (NDs)
Beryllium, total (mg/L)	AD-9	0.001102	0.0006517	0.004	No 25	0.0008766	0.0004513	0	None	No	0.01	Param.
Cadmium, total (mg/L)	AD-15	0.0002465	0.000011	0.005	No 24	0.0001252	0.0001812	4.167	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-8	0.001	0.000021	0.005	No 25	0.0003778	0.0004763	36	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-9	0.0006189	0.000211	0.005	No 25	0.0006465	0.0007802	0	None	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-15	0.00437	0.0006352	0.1	No 24	0.007788	0.0144	0	None	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-8	0.0004323	0.0001582	0.1	No 25	0.0005033	0.0004552	20	Kaplan-Meier	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	AD-9	0.0005891	0.0003776	0.1	No 25	0.0006668	0.0003042	32	Kaplan-Meier	No No	0.01	Param.
Cobalt, total (mg/L)	AD-15	0.007	0.0029	0.075	No 24	0.005905	0.004794	0	None	No	0.01	NP (normality)
Cobalt, total (mg/L)	AD-8	0.006026	0.003671	0.075	No 25	0.004848	0.002363	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-9	0.02256	0.01675	0.075	No 25	0.01996	0.006288	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-15	2.375	1.598	5	No 24	1.987	0.7612	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-8	1.364	0.6365	5	No 25	1.282	1.32	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-9	2.541	1.839	5	No 25	2.19	0.7046	0	None	No	0.01	Param.
Fluoride, total (mg/L)	AD-15	0.09078	0.05783	4	No 25	0.1123	0.04808	36	Kaplan-Meier	sqrt(x)	0.01	Param.
Fluoride, total (mg/L)	AD-8	0.7873	0.5984	4	No 25	0.6614	0.2316	8	None	x^2	0.01	Param.
Fluoride, total (mg/L)	AD-9	0.21	0.15	4	No 25	0.2193	0.1413	24	None	No	0.01	NP (normality)
Lead, total (mg/L)	AD-15	0.003961	0.00009	0.0034	No 24	0.003303	0.005889	12.5	None	No	0.01	NP (normality)
Lead, total (mg/L)	AD-8	0.0002	0.00007	0.0034	No 25	0.0001497	0.00006657	56	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-9	0.0002	0.0001	0.0034	No 25	0.0001804	0.00009409	36	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-15	0.01112	0.004001	0.39	No 25	0.01401	0.02933	0	None	ln(x)	0.01	Param.
Lithium, total (mg/L)	AD-8	0.09815	0.07612	0.39	No 25	0.08714	0.0221	0	None	No	0.01	Param.
Lithium, total (mg/L)	AD-9	1.17	0.205	0.39	No 25	0.7148	0.4931	0	None	No	0.01	NP (normality)
Mercury, total (mg/L)	AD-15	0.000025	0.000005	0.002	No 23	0.00002073	0.00002685	43.48	None	No	0.01	NP (normality)
Mercury, total (mg/L)	AD-8	0.000008	0.000005	0.002	No 24	0.000006154	0.000003443	83.33	None	No	0.01	NP (NDs)
Mercury, total (mg/L)	AD-9	0.00000717	0.000003	0.002	No 24	0.000007633	0.000009276	33.33	None	No	0.01	NP (normality)
Molybdenum, total (mg/L)	AD-15	0.0005868	0.0004635	0.0024	No 25	0.0008348	0.0008833	64	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-8	0.0008389	0.0002	0.0024	No 25	0.0005478	0.0002494	80	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-9	0.0005	0.00011	0.0024	No 25	0.0004684	0.0001094	92	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-15	0.001464	0.0005559	0.05	No 24	0.001155	0.001161	8.333	None	sqrt(x)	0.01	Param.
Selenium, total (mg/L)	AD-8	0.0005	0.00008	0.05	No 25	0.0004897	0.0005041	52	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-9	0.00051	0.0003	0.05	No 25	0.0009748	0.001678	16	None	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-15	0.0002	0.00007	0.002	No 25	0.0002444	0.0003739	48	None	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-8	0.0002	0.00011	0.002	No 25	0.0002523	0.0003592	44	None	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-9	0.00022	0.0002	0.002	No 24	0.0003117	0.0004062	29.17	None	No	0.01	NP (normality)

Non-Parametric Confidence Interval

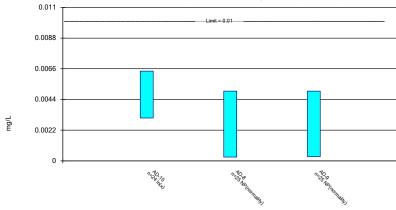

Constituent: Antimony, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

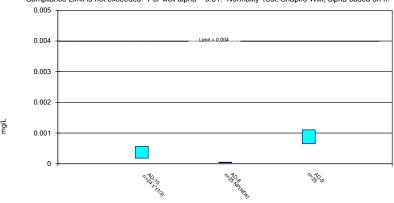


Constituent: Barium, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals

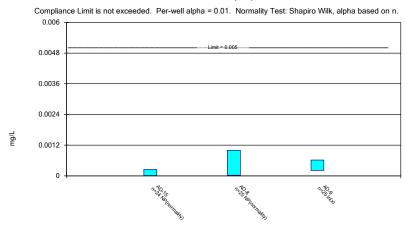
Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals

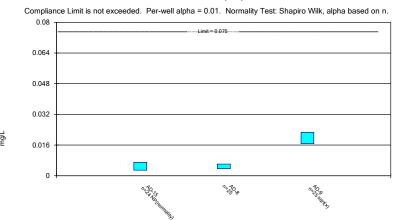
Welsh PBAP Client: Geosyntec Data: Welsh PBAP


Sanitas™ v.10.0.15 Software licensed to . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

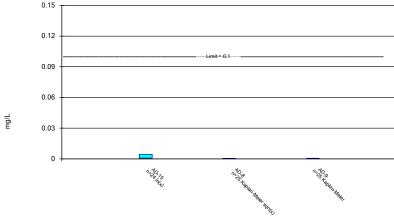


Constituent: Cadmium, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Parametric and Non-Parametric (NP) Confidence Interval

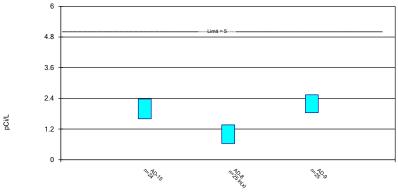


Constituent: Cobalt, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

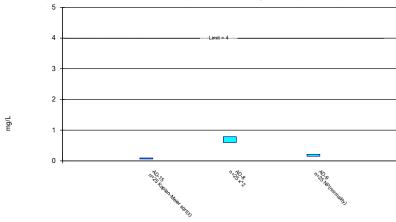
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals

Welsh PBAP Client: Geosyntec Data: Welsh PBAP

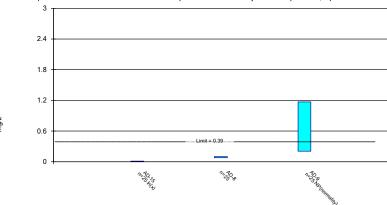
Sanitas™ v.10.0.15 Software licensed to . UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

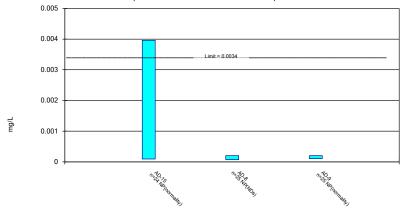
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

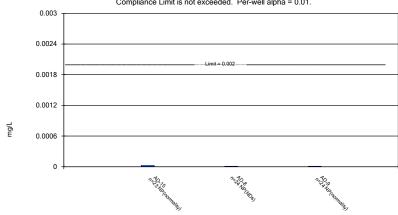
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Lead, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

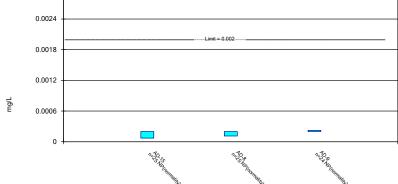
Sanitas™ v.10.0.15 Software licensed to . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Sanitas™ v.10.0.15 Software licensed to . UG

Non-Parametric Confidence Interval

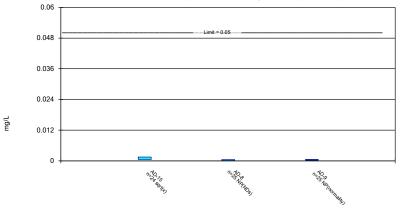

Compliance Limit is not exceeded. Per-well alpha = 0.01. 0.003 0.0024 0.0018 0.0012 0.0006

Constituent: Molybdenum, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

0.003

Non-Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Thallium, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

Sanitas™ v.10.0.15 Software licensed to . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 1/3/2024 1:41 PM View: Confidence Intervals Welsh PBAP Client: Geosyntec Data: Welsh PBAP

APPENDIX 3 NA

Alternate source demonstration(s) included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

APPENDIX 4 - NA

A summary of any transition between monitoring programs or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring

APPENDIX 5- NA

Reports documenting monitoring well plugging and abandonment or well installation are included in the appendix. or other information required to be included in the annual report such as program related notification or assessment of corrective measures.

APPENDIX 6

Field reports and analytical reports.

Facility:		AEP WASH	Of HS		s well illspection Form	rispection	Form		*
Samplin	Sampling Contractor:		CACIF		Sampling Period:	-	FEBRUARY 2023	23	
Well No.	Well	100	:		olgilature:	7	M		
	Locked	Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good	Well Properly Labeled	Well cap present	Comments	
AD-13	>	7	>	-	Suape				
A0-09	>	>		,	7	>	7		
AD-08	>	>	, >)	>	>	7		
A0-05	>	3	1/4	2	>	>	7		
A0-0A	>	, >	3	> !	3	>	\		13.48
AD-12	>	>	2	> -	>	7	7		12.75
10-0H	>	>		3	3	7	7		19.95
AD-02	>	7			>	>	7	T	17.83
AD-03	\	7	, >	> >		>	.>	PAD BROKEN	13,17
AD-07	>	7	7		,	>)		
A P-16R	>	>	7	3	> _	>)		17,31
10-04c	5	>	7	. _	5	> .	\		
1structions: (Complete fc	<u>istructions:</u> Complete form and submit to AEP		tal Services with	7000	>	>		
nsdustactory	items shou	insatisiactory items should be left blank with a		omments section	note in the comments section on what needs to be a section or what	check mark for	items that are	satisfactory.	

Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

FEBRUANY 2023	Liter
Sampling Period:	Signature:
1615H M	CACIF
acility: $\beta \in \mathcal{P} $	ampling Contractor: _

Locked Fi		and the second s		ì		L	COLLINGING	
>	Functioning	After Sampling	Well Maintained	Housing, and Pad in Good Shape	Properly Labeled	present		
	>	>	>	>	>	>		1919
>	>	>		>	>	>		15,90
>	>	>	>	>	<i>\</i>	>		15.94
>	>	1	>	>	>	>		2333
>	>	>	V	>	7	>		5.71
			>	>		>	NO LOCK	4.66
>	>	>	>	>	>	>		9.34
								_

Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

		Comments			DTW 19.26	•						re satisfactory.
2-6-23	Jamille	Well cap		\	7	\	\					for items that a
d:	The state of the s	Well	Labeled	\	\	\	1					sce check mark
Sampling Period:	Signature:	Well Casing,	Pad in Good Shape	>	>	\	\					th Field Data. Pla
S	iS	Access to Well	Maintained	\	>	\	>					ental Services wi
	Tago	Well Locked After Sampling	0	\	\	(\					Instructions: Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory.
Wolsh	tor:	Lock	0	>	>)	\					e form and subn
	Contraci	Well		>	1	1	\					: Complet
Facility: _	Sampling Contractor:	Well No.		40.15	91.10	Poll	4514					nstructions

Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	は ひか こんじん ひか		
Sample by	Kenny B. Dead	Sample Location ID	d
(· · · · · · ·	111111111111111111111111111111111111111	מבולים בסמים	

7.30	(TOC)
Depth to water, feet (TOC)	Measured Total Depth, feet (TOC)

MULLO	02/07/23
Sample Location ID	Depth to water date

	Temperature	(a)	16.89	17.71	17,63	17,72							
	ORP	(mV)	372	420	427	431							
	D.O.	(mg/L)	3.21	7.07	2,93	2,88							
	Turbidity	(N.T.U)	20.2	1 15	4.6	3.9							
	Spec Cond	(mS/cm)	75	72	77	6.5							
	Hd	(S.U.)	4.61	8916	14.71	4.73							
	Flow Rate	(mL/min)	220	022	022	022							
Purge Stabilization Data	Water Depth	(from TOC)	7.91	7,98	8,02	8,06							
Purge Sta	Time		0918	0923	0928	0933							

A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	
Total volume purged	
Sample appearance	CLMA
Sample time	0 935
Sample date	02/02/23

	Location ID AD-04 C
do H 572M d) F	KFMNY MIDENMID
Facility Name	Sample by

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

Depth to water date 02/07/23

Purge Sta	Purge Stabilization Data									
Ë	Water Depth	Flow Rate	Hd	Spec Cond	Turbidity	D.O.	ORP	Temperature		
ם	(from TOC)	(mL/min)	(S.U.)	(mS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1042	8,13	210	4.82	343	1.8	8,23	427	18,59		
1647	0218	210	18.5	350.	4.7	2,48	226	18.61		
7501	978	210	7.5	350	3,8	14.2	232	18,63		
1057	8.33	210	4.91	352	4,5	2,36	724	18,66		
								THE REAL PROPERTY AND PERSONS ASSESSED.	The second later than	The same of the sa

Total volume purged	
Sample appearance	7/6477
Sample time	0501
Sample date	2/40/20

Facility Name	TELST PD		
Sample by	KFURY MI DENALD	Sample Location ID	∀

13.81	60,62
Depth to water, feet (TOC)	Measured Total Depth, feet (TOC)

A0-08	5010100
Sample Location ID	Denth to water date

	Temperature	(sc)	59.06	(b'0Z	10.12	2012									
	ORP	(mV)	SKE	hhE	245	2 h E		¥							
	D.0.	(mg/L)	1718	1.94	1:73	69									
	Turbidity	(N.T.U)	6.8	12.8	13.2	12.0		34							
	Spec Cond	(µS/cm)	473	3ch	181	786									
	Hd	(S.U.)	6.30	6.35	6135	6.33									
	Flow Rate	(mL/min)	220	022	220	220									
Purge Stabilization Data	Water Depth	(from TOC)	14,23	14,27	14,29	14.36			ž	(A) production					
Purge Sta	Time)	1011	9101	1021	9201	•		1	/					

Total volume purged	
Sample appearance	1647
Sample time	1028
Sample date	12/99/20

0 0	10-07
	Sample Location ID
AEP WELSHPP.	KERNY M. Den Ald
Facility Name	Sample by

Depth to water, feet (TOC) | 3, 14

Measured Total Depth, feet (TOC) | 3 6 1 4 5

Depth to water date 02/00/2

											41							
	lemperature (°C)	17.91		8:36	14:06	9.13	19 21											
0	ORP (mV)	212	2/2	2000	386	292	296											
	D.O. (mg/L)	3(0)	2,6	3,15	3.09	3,06	692	100										
	Turbidity (N T II)	10.1.10	10:1	7 -	[2,]	7.11	2 61	6 17 1										
	Spec Cond	(12/c 11)	503	3 5 4	386	102	0011	700										
	Hd	(3.0.)	2,47	5,38	20,2	7 90	200	1.81										
	Flow Rate	(mL/min)	218	812	2.18	200	010	8 7										
Purge Stabilization Data	Water Depth	(trom 10C)	15,48	12.51	13, 64	12/2) i @ /	14,73										
Purge Stabi	Time		000	0913	0100	0100	0760	0428										

Total volume purged	Sample appearance	Carripic appearance	Sample time	0+010 010000

AD-11	Temperature (°C) (4.35 (4.45) (4.74) (4.74)	
Sample Location ID Depth to water date	D.O. ORP TO (mg/L) (mv) (mv) (mv) (mv) (mv) (mv) (mv) (mv	
6	Spec Cond Turbidity (µS/cm) (µS/cm) (N.T.U) 45. 5.1 5.1 5.1	
1421 1421 22.	Flow Rate pH (S.U.) 22.0 5.45 22.0 5.62 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.0	2.6.13
Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	Time (from TOC) (625 (413) 14.34 19.35 14.35 14.35 Total volume purged Sample appearance Sample time	Sample date

Diplicate 915

Facility Name	H fo WELSHAP
Sample by	Kinny mi Dengia

14,00	0 6'61
Depth to water, feet (TOC)	Measured Total Depth, feet (TOC)

140-13	02/06/23
Sample Location ID	Depth to water date

Purge Stabilization Data								
	Flow Rate	Hd	Spec Cond	Turbidity	D.0.	ORP	Temperature	
	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
	110	5.43	456	2.8	4,64	372	20,12	
	110	85'5	524	9.7	3,91	373	20,23	
_								
_			1.5					
_		WORLT	HOLD WATTER LEVEL	n Were				
_								
_								
-							32	
-								
 								
-								
-								
-								
_								
_								
\vdash								

Total volume purged	
Sample appearance	Clara
Sample time	1103
Sample date	02/00/23

2-623	Temperature (°C)	
Sample Location ID Depth to water date	ORP (mV) 227 243 245	*
Sample 1 Depth to	Turbidity D.O. (mg/l.) 21.3 ao/ 0 0.15 0 0.15	
	Spec Cond Tu (transfer) (transfer	
12.64 12.64 24.2	(S.U.) 4.84 4.77 4.77 4.77 (L.) (Slo) (Slo) (Slo) (Slo)	
(TOC)	(mL/min) 226 122 122 122 122 122 122 122 122 122	
	Time (from TOC) (126 12.87 12.47 12.	
Facility Name Sample by Depth to war Measured Tot	Time (126 1025 1134 Total volume Sample appe Sample time Sample date	

•

2-6-23	Temperature (°C) (7°-7) (°C) (7°-18) (2.18)	
Sample Location ID Depth to water date	7. ORP (mV) (mV) 4.5 4.6 5.7 1.4 1.4 5.7 1.4 1.4 5.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1	
Sample	Turbidity D.O. (mg/L) 33 0 85 24 0.13 18 0.13 18 0.05 18 0.0	
12-miles.	Spec Cond (µS/cm) 2.5 8 147 137 147	
Molsh	PH (S.U.) 4(37) 4(37) 4(33) 4(33) 4(33)	16.1. 957 2-6-23
OC) Ceet (TOC	C) (mL/min) 250 250 250 250 250 250 250 250 250 250	
Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (TOC) Purge Stabilization Data	11me (from TOC) 425 435 435 445 546 547 547 547 547 547 547 547 547 547 547	Sample appearance Sample time Sample date

Facility Name	A CO WING IT PO
Sample by	Kray M. Dangeld

Depth to water, feet (TOC) $2 \dot{b}$, $0 \ 3$ Measured Total Depth, feet (TOC) $3 \ i$, $3 \ i$

Sample Location ID $\beta 0 - 16 R$ Depth to water date $\delta 2 / \delta 7 / 2 3$

Purge Sta	Purge Stabilization Data								
Ä	Water Depth	Flow Rate	Hd	Spec Cond	Turbidity	D.0.	ORP	Temperature	
ב	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1000	26,32	120	3.75	212	11.8	5.31	884	18.37	
1005	26.37	120	3,71	209	3,6	12.21	75h	18.44	
0101	26,40	021	3,67	202	2.0	2,18	427	14,81	
1015	26,44	120	3,65	197	217	2,14	61h	18,49	

Total volume purged	
Sample appearance	W1)
Sample time	1017
Sample date	02/07/23

June 2023		Comments	DIW = Depth to	W ster	2	Vegitatin afound Well	.Vestating alound well	DTW-11.61 OVERGIOWN		No Bolleids	DTW - (5.0) No Dellings		NTW 7.03	DTW 10,94	DTW 12.01		
	WAT KANNING	Well Cap	Present and Vented*	Υ	\	\)			7	1)		\	\		
Sampling Period:	nre:	Well	Properly Labeled		\	\	J	7	1)))		\	\		
Sampli	Signature:	Well Casing,	Protective Cover, Barriers and	Pad in Good Shape	\	\))	\)		\	1	\	\	P	
		Access to	Well Maintained		1	÷			\)	\	\	J		·		
ļ	7	Well	Locked After Sampling)	\))	\)	\	\	\))		
المام	or:	Fastener	and Lock Functioning		\	1)	1)	1	,	/)			
	Contracto	Well	Locked		7	1	7	7	\)	\	7)	>			
Facility: _	Sampling Contractor:	Well No.			AFIR	An	A - 1-4	AD-10	An. 16A	AD . V	AD:2	ANIJ	7:12	40-22	A-23		

*Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

2023

Sampling Period:	Signature:
11	CACIF ENVIOUN
acility: レドン 日	Sampling Contractor:

Comments				175.5	17.61	8,6	17,23		13.13			not moute
Well cap C	>	7	>	>	2	>	>	>	>	>	>	V NOT
Well Properly Labeled	>	1	1	/	>	>	>	>	>	>	>	>
Well Casing, Housing, and Pad in Good Shape	>	>	>	>	1	>	>	>	>	>	>	
Access to Well Maintained	>	>	>	>	>	>	7		>	>	>	
Well Locked After Sampling	>	>	>	>	>	>	>	/	^	1	>	,
Lock Functioning	>	>	>	>	>	5	>	>	>	>	1	>
Well	>	>	>	>	>	>	>	>	>	>	>	,,
Well No.	APIB	AD-08	40-04C	40-04	A10-04A	AD-076	A0-07	A0-12	90-0A	A0-05	A0-09	0.00

Instructions: Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

12	ナイアションコーナ		
7	Kinny Mipongy	Sample Location ID	10-dH
	18,38	Depth to water date	06/06/23
	78:71		

	Temperature	(2)	23,12	23,08	23.04	22,97							
	ORP	(mV)	200	197	191	186							
	D.O.	(mg/L)	1.78	1,50	1:36	1.31							
	Turbidity	(N.T.U)	13,6	1,3	. 8	610							
	Spec Cond	(m2/cm)	364	3.04	767	162							
	Hd	(S.U.)	4.99	4.93	263	1615							
	Flow Rate	(mL/min)	214	412	412	717							
Purge Stabilization Data	Water Depth	(from TOC)	18.42	18,46	18,51	4.56							
Purge Stabi	Time		1037	7401	1047	1052							

BACKERONNO DUPLICATE 120 0

chan

Total volume purged Sample appearance

Sample time Sample date

Facility Name		11/01/01						
Sample by		W C 12 M				•		
		7 th 147.	1. 1-01		Sample Location ID	ion ID	7- 17	
Depth to water feet (TOC)								
Moseurod Total Parate 6-15	001	5	,0,		Depth to water date	er date	1172	
ivieasuled lotal Depth, teet (10C)	(100)	70.	3				6.6-6.	
Purge Stabilization Data							~	
14.00	1	<u> </u>						
Time water Deptin	Flow Kate	Hd	Spec Cond	Turbidity	D.O.	aao	1	
	(mL/min)	(S.U.)	(µS/cm)	E L	(1/200)		e in berarure	
642 6.48	300	70.7	(1)	27 1	A Tried	ď	(5,)	
16471 9.54	300	たっつ) (-	2000 C	ľ	25.68	
1057 6 60	202	1,2,7			3.46	~	ング、ダグ	
-	7,0	1, 50	6.0	۲, ۶	3.49	32.7	74.17	
	200	~,	63	a-	3.4	37.4	27.17	
					2		27,08	
							*	
						475000000000000000000000000000000000000		
Total volume purged								
Sample appearance		Cleri						
Sample time		1059						
Sample date		1-6-23						
The state of the s		,						

Facility Name	ACP WASH DP		
Sample by	12 from m Derain	Sample Location ID	PO-04C
	1		
Depth to water, feet (TOC)	h8`8	Depth to water date	06/05/23
Measured Total Depth, feet (TOC)	oc) 8.82		

	Temperature (°C)	72.59	72:22	22,13	90122	22.01							
	ORP (mV)	376	198	174	06/	163							
	D.O. (mg/l.)	7.28	2,41	2,33	6212	62'2							
	Turbidity (N T II)	18.7	17,5	17.3	17,3	0'11							
	Spec Cond	120	Sur Sur	337	335	734							
	Hd	5 2 5	51.5	2115	5.10	80.5							
	Flow Rate	200	200	200	200	002							
Purge Stabilization Data	Water Depth	(201 1011)	8.99	9.03	9,09	7							
Purge Stak	Time	2	1010	1024	1029	1034							

Total volume purged	
Sample appearance	C1(44)
Sample time	1036.
Sample date	06/05/23

Facility Name	TO WAGH PO		
Sample by	Kiny Millerail	Sample Location ID	A.O05
	14 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Depth to water, feet (TOC)	14.42	Depth to water date	06/00/23
Aeasured Total Depth, feet (TOC)	38'28		

				5									
	Temperature	(°C)	21,52	21.40									
	ORP	(mV)	121	561									
	D:0.	(mg/L)	4157	75'6			H						
	Turbidity	(N.T.U)	166	158			with the						
	Spec Cond	(µS/cm)	464	463			wit the water to the						
	Hd	(S.U.)	525	5,80									
	Flow Rate	(mL/min)	601	F01									
Purge Stabilization Data	Water Depth	(from TOC)	15.37	16,52									
Purge Stabi	Time)	9280	0831									

Total volume purged	
Sample appearance	TUR 210
Sample time	00 00
Sample date	06/06/23

Facility Name H CP ~ ELSH P F Sample by C M C D P C P F Depth to water, feet (TOC) Median Street Median P F		000		
Sam Nater, feet (TOC) 1/4、S () Dep Total Depth, feet (TOC) 2 % () V	Facility Name	4CP > F15H PF		
14.50 2 9.09	Sample by	16 promy M. C. Der M. C.	Sample Location ID	AD-08
14.50 Pop 2				
Measured Total Depth, feet (TOC) 2 9,04	Depth to water, feet (TOC)	14.50	Depth to water date	82/50/90
	Measured Total Depth, feet (TOC)	5006 2		

	Temperature	(၁)	22.45	27.79	72.87	58.27								
	ORP	(mV)	318	339	345	357								
	D:0	(mg/L)	2.81	2,78	54.2	2,73								
	Turbidity	(N.T.U)	13,6	8.3	9,0	8.6	•							
	Spec Cond	(µS/cm)	1/Lh	666	473	26h		2						
	Н	(S.U.)	56.3	1119	(11)	6.13								
	Flow Rate	(mL/min)	012	210	210	012								
Purge Stabilization Data	Water Depth	(from TOC)	14,72	14,74	14.74	14,77								
Purge Stabi	Time)	9580	1000	9060	100				3				

PBAP DUPLICATT. 1200

1441

Total volume purged

Sample appearance Sample time

Sample date

Facility Name	AFP WHSH PP.		· c	- 1
Sample by	KINDY MIDONALD	Sample Location ID	FO-09	
				1
Depth to water, feet (TOC)	E2/h/	Depth to water date	06/06/73	
Measured Total Depth, feet (TOC)	56.95			

Turbidity D.O. ORP (N.T.U) (mg/L) (mV) 2, 8	rge Sta	Purge Stabilization Data								T
14,31 218 5.08 568 2.8 2.62 217 14,39 218 5.05 566 1.1 2,37 219 14,39 218 5.10 567 0.7 2.37 213 14,39 218 5.10 567 2.37 213	e	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
14,39 2.18 5.05 5.66 1.1 2,37 2.19 14,39 2.18 5.00 5.61 0.7 2.34 2.13 14,42 2.18 5.10 5.61 0.9 2.31 2.11	38	14.3)	812	80.5	895	2.8	2912	217	25,77	
14,39 218 5,10 561 0,9 2,34 213 14,42 218 5,10 561 0,9 2,34 211 112 152 0,9 2,10 361 0,9 2,3 211	I.	14,33	812	50.5	266	1.1	2,37	612	18122	
117 12 218 5:10 561 0.9 2:31 211	48	14,39	218	2015	557	0,7	2,34	512	48.52	
	53	_	218	5.10	561	6.0	2,3	112	18'22	
									e.	
				24						

Total volume purged	
Sample appearance	Clear
Sample time	0955
Sample date	06/06/23

Temperature 22.0x 2 h 12 ÓRP (m) Depth to water date Sample Location ID (mg/L) Turbidity (N.T.U) 7.75 Spec Cond (µS/cm) 585 3.3 ₹ 2 (S.U.) Welsh ᇊ Flow Rate (mL/min) 204 200 200 Measured Total Depth, feet (TOC) Depth to water, feet (TOC) Water Depth (from TOC) Purge Stabilization Data 8= 21 5 Š Facility Name Sample by グナー = 3E 1043 57.0 Time

Land fill Duplicet

1-5-23

clear

Total volume purged Sample appearance

Sample time Sample date

Facility Name	ACD WAS	SH PP			
Sample by	(マペン)	7 Alpenaco	Sample Location ID	PAD-13	
Depth to water, feet (TOC)		20191	Depth to water date	52/50/90	
Measured Total Depth, feet (TOC)	()	19,40			0

	Temperature (°C)	27,54	19:22									
	ORP (mV)	277	236									
	D.O. (mg/L)	3,82	2,97									
	Turbidity (N.T.U)	20.7	19,4			I some later						
	Spec Cond	790	493			111000	,					
	Hd	7,62	69'6			120h 17						
	Flow Rate (ml /min)	101	101									
Purge Stabilization Data	Water Depth	16,94	70'81									
Purge Stak	Time	8380	Ch80	•								

Total volume purged	
Sample appearance	(War
Sample time	6/11
Sample date	62/50/90

Facility Name	Š	W. I. I.							
Sample by		Total tou	1		Cample Cantion 15	. (1			
		Į			מינולוגיי	03 HOL	AD: 14	j	
Depth to water, feet (TOC)		7 7			-				
Measured Total Depth, feet (TOC)	TOC)	1/1	127	-	Depth to water date	ter date	(-5-23		
				· 1					:
Purge Stabilization Data									
Time Water Depth	Flow Rate	Hd	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	22.0	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
114, 15.70	220	75.5	27.0	7: 57	7.50	\$	23.40		
	\mathcal{U}°	5,33	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, w	10,00	200	72.11		
1156 15.79	220	5.34	761	200	0.08	色のこ	7,77		*****
					000	X =1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		*******

							-		
Sover									11100
									24UM)
									3
					,				
Total volume purged									
Sample appearance		cleul							
Sample time		1158							
Sample date		6-5-23							

Facility Name		Mole k						
Sample by	1	1	-+		Cample Lores			
	-			_	Sample Location ID	cron (C)	AD-15	
Depth to water, feet (TOC)		5167		,	Destablish			
Measured Total Depth, feet (TOC)	(TOC)	1,44.		· •	Depth to water date	er date	6-5-53	
							u.	
Purge Stabilization Data								
Time Water Depth	Flow Rate	Hď	Spec Cond	Turbidity	0	400		
(fro	(mL/min)	(S.U.)	(µS/cm)	(N.T.III)	(2,2)		emperature	⇔
928 21.81	2 K	4.03	27.5	17.3	(11/E/L)	(my)		
533 22.02	280	たった	2	100		260	~	
938 22.11	280	5/7	145	75.5	000	283	23.33	144
643 22.15	286	11 17	3	1/[4		258	23.42	
4.18 22 17	28,	7	1012	5	0,51	286	1	
453 22.18	2%	1~	2/0	2	0.87	780	23,54	
グー・ハー・メント	Ž		27	92.	0,79	2.75	23.65	
	30,	4	2 \$	35	C. 74	275	23,71	
4 4	207	7.50	5	30	0.70	> 71	23.72	
7-57	286	4.32	187	~	L, 0	> 16	12 21	
1013 22.11	\$ ~	4.33	183	13.2	11 7	0,7	12.10	
					20.,,	000	<>> /	
Total volume purged			_					
Sample appearance		4.1bid						
Sample time		1015		·				
Sample date		1-4-23						
				_				

Sample Location ID An-167 Depth to water date 6-6-23		D.0.	3.4 2.77 225 23.64	0 2.53 336 22.2										SA27 D.0
Welsh Hemilton. 25.48 31.30	THE RESIDENCE OF THE PROPERTY		3.36 217	3.42 205								Clear	418	£2-9-)
Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	Purge Stabilization Data	>	2 26.	26,43		Greek	2 24.4		4-2		Total volume purged	Sample appearance	Sample time	Sample date

		٠					-	-												
	2.9.															-				
AD	6-6.	- F	- - - -	reinperature (°C)	26.23	75.0											-			
rtion ID	ter date		dao	(mV)	75															
Sample Location ID	Depth to water date		D.0.	(mg/L)	27.3						-									
			Turbidity	(N.T.U)	213								1				-			
9. 11. 4.5	101		Spec Cond	(µS/cm)	1,770					1.01	0 0				-					
15.5	27.62		Hd .	(3,U.)	5.35													Class	1134	6-6-23
	(50)		Flow Rate	(11117)	0 0				-											
acility Name Jample by Depth to water feat (7007)	Measured Total Depth, feet (TOC)	Purge Stabilization Data	Water Depth (from TOC)	23.69	24,72							-					otal volume purged	Sample appearance	ime	Jate
Facility Name Sample by Depth to war	Measure	Purge St	Time	128 128 128 128 128 128 128 128 128 128	\$3,6									-			Total vol	Sample a	Sample time	Sample date

CCR Groundwater Monitoring Well Inspection Form

		vtd s					16.99			9.90	18.62	18.71	7	21.40
~		Comments											DVACALWA	DUFACHEN
cTB/M 6023		Well cap	present	>	>	>	7	>	\ \	\	>	>	>	>
	A.	Well	Properly Labeled	>	>	1	1	/	1					>
Sampling Period:	Signature:	Well Casing,	Housing, and Pad in Good Shape)	1	0		1		>		>	>	>
		Access to	Well Maintained	>)	>				>			
1.1	FAOIC	Well Locked	After Sampling	>	1	>	1	1	1		>			<i>></i>
THE WEIST IT		Lock	Functioning	>	1	~	>	>	1	>		>	/	<i>></i>
7	g Contrac	Well	Locked	>	>	>	>	>	>	>	>	`.	\ \	>
Facility:	Sampling Contractor:	Well No.		H0-13	A10-09	A10-08	A D-07	A10-05	AD-04c	AD-046	AD-07	A.D-04a	10-0H	21-04

Instructions: Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

O Vin Grown

CCR Groundwater Monitoring Well Inspection Form

											:						
Oct 1023	Smo	Comments								***			No halliers	Da(1.e/s			
	Part.	Well Cap	Present	Vented*		\	\	\	\	\	\			\	\	\	
Sampling Period:	ure:	Well	Properly					\	\	\	\	\	\	\	\	\	<u>-</u>
Sampl	Signature:	Well Casing,	Protective Cover.	Barriers and Pad in Good	Shape	\	\	\	\	\					\	\	
		Access to	Well Maintained			\	\	\	\		\		\		\	\	
	لله	Well	Locked	Sampling		\			\		\	\	\	\	\	\	
Welsh	or:	Fastener	and Lock Functioning			\	\	\	\		/	`	\	\		\	
7	Contract	Well	Locked			/		\	\	\	\	\	\	\	\	\	
Facility: _	Sampling Contractor:	Well No.				AD-15	AD-10	AD-11	AD-11	AD-17	Ab.18	M-16R	Ah-3	18-5	AD-22	AD :23	

*Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility Name	AS WELCH PP		
Sample by	Kerry M. Dowald	Sample Location ID	10-01
Depth to water, feet (TOC)	90'0	Depth to water date	10/04/23
Measured Total Depth, feet (TOC)	28.71		

	Temperature	54.42	24,43	24,43	24,40							
	ORP (2017)	383	287	389	391							
	D:0.	(IIIB/L) 2, (1)	2,10	80'2	2,05							
	Turbidity	2,8	1.3	1.1	8.0							
	Spec Cond	7.70	822	692	267							
	Hd	5.30	5.30	525	5.29							
	Flow Rate	022	072	220	220							
Purge Stabilization Data	Water Depth	19.26	19,27	19,27	19.20							
Purge Sta	Time	4560	6560	1001	6001							

BACKGALLIND DUP 1200

WW377

Sample appearance Sample time

Sample date

Total volume purged

	5			
	20 J	Temperature (°C)		
	ation ID	ORP (mV) 33 7 35 7 346 343		
• 4	Sample Location ID Depth to water date	0.0. (mg/l) 1,35 0.65 0.45		
·		Turbidity (N.T.U) 5, 26.57 23.3		
	24,13	Spec Cond (uS/cm) (s d		
15/07	0.1	Hd (S.U.) 4.4.4.4.4.4.4.4.8.4.4.4.8.4.4.4.8.4.4.8.4.4.8.4.4.8.4.4.8.4.4.8.4.4.8.4.4.8.4.4.4.8.4.4.8.4.4.8.4.4.4.8.4.4.8.4.4.4.8.4.4.4.8.4	clese 050 0-4-23	
		Flow Rate (mL/min)		•
me	Depth-to water, feet (TOC) Measured Total Depth, feet (TOC) Purge Stabilization Data	Water Depth (from TOC) 0.45 11.06 11.11	e purged earance	
Facility Name Sample by	Depth-to	Time (25/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	Total volume purged Sample time Sample time	

Sample by King of Mary Man 1	Facility Name	FF >615+		
	Sample by	KINNY M. News. 1	Sample Location ID	カン・しな

Depth to water, feet (TOC)	(0,0)
Measured Total Depth, feet (TOC)	18.87

82/h
10/0
epth to water date

		J. De la Contraction de la Con												
	Temperature	(a,C)	211/2	24,65	24,67	24.68								
	ORP	(mV)	782	262	396	った								
	D.O.	(mg/L)	11/5	3.07	5,93	2,88								
	Turbidity	(N.T.U)	9.21	1.8	10,7	211	1.111							
	Spec Cond	(mS/cm)	345	341	340	740								
	Hd	(S.U.)	18/6	28.7	4.94	4.97								
	Flow Rate	(mL/min)	210	012	210	210								
Purge Stabilization Data	Water Depth	(from TOC)	10.11	10,16	10,20	10.23								
Purge Stak	Time)	4060	0000	61160	6 6 6 0								

Total volume purged	
Sample appearance	Chorn
Sample time	0921
Sample date	10/04/23

Facility Name	TT WEIST 1			
Sample by	KINNY OF DOME	Samule Location ID	20-05	

Depth to water, feet (TOC) $|\mathcal{A}.38$ Measured Total Depth, feet (TOC) 32.88

Depth to water date $|0/64/z_3|$

Spec Cond Turbidity D.O. ORP Temperature (μS/cm) (M.T.U) (mg/L) (mV) (°C) (°C) (γγ β β β β β β β β β β β β β β β β β β
(N.T.U) (mg/L) (mV) 16
116 2,79 329 42,3 1,43 87 44.0
45.3 1.43 87
WOR17 HEU

Total volume purged Sample appearance Sample time Sample date Total volume		
Sample appearance $\frac{\int L(c_H T L^4) + L M \delta I O}{1 1 8}$ Sample date $\frac{10}{1000000000000000000000000000000000$	Total volume purged	
Sample time	Sample appearance	SLICHTLY TLABID
Sample date 10/04/23	Sample time	8111
	Sample date	10/04/23

Facility Name	AFO WELSH PP			
Sample by	Kinry McDorAnd	Sample Location ID	HO-08	
				į į
Depth to water, feet (TOC)	14.57	Depth to water date	10/03/23	
Measured Total Depth, feet (TOC)	29.64			

	*												
	Temperature (°C)	26.42	26,69	66.32	26.76								
	ORP (mV)	47	43	40	39								
	D.O. (mg/L)	2,03	1.69	1.68	5911								
	Turbidity (N.T.U)	4.8	5/2	1.6	1.3								
	Spec Cond (µS/cm)	SSH	2htz	438	433								
	рН (S.U.)	6519	6667	19:9	6.68								
	Flow Rate (mL/min)	216	216	912	912		2						
Purge Stabilization Data	Water Depth (from TOC)	12'71	14,6	19,41	14,63								
Purge Stab	Time	1003	1008	1017	1018								

PBAP DUPLICATE 1200

(Com

Total volume purged Sample appearance

Sample time Sample date

Facility Name	AFF WELSH PP			
Sample by	Kenty My Dona U	Sample Location ID	P-0-9	
Depth to water, feet (TOC)	= 5	Depth to water date	10/03/23	
Measured Total Depth, feet (TOC)	36,45		-	

	Temperature	10.50	1200	23,09	22,87	23.01	22,96							
	ORP (m)/	100	200	28	10	id	52							
	D.O.	(IIIB/L) S (, f	100	2,34	2,33	2,27	7,24							
	Turbidity	(N.1.0)	5 - 1	0.0	0.0	0,6	0 0							
	Spec Cond	(haycill)	05 12	1300	1310	1480	0951							
	Hd	(3.0.)	0,56	5,88	185	5.8.5	683							
	Flow Rate	770	177	072	220	022	220							
Purge Stabilization Data	Water Depth	14 10	0 11	14.21	17,22	14,27	14,29							
Purge Stab	Time	100	000	205	900	9	126							

Total volume purged	
Sample appearance	Clear
Sample time	6923
Sample date	10/03/23

10-3.23 Temperature ングとなる ORP CAST Depth to water date Sample Location ID (mg/L) 0.00 0.0 1300 Turbidity (N.T.U) 19.2 22.5 Spec Cand (µS/cm) 980 N=41. 4=17 22,10 (S.U.) 1,17 4.15 0 7 717 드 C Cool Flow Rate (mL/min) 200 Measured Total Depth, feet (TOC) Depth-to water, feet (TOC) Water Depth (from TOC) Purge Stabilization Data 5.32 537 13.38 Total volume purged Sample appearance Sample time Sample date Sample by 1000 Time

Facility Name

Lendfill Dup 1036

2000	THE WELSHIP		
Sample by	KIND MIDENAUS	Sample Location ID	An-13
			7
Depth to water, feet (TOC)	16.54	Depth to water date	10/03/23
Measured Total Depth, feet (TOC)	19,40		

Total volume purged	
Sample appearance	CLEAN
Sample time	8111
Sample date	22/20/01

S				
4p.14	Temperature (°C) 341 26.73 26.25			
Sample Location ID Depth to water date	D.O. ORP (mg/l) (mv) 26.47 26.3 0.95 28.5			
Samp	Turbidity (m.T.U) (m.24,3 2,6.4,6.4,5.4,6.4,6.4,6.4,6.4,6.4,6.4,6.4,6.4,6.4,6			
بً، کری)	Spec Cond (µS/cm) {\${\\$} \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
18 18 4 18 18 18 18 18 18 18 18 18 18 18 18 18	Hd (S.U.)			
9C) eet (TOC)				
Facility Name Sample by Depth-to water, feet (TOC) Measured Total Depth, feet (TOC) Purge Stabilization Data				Total volume purged Sample appearance Sample time Sample date
Facility Na Sample by Depth-to Measured Purge Stab	105		6.7.2.4. Value 5.	Total volume Sample appe Sample time Sample date

: '

•

Temperature 25.34 ORP (mV) Depth to water date Sample Location ID 0.46 (mg/L) 2000 0.0 Turbidity (N.T.U) 50.7 Spec Cond (µS/cm) (S.U.) んろ Flow Rate (mL/min) 28° 28% Measured Total Depth, feet (TOC) Depth-to water, feet (TOC) Water Depth (from TOC) Purge Stabilization Data Total volume purged Sample appearance Facility Name Sample time Sample date Sample by 3258 438 Time

AD-10-19,24 AD-22 11,85 AD-2-15,56 AD-23 13.33 AD-18-9,34

Sample Location ID Depth to water date 0-4-23	Turbidity D.O. ORP Temperature (N.T.U) (mg/L) (mv) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C			
Welsh Hamilton 2672 2672	Flow Rate pH Spec Cond Tur			
Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (TOC) Purge Stabilization Data	Time Water-Depth Fic (from 70C) (m (4e7 27.3)			Total volume purged Sample appearance Sample time Sample date

BASP Dup 113

10-17 10-4-73	Temperature (°C) 23-4 i 22 55		
Sample Location ID Depth to water date	D.O. ORP Temper (mg/L) (mV) (°C / 23.4 / 23.4 / 22.5)		
S 2 0 0	Spec Cond Turbidity (us/cm) (N.T.U) (76e &3 . & (76e & 75 . &	Will hat hald	
Weldy Nort How; 14.	Flow Rate pH Sp.		slightly twibid
Facility Name Sample by Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	Purge Stabilization Data Time Water Depth Flov (from TOC) (ml \$34		Total volume purged Sample appearance Sample time

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230470 Customer: Welsh Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-8 (PBAP) Customer Description:

Lab Number: 230470-001 Preparation:

Date Collected: 02/06/2023 11:28 EST Date Received: 02/13/2023 10:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Arsenic	0.28 μg/L	1	0.10	0.03	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Barium	32.5 µg/L	1	0.20	0.05	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Beryllium	0.021 μg/L	1	0.050	0.007 J1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Boron	1.16 mg/L	1	0.050	0.009	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Cadmium	0.031 μg/L	1	0.020	0.004	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Calcium	24.6 mg/L	1	0.05	0.02 M1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Chromium	0.23 μg/L	1	0.20	0.04	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Cobalt	5.08 μg/L	1	0.020	0.003	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Lead	0.05 μg/L	1	0.20	0.05 J1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Lithium	0.0821 mg/L	1	0.00020	0.00005	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Magnesium	10.8 mg/L	1	0.10	0.02	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	02/24/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Potassium	3.94 mg/L	1	0.10	0.02	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Sodium	53.3 mg/L	1	0.20	0.05 M1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Strontium	0.274 mg/L	1	0.0020	0.0004 M1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 0 μg/L	1	0.20	0.04 J1	GES	02/15/2023 09:27	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.74 pCi/L	0.28	0.38	ST	02/23/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	75.6 %					
Radium-228	1.73 pCi/L	0.18	0.52	TTP	02/22/2023 16:47	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	68.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230470 Customer: Welsh Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-9 (PBAP) Customer Description:

Lab Number: 230470-002 Preparation:

Date Collected: 02/06/2023 10:30 EST Date Received: 02/13/2023 10:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Arsenic	0.33 µg/L	1	0.10	0.03	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Barium	49.0 μg/L	1	0.20	0.05	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Beryllium	1.60 µg/L	1	0.050	0.007	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Boron	0.337 mg/L	1	0.050	0.009	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Cadmium	0.379 µg/L	1	0.020	0.004	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Calcium	12.4 mg/L	1	0.05	0.02	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Chromium	0.58 μg/L	1	0.20	0.04	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Cobalt	22.1 μg/L	1	0.020	0.003	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Lead	0.18 µg/L	1	0.20	0.05 J1	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Lithium	0.181 mg/L	1	0.00020	0.00005	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Magnesium	6.23 mg/L	1	0.10	0.02	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	JAB	02/24/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 µg/L	1	0.5	0.1 J1	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Potassium	3.02 mg/L	1	0.10	0.02	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Selenium	0.46 µg/L	1	0.50	0.09 J1	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Sodium	45.3 mg/L	1	0.20	0.05	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Strontium	0.198 mg/L	1	0.0020	0.0004	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4
Thallium	0.28 μg/L	1	0.20	0.04	GES	02/15/2023 09:42	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.24 pCi/L	0.21	0.26	ST	02/23/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.8 %					
Radium-228	1.81 pCi/L	0.20	0.58	TTP	02/22/2023 16:47	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	68.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230470 Customer: Welsh Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-11 (LF)

Customer Description:

Lab Number: 230470-003 Preparation:

Date Collected: 02/06/2023 11:37 EST Date Received: 02/13/2023 10:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.02 μg/L	1	0.10	0.02 J1	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Arsenic	0.56 μg/L	1	0.10	0.03	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Barium	28.6 μg/L	1	0.20	0.05	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Beryllium	1.25 µg/L	1	0.050	0.007	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Boron	1.21 mg/L	1	0.050	0.009	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Cadmium	0.282 μg/L	1	0.020	0.004	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Calcium	15.8 mg/L	1	0.05	0.02	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 μg/L	1	0.20	0.04	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Cobalt	12.9 µg/L	1	0.020	0.003	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Lead	0.88 µg/L	1	0.20	0.05	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Lithium	0.0213 mg/L	1	0.00020	0.00005	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Magnesium	9.90 mg/L	1	0.10	0.02	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Mercury	7 ng/L	1	5	2	JAB	02/24/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 μg/L	1	0.5	0.1 J1	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Potassium	2.13 mg/L	1	0.10	0.02	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Selenium	1.36 µg/L	1	0.50	0.09	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Sodium	130 mg/L	1	0.20	0.05	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Strontium	0.240 mg/L	1	0.0020	0.0004	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 6 μg/L	1	0.20	0.04 J1	GES	02/15/2023 09:47	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.62 pCi/L	0.36	0.24 P1	ST	02/23/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	86.8 %					
Radium-228	0.43 pCi/L	0.19	0.63	TTP	02/22/2023 16:47	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	71.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230470 Customer: Welsh Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-13 (LF)

Customer Description:

Lab Number: 230470-004 Preparation:

Date Collected: 02/06/2023 12:03 EST Date Received: 02/13/2023 10:30 EST

Metals

Parameter	Result Ur	nits Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.03 με	ξ/L	1	0.10	0.02 J1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Arsenic	0.37 με	ξ/L	1	0.10	0.03	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Barium	70.8 µg	ξ/L	1	0.20	0.05	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Beryllium	0.182 με	ξ/L	1	0.050	0.007	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Boron	1.02 m	g/L	1	0.050	0.009	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.079 με	ξ/L	1	0.020	0.004	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Calcium	16.5 m	g/L	1	0.05	0.02 M1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 με	g/L	1	0.20	0.04	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Cobalt	2.87 με	ξ/L	1	0.020	0.003	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Lead	0.08 με	g/L	1	0.20	0.05 J1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.0147 m	g/L	1	0.00020	0.00005	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Magnesium	6.32 m	g/L	1	0.10	0.02	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Mercury	2 ng	ţ/L	1	5	2 J1	JAB	02/24/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 με	ξ/L	1	0.5	0.1 J1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Potassium	1.69 m	g/L	1	0.10	0.02	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Selenium	0.39 με	ξ/L	1	0.50	0.09 J1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Sodium	55.5 m	g/L	1	0.20	0.05 M1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Strontium	0.198 m	g/L	1	0.0020	0.0004 M1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 με	ξ∕L	1	0.20	0.04 J1	GES	02/15/2023 10:44	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.33 pCi/L	0.29	0.26	ST	02/23/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.5 %					
Radium-228	1.22 pCi/L	0.19	0.59	ΠTP	02/22/2023 16:47	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	68.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221

Audinet: 210-4221

Reissued

Customer: Welsh Power Station Job ID: 230470 Date Reported: 10/28/2023

Customer Sample ID: AD-14 (LF) **Customer Description:**

Lab Number: 230470-005 Preparation:

Date Collected: 02/06/2023 12:32 EST Date Received: 02/13/2023 10:30 EST

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.03 μg/	. 1	0.10	0.02 J1	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.25 μg/	. 1	0.10	0.03	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Barium	35.8 μg/	. 1	0.20	0.05	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Beryllium	0.460 µg/	. 1	0.050	0.007	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Boron	1.06 mg/	L 1	0.050	0.009	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.359 μg/	. 1	0.020	0.004	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Calcium	9.63 mg/	L 1	0.05	0.02	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/	. 1	0.20	0.04	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Cobalt	4.17 μg/	. 1	0.020	0.003	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Lead	0.16 µg/	. 1	0.20	0.05 J1	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.00940 mg/	L 1	0.00020	0.00005	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Magnesium	5.30 mg/	L 1	0.10	0.02	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	. 1	5	2 U1	JAB	03/01/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 μg/	. 1	0.5	0.1 J1	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Potassium	0.50 mg/	L 1	0.10	0.02	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Selenium	3.24 µg/	. 1	0.50	0.09	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Sodium	34.4 mg/	L 1	0.20	0.05	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Strontium	0.178 mg/	L 1	0.0020	0.0004	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4
Thallium	0.06 µg/	. 1	0.20	0.04 J1	GES	02/15/2023 10:59	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.82 pCi/L	0.17	0.27	ST	02/23/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.8 %					
Radium-228	2.25 pCi/L	0.21	0.64	TTP	02/22/2023 16:47	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	72.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230470 Customer: Welsh Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-15 (PBAP) Customer Description:

Lab Number: 230470-006 Preparation:

Date Collected: 02/06/2023 10:57 EST Date Received: 02/13/2023 10:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Arsenic	3.26 µg/L	1	0.10	0.03	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Barium	73.9 µg/L	1	0.20	0.05	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 62 μg/L	1	0.050	0.007	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Boron	0.174 mg/l	. 1	0.050	0.009	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Cadmium	0.019 μg/L	1	0.020	0.004 J1	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Calcium	2.70 mg/l	. 1	0.05	0.02	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.20	0.04	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Cobalt	2.77 μg/L	1	0.020	0.003	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 5 μg/L	1	0.20	0.05 J1	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Lithium	0.00373 mg/l	. 1	0.00020	0.00005	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Magnesium	3.54 mg/l	. 1	0.10	0.02	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	03/01/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Potassium	0.75 mg/l	. 1	0.10	0.02	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Selenium	0.45 μg/L	1	0.50	0.09 J1	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Sodium	24.9 mg/l	. 1	0.20	0.05	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Strontium	0.0386 mg/l	. 1	0.0020	0.0004	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	02/15/2023 11:04	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.61 pCi/L	0.14	0.23	ST	02/23/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.3 %					
Radium-228	1.16 pCi/L	0.28	0.89	ΠTP	02/22/2023 16:47	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	59.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230470 Customer: Welsh Power Station Date Reported: 10/28/2023

Customer Sample ID: DUPLICATE Customer Description:

Lab Number: 230470-007 Preparation:

Date Collected: 02/06/2023 10:15 EST Date Received: 02/13/2023 10:30 EST

Metals

motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.02 μg/L	1	0.10	0.02 J1	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Arsenic	0.61 μg/L	1	0.10	0.03	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Barium	29.3 μg/L	1	0.20	0.05	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Beryllium	1.26 µg/L	1	0.050	0.007	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Boron	1.22 mg/L	1	0.050	0.009	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.310 μg/L	1	0.020	0.004	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Calcium	16.1 mg/L	1	0.05	0.02	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Chromium	0.61 μg/L	1	0.20	0.04	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Cobalt	13 .6 μg/L	1	0.020	0.003	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Lead	1.03 µg/L	1	0.20	0.05	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Lithium	0.0224 mg/L	1	0.00020	0.00005	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Magnesium	10.2 mg/L	1	0.10	0.02	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Mercury	7 ng/L	1	5	2	JAB	03/01/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 μg/L	1	0.5	0.1 J1	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Potassium	2.19 mg/L	1	0.10	0.02	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Selenium	1.44 µg/L	1	0.50	0.09	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Sodium	131 mg/L	1	0.20	0.05	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Strontium	0.251 mg/L	1	0.0020	0.0004	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4
Thallium	0.16 µg/L	1	0.20	0.04 J1	GES	02/15/2023 11:09	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230470 Customer: Welsh Power Station Date Reported: 10/28/2023

Customer Sample ID: EQUIPMENT BLANK Customer Description:

Lab Number: 230470-008 Preparation:

Date Collected: 02/06/2023 12:14 EST Date Received: 02/13/2023 10:30 EST

Metals

Parameter	Result U	Jnits	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µ	ıg/L	1	0.10	0.02 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µ	ıg/L	1	0.10	0.03 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µ	ıg/L	1	0.20	0.05 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Beryllium	0.011 μ	ıg/L	1	0.050	0.007 J1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Boron	0.017 m	ng/L	1	0.050	0.009 J1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µ	ıg/L	1	0.020	0.004 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 m	ng/L	1	0.05	0.02 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μ	ıg/L	1	0.20	0.04	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Cobalt	0.011 μ	ıg/L	1	0.020	0.003 J1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Lead	0.37 μ	ıg/L	1	0.20	0.05	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Lithium	0.00008 m	ng/L	1	0.00020	0.00005 J1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02 m	ng/L	1	0.10	0.02 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Mercury	<2 n	ıg/L	1	5	2 U1	JAB	03/01/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	ıg/L	1	0.5	0.1 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02 m	ng/L	1	0.10	0.02 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µ	ıg/L	1	0.50	0.09 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05 m	ng/L	1	0.20	0.05 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004 m	ng/L	1	0.0020	0.0004 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µ	ıg/L	1	0.20	0.04 U1	GES	02/15/2023 11:14	EPA 200.8-1994, Rev. 5.4

230470 Job Comments:

Report originally issued 3/10/23. Report reissued 10/28/23 to correct rounding errors on report and EDD.

Job ID: 230470

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Welsh Power Station Date Reported: 10/28/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.
- P1 The precision between duplicate results was above acceptance limits.

Dolan Chemical Laboratory (DCL.) 4001 Bixby Road				0	Chair	ı of C	Susto.	ર્ક્ટ્ર lain of Custody Record	ord	tol-	hasey	2304701 Meh. S
Groveport, Ohio 43125 Jonathan Barnhill (318-673-3803) Contacts: Michael Ohlinger (614-876-4784)				Prog	Program: 6	Coal Com	mbustio	Coal Compustion Residuals (CCR) Site Contact	is (CCR) Date:	-	For Lab Use Only: COV
Project Name Welsh Annual Screening						14		Field-filter 500 mL	12	Three (six every		
Contact Name: Jill Parker-Witt	Analysis	Turnaround	Analysis Tumaround Time (in Calendar Days)	lendar Da	375)			bottle, then pH<2,	bottle, Coot,	10th*)	0 mL (Н ,6115) (S)	087087
Contact Phone: (318) 673-3816							HNO3	HNO3	3,9-0	pH<2, HNO3	po	
Sampler(s): Matt Hamilton Kenny McDonald						(S) (S)	o, Pb,	nM bas (SO,,	-228		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Init	B, Ca, Li, Sb, Be, Cd, Cr, C Mo, Se, TL and Na, K, M	dissolved Fe	TDS, F, CI, and Br, All	Ra-226, Ra	βн	Sample Specific Notes.
AD-8 (PBAP)	2/6/2023	1028	g	GW	9		×		×	×	×	
AD-9 (PBAP)	2/6/2023	930	ပ	GW	g		×		×	×	×	
AD-11 (LF)	2/6/2023	1037	g	ß	o)		×		×	×	×	
AD-13 (LF)	2/6/2023	1103	O	GW	ø	1	×		×	×	×	
AD-14 (LF)	2/6/2023	1132	ŋ	GW	φ		×		×	×	×	
AD-15 (PBAP)	2/6/2023	957	ŋ	GW	ø		×		×	×	×	
DUPLICATE	2/6/2023	915	Ø	GW	m		×		×		×	
EQUIPMENT BLANK	2/6/2023	1114	ŋ	AS O	2		×				×	
					1	+						
					+	1						
					+	+						
Preservation Used: 1* Ice, 2* HCI; 3* H2SO4; 4*HNO3; 5*NaOH; 6* Other Six 1L Bottles must be collected for Radium for every 10th sample.	HNO3; S=Na	Sample.	her	; F= filter in field	ilter in f	pla	4	7		4	2	
Special Instructions/QC Requirements & Comments:	nts:											
,												
Relinquished by That Samillan	Company:	77,8,7		Date/Time: 2/8/23	l	12co Re	Received by					Date/Time
	Company:	,		Date/Time:	iei (ď	Received by		*			Date/Time
Relinquished by:	Company:			Date/Time:	je je	ď	Received in Labo	Laboratory by:	×	Jag To		DaterTime; 2/9/2 10,30Am
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1	ord for Coal	Combust	on Residu	I (CCR)	Samplir	ig - Shre	veport, Re	2		9	1	Maffy - /2/24 10:30AM
							•	3	3	335	١ / ١	17110117

THE WATER & WASTE SAMPLE RECEIPT FORM (Temp Gun 1)

			11/11	d by	eweiv9Я
	ufs:	Comme	C8N	<u>γ</u> γο	годдец р
: əmi	Date & T	& Isitinl	olho	222	#OldsJ
Contacted:	Person	It Yes:	Speriorited	nstomer co	Was the c
uts (See Prep Book)	Comme	W/Y	Spatsanb	filtration re	elgmas al
	- CI- 6 0 11	J.1000.252800. J. 1000.252800. J. 1000.252800.			
		j əuop f			
	Comme	NO		nistnoo toe	
str	Commer	$\overline{\mathcal{O}}$	d properly?		
ราบ	Сотте	NAB		d Juo bəllif	
I, who was notified?	Commer 11 RUS H 103 (48 hi		y received? → ⁶ (pres) (24 hr)	turnaroun	
sir	Commer	<u> </u>	,uoililion		
nitial:on ice(100)	I (AIM)0		368900, E	152 #198 n	uð Al) esi
et of Mercury Containers:	quin _N	~400	5,101 83	151/3	Date/Time
er of Glass Containers:	dmuN .	Q.	SW/JJJ/	N WEK	B beneqO
er of Plastic Containers: 29	dmuM .		45/7	omer M	Plant/Cust
ıehi	0			g	
SASU KEDEN SPS	d	edo	evn∃ g	se xce	(=icc3
Delivery Type		de des	<u>ed/</u>	T epskas9	
(1 une durat) arrocut a uno arra an	U0 710	ALL SO ME			

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230430 Customer: Welsh Power Station Date Reported: 02/17/2023

Customer Sample ID: AD-8 (PBAP) Customer Description: TG-32

Lab Number: 230430-001 Preparation:

Date Collected: 02/06/2023 23:28 EST Date Received: 02/09/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.11 mg/L	2	0.10	0.02	CRJ	02/15/2023 23:27	EPA 300.1 -1997, Rev. 1.0
Chloride	19.5 mg/L	2	0.04	0.02	CRJ	02/15/2023 23:27	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.72 mg/L	2	0.06	0.02	CRJ	02/15/2023 23:27	EPA 300.1 -1997, Rev. 1.0
Sulfate	182 mg/L	10	2.0	0.3	CRJ	02/15/2023 15:46	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	10 mg/L	1	20	5 J1	MGK	02/13/2023 12:10	SM 2320B-2011
TDS, Filterable Residue	370 mg/L	1	50	20	SDW	02/10/2023 10:00	SM 2540C-2015

Customer Description: TG-32

Customer Sample ID: AD-9 (PBAP)

Lab Number: 230430-002 Preparation:

Date Collected: 02/06/2023 10:30 EST Date Received: 02/09/2023 10:30 EST

Ion Chromatography

Parameter	Result Units [Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	02/16/2023 01:38	EPA 300.1 -1997, Rev. 1.0
Chloride	15.5 mg/L	2	0.04	0.02	CRJ	02/16/2023 01:38	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.17 mg/L	2	0.06	0.02	CRJ	02/16/2023 01:38	EPA 300.1 -1997, Rev. 1.0
Sulfate	137 mg/L	25	5.0	0.8	CRJ	02/15/2023 16:52	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	6 mg/L	1	20	5 J1	MGK	02/13/2023 12:10	SM 2320B-2011
TDS, Filterable Residue	340 mg/L	1	50	20	SDW	02/10/2023 10:10	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230430 Customer: Welsh Power Station Date Reported: 02/17/2023

Customer Sample ID: AD-11 (LF)

Customer Description: TG-32

Lab Number: 230430-003 Preparation:

Date Collected: 02/06/2023 11:37 EST Date Received: 02/09/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	02/16/2023 02:11	EPA 300.1 -1997, Rev. 1.0
Chloride	9.63 mg/L	2	0.04	0.02	CRJ	02/16/2023 02:11	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.69 mg/L	2	0.06	0.02	CRJ	02/16/2023 02:11	EPA 300.1 -1997, Rev. 1.0
Sulfate	368 mg/L	25	5.0	0.8	CRJ	02/15/2023 17:25	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	11 mg/L	1	20	5 J1	MGK	02/13/2023 12:10	SM 2320B-2011
TDS, Filterable Residue	620 mg/L	1	50	20	SDW	02/10/2023 10:10	SM 2540C-2015

Customer Sample ID: AD-13 (LF)

Customer Description: TG-32

Lab Number: 230430-004 Preparation:

Date Collected: 02/06/2023 12:03 EST Date Received: 02/09/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.08 mg/L	2	0.10	0.02 J1	CRJ	02/16/2023 00:00	EPA 300.1 -1997, Rev. 1.0
Chloride	4.85 mg/L	2	0.04	0.02	CRJ	02/16/2023 00:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.39 mg/L	2	0.06	0.02	CRJ	02/16/2023 00:00	EPA 300.1 -1997, Rev. 1.0
Sulfate	138 mg/L	10	2.0	0.3	CRJ	02/15/2023 17:58	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	36 mg/L	1	20	5	MGK	02/13/2023 12:10	SM 2320B-2011
TDS, Filterable Residue	280 mg/L	1	50	20	SDW	02/10/2023 10:16	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230430 Customer: Welsh Power Station Date Reported: 02/17/2023

Customer Sample ID: AD-14 (LF)

Customer Description: TG-32

Lab Number: 230430-005 Preparation:

Date Collected: 02/06/2023 12:32 EST Date Received: 02/09/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.03 mg/L	2	0.10	0.02 J1	CRJ	02/16/2023 00:33	EPA 300.1 -1997, Rev. 1.0
Chloride	1.77 mg/L	2	0.04	0.02	CRJ	02/16/2023 00:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.15 mg/L	2	0.06	0.02	CRJ	02/16/2023 00:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	89.6 mg/L	2	0.40	0.06	CRJ	02/16/2023 00:33	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	29 mg/L	1	20	5	MGK	02/13/2023 12:10	SM 2320B-2011	
TDS, Filterable Residue	230 mg/L	1	50	20	SDW	02/10/2023 10:16	SM 2540C-2015	

Customer Description: TG-32

Customer Sample ID: AD-15 (PBAP)

Lab Number: 230430-006 Preparation:

Date Collected: 02/06/2023 10:57 EST Date Received: 02/09/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.86 mg/L	2	0.10	0.02	CRJ	02/16/2023 03:50	EPA 300.1 -1997, Rev. 1.0
Chloride	27.5 mg/L	2	0.04	0.02	CRJ	02/16/2023 03:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	02/16/2023 03:50	EPA 300.1 -1997, Rev. 1.0
Sulfate	9.85 mg/L	2	0.40	0.06	CRJ	02/16/2023 03:50	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	47 mg/L	1	20	5	MGK	02/13/2023 12:10	SM 2320B-2011
TDS, Filterable Residue	130 mg/L	1	50	20	SDW	02/10/2023 10:28	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230430 Customer: Welsh Power Station Date Reported: 02/17/2023

Customer Sample ID: DUPLICATE Customer Description: TG-32

Lab Number: 230430-007 Preparation:

Date Collected: 02/06/2023 10:15 EST Date Received: 02/09/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	02/16/2023 04:23	EPA 300.1 -1997, Rev. 1.0
Chloride	9.70 mg/L	2	0.04	0.02	CRJ	02/16/2023 04:23	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.70 mg/L	2	0.06	0.02	CRJ	02/16/2023 04:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	376 mg/L	25	5.0	0.8	CRJ	02/15/2023 20:09	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	10 mg/L	1	20	5 J1	MGK	02/13/2023 12:10	SM 2320B-2011
TDS, Filterable Residue	630 mg/L	1	50	20	SDW	02/10/2023 10:28	SM 2540C-2015

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230430 Customer: Welsh Power Station Date Reported: 02/17/2023

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

		COC/Order #	230430		Sample Specific Notes:															Date/Time:	Date/Time:	Date/Time; 2/9/2 10,30Am	
to	72		250 mL Glass bottle, HCL**, pH<2		вн	×	×	×	×	×	×	×	×				2						
40V)		Date:	Three (six every 10th") 1 L bottles, pH<2, HNO ₃	82Z-F	Ra-226, Ra	×	×	×	×	×	×		100				4					The state of the s	
ord	als (CCF		1 L bottle, Cool, 0-6°C	SO ₄ ,	TDS, F, CI, and Br, All	/.×	ж	×	×	×	×	×					- 1					¥ 4	
Chain of Custody Record	Coal Compustion Residuals (CCR)		Field-filter 500 mL bottle, then pH<2, HNO ₃		Feriossip												F4			.A.	. y .	Received in Laboratory by:	Sampling - Shreveport, Rev. 1, 1/10/17
Custo	ombusti	tact	250 mL bottle, pH<2, HNO3	,o, Pb,	B, Ca, Li, Sb, Mo, Se, TL and Na, K, M	×	×	×	×	×	×	×	×			8	4			Received by:	Received by:	Received in	eveport, R
in of	Coal C	Site Con			Sampler(s) ini								20				field			550			ling - Shr
Cha	ram:		r Days)	, (85 <u>- 52 </u> 1744)	# of Conf.		9	ø	ø	ø	9	E	2				= filter in field			Date/Time:	Date/Time:	Date/Time:	
	Prog		Calenda		p, Matrix		Β	ΝS	₩ B	δ	Ğ	GW	GW) F= (Date/	Date/	Date/	dual (CC
			Analysis Turnaround Time (in Calendar Days)		Sample Type (C=Comp,	g	σ	Ø	O	O	g	ပ	თ				Other						tion Resid
			Turnaroui		Sample Time	1028	930	1037	1103	1132	957	915	1114			7700.0	3OH; 6= (sample.		77	7		Combus
_			Analysis		Sample Date	2/6/2023	2/6/2023	2/6/2023	2/6/2023	2/6/2023	2/6/2023	2/6/2023	2/6/2023				HN03; 5=N	r every 10th	ints:	Company:	Company:	Company:	ord for Coa
Dolan Chemical Laboratory (DCL)	4001 Bixby Road Groveport, Ohio 43125	Contacts: Michael Ohlinger (614-836-4184)	Project Name: Welsh Annual Screening Contact Name: Jill Parker-Witt Contact Phone: (318) 673-3816	Sampler(s): Matt Hamilton Kenny McDonald	Sample Identification	AD-8 (PBAP)	AD-9 (PBAP)	AD-11 (LF)	AD-13 (LF)	AD-14 (LF)	AD-15 (PBAP)	DUPLICATE	EQUIPMENT BLANK		100		Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	* Six 1L Bottles must be collected for Radium for every 10th sample.	Special instructions/QC Requirements & Comments:	Relinquished by:	Relinquished by:	Relinquished by:	Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR)

WATER & WASTE SAMPLE RECEIPT FORM (Temp Gun 1)

Package Type Delivery Type
Cooler Box: Bag Envelope PONY UPS FedEX USPS
Other
Plant/Customer Wolfen Number of Plastic Containers:
Opened By WEKTTP Number of Glass Containers:
Date/Time 2923 Number of Mercury Containers:
Were all temperatures within 0-6°C? (Y) N or N/A Initial: MG on ice / no
ice (IR Gun Ser# 221358900, Expir. 3/22/2024) - If No, specify each deviation:
Was container in good condition? (y) / N Comments
Was Chain of Custody received? / N Comments
Requested turnaround: March 9, 23 If RUSH, who was notified?
pH (15 min) Cr ⁻⁶ (pres) NO₂ or NO₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (24 hr) (48 hr)
Was COC filled out properly? / YID Comments Metals and Radium were oncac but we
Were samples labeled properly? (V) N Comments
Were correct containers used? (Y)/ N Comments
Was pH checked & Color Coding done? (Y) N or N/A Initial & Date: TTY 2/9/23
pH paper (circle one): MQuant.PN1.09535.0001,LOT# HC904495 [OR] Lab Rat,PN4861_LOT# X000RWDG21
Was Add'l Preservative needed? Y N If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N Comments (See Prep Book)
Was the customer contacted? If Yes: Person Contacted:
Lab ID# 230435 Initial & Date & Time :
Logged by Ms Comments: Metal Wete on Coc, but we did Not Received Them Yet, more
- Also Rollidm
Reviewed by 11 Talmoz
COC does not indicate TG-32 Requirement GIP

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dalan Chemical Laborator,

Sample Receipt Form SOP-7102

Page 1 cf.1

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231716 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-1 Customer Description: TG-32

Lab Number: 231716-001 Preparation:

Date Collected: 06/06/2023 11:54 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.041 μg/L	1	0.100	0.008 J1	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 μg/L	1	0.10	0.03	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Barium	83.4 μg/L	1	0.20	0.05	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Beryllium	1.11 µg/L	1	0.050	0.007	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Boron	0.729 mg/L	1	0.050	0.007	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Cadmium	0.034 µg/L	1	0.020	0.004	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Calcium	6.59 mg/L	1	0.05	0.01	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 μg/L	1	0.30	0.07	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Cobalt	2.67 μg/L	1	0.020	0.005	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Lead	0.37 μg/L	1	0.20	0.05	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Lithium	0.00805 mg/L	1	0.00030	0.00007	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Magnesium	3.20 mg/L	1	0.100	0.006	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Mercury	2 ng/L	1	5	2 J1	JAB	06/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Potassium	0.989 mg/L	1	0.100	0.008	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Selenium	10.1 µg/L	1	0.50	0.04	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Sodium	35.5 mg/L	1	0.20	0.01	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 μg/L	1	0.20	0.02 J1	GES	06/20/2023 09:43	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.46 pCi/L	0.13	0.22	TTP	06/26/2023 15:15	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.8 %					
Radium-228	0.49 pCi/L	0.16	0.54	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	77.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231716 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-5 Customer Description: TG-32

Lab Number: 231716-002 Preparation:

Date Collected: 06/06/2023 10:00 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.010 µg/L	1	0.100	0.008 J1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Arsenic	4.30 μg/L	1	0.10	0.03	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Barium	45.5 μg/L	1	0.20	0.05	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Beryllium	0.055 μg/L	1	0.050	0.007	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Boron	0.030 mg/L	1	0.050	0.007 J1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Calcium	26.5 mg/L	1	0.05	0.01	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Chromium	0.24 μg/L	1	0.30	0.07 J1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Cobalt	9.47 μg/L	1	0.020	0.005	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Lithium	0.106 mg/L	1	0.00030	0.00007	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Magnesium	9.62 mg/L	1	0.100	0.006	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Potassium	2.69 mg/L	1	0.100	0.008	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Selenium	0.06 µg/L	1	0.50	0.04 J1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Sodium	25.4 mg/L	1	0.20	0.01	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	06/20/2023 09:48	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.63 pCi/L	0.16	0.22	TTP	06/26/2023 16:02	SW-846 9315-1986, Rev. 0
Carrier Recovery	77.6 %					
Radium-228	1.09 pCi/L	0.16	0.48	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	83.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231716 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231716-003 Preparation:

Date Collected: 06/06/2023 12:34 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Parameter	Result U	Jnits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.08 µ	ıg/L	10	1.00	0.08	U1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Arsenic	1.1 μ	ıg/L	10	1.0	0.3		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Barium	1 9.6 μ	ıg/L	10	2.0	0.5		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Beryllium	0.11 μ	ıg/L	10	0.50	0.07	J1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Boron	0.10 m	ng/L	10	0.50	0.07	J1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.04 µ	ıg/L	10	0.20	0.04	U1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Calcium	1 50 m	ng/L	10	0.5	0.1		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Chromium	1.1 µ	ıg/L	10	3.0	0.7	J1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Cobalt	36.8 µ	ıg/L	10	0.20	0.05		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Lead	0.7 μ	ıg/L	10	2.0	0.5	J1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Lithium	0.254 m	ng/L	10	0.0030	0.0007		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Magnesium	46.0 m	ng/L	10	1.00	0.06		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Mercury	3 n	ıg/L	1	5	2	J1	JAB	06/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<1 µ	ıg/L	10	5	1	U1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Potassium	7.43 m	ng/L	10	1.00	0.08		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Selenium	0.5 μ	ıg/L	10	5.0	0.4	J1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Sodium	40.2 m	ng/L	10	2.0	0.1		GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µ	ıg/L	10	2.0	0.2	U1	GES	06/20/2023 09:53	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.53 pCi/L	0.14	0.24	TTP	06/26/2023 16:02	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.9 %					
Radium-228	0.89 pCi/L	0.16	0.49	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	76.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231716 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: DUPLICATE - BACKGROUND Customer Description: TG-32

Lab Number: 231716-004 Preparation:

Date Collected: 06/06/2023 13:00 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Metals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.033 μg/L	1	0.100	0.008 J1	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.20 μg/L	1	0.10	0.03	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Barium	86.5 μg/L	1	0.20	0.05	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Beryllium	1.10 µg/L	1	0.050	0.007	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Boron	0.768 mg/L	1	0.050	0.007	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.033 μg/L	1	0.020	0.004	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Calcium	6.99 mg/L	1	0.05	0.01	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.30	0.07	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Cobalt	2.88 μg/L	1	0.020	0.005	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Lead	0.53 μg/L	1	0.20	0.05	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.00790 mg/L	1	0.00030	0.00007	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Selenium	10.1 μg/L	1	0.50	0.04	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	06/20/2023 09:59	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231716 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: EB - BACKGROUND Customer Description: TG-32

Lab Number: 231716-005 Preparation:

Date Collected: 06/06/2023 12:25 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Calcium	0.02 mg/L	1	0.05	0.01 J1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Chromium	0.26 µg/L	1	0.30	0.07 J1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Cobalt	0.033 µg/L	1	0.020	0.005	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	06/20/2023 10:04	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221

Audinet: 210-4221

Reissued

Customer: Welsh Power Station Date Reported: 10/29/2023 Job ID: 231716

Customer Sample ID: FIELD BLANK - BACKGROUND Customer Description: TG-32

Lab Number: 231716-006 Preparation:

Date Received: 06/09/2023 13:30 EDT Date Collected: 06/06/2023 12:22 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Barium	0.07 μg/L	1	0.20	0.05 J1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Beryllium	0.020 µg/L	1	0.050	0.007 J1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Calcium	0.02 mg/L	1	0.05	0.01 J1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 µg/L	1	0.30	0.07 J1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Cobalt	0.037 µg/L	1	0.020	0.005	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Lead	0.22 µg/L	1	0.20	0.05	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	06/20/2023 10:09	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.36 pCi/L	0.11	0.19	TTP	06/26/2023 16:02	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.9 %					
Radium-228	-0.20 pCi/L	0.12	0.42	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

231716 **Job Comments:**

Report originally issued 7/7/23. Report reissued 10/29/23 to correct rounding errors on report and EDD.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231716 Customer: Welsh Power Station Date Reported: 10/29/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

 Email:
 msohlinger@aep.com

 Phone:
 614-836-4184

 Audinet:
 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125				Prog	ıram:	Coal Co	smbustio	Program: Coal Combustion Residuals (CCR)	ils (CCR	_				
Confacts: annual Obligace (A44 098 4404)						Site Contact:	act:			Date:		Ö	For Lab Use Only:	M
Project Name: Welsh Background Contact Name: Rebecca Jones Contact Phone: (737) 330-3725	Analysis	Tumarounc Routin	Analysis Turnaround Time (in Calendar Days) Routine (28 days)	elendar D	ays.		250 mL bottle, pH<2, HNO ₃	Field-filter 500 mL bottle, then pH<2, HNO ₃	t L bottle, Cool, 0-6°C	Three (six every 10th*) 1 L bottles, pH<2, HNO,	125 mL PTFE lined bottle, HCL**, pH<2		231716	
Sampler(s): Matt Hamilton Kenny McDonald		="	2			11	, 48, 84, ,dq ,o;	uM bas s	'os	822-8				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Inl	B, 6a, Li, 5b, Be, Cd, Cr, 7 Mo, Se, Tt	-T beviossib	, F, CI,	Ka-226, Ra	6н /		Sample Specific Notes:	
AD-1	6/6/2023	1054	တ	ВW	8		×			×	×	Rot	Routine (28 days)	
AD-5	6/6/2023	900	တ	ВW	25		×			×	×	ρ̈́	TG-32 needed	
AD-17	6/8/2023	1134	ဟ	ВW	2		×			×	×			T
DUPLICATE - BACKGROUND	6/6/2023	1200	တ	S.	2		×				×	1		T
EQUIPMENT BLANK - BACKGROUND	6/6/2023	1125	Ø	QW	2	1	×				×	+		
FIELD BLANK - BACKGROUND	6/6/2023	1122	Ø	8 B	ıo		×			×	×	1		T
												1		Т
														Т
												\dashv		
		1000												
														П
												\exists		٦
Preservation Used: 1a Ice. 2= HCl: 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3: 5=Ng	10H: 6= 0	ther	; F= filter	filter in	in field	4	7	-	4	2			

* Six 1L Bottles must be collected for Radium for every 10th sample.

Special Instructions/QC Requirements & Comments:

Relinquished by	Company Fack	Date/Time: 1/c. Received by.	Received by:	Daterrime
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time
Relinquished by:	Company:	Date/Time:	Reoding In Laboration by	6/4/23 1:30PM
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ord for Coal Combustion Residu	ıal (CCR) Sampling - Shi	reveport, Rev. 1, 1/10/17	

MATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Coole Box Bag Envelope	PONY UPS FEEDEX USPS
	Other
Plant/Customer Welsh	Number of Plastic Containers:
Opened By M50/MCH	Number of Glass Containers:
Date/Time 6/9/23 1/309 M	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N	or(N/) Initial:on ice / no ice
	4) - If No, specify each deviation:
Was container in good condition?	Comments
	Comments
Requested turnaround:kouhiku	If RUSH, who was notified?
pH (15 min) Cr⁴6 (pres) NO₂ or N (24 hr)	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out property?	Comments
Were samples labeled property? (Y)/ N	Comments
Were correct containers used? \(\textstyle / N \)	Comments
	IN or N/A Initial & Date: Mark 6/9/73
pH paper (circle one): MQuant,PN1.09535.0001,LC	OT#[OR]_Lab Rat,PN4801,LOT#X000RW0G21 Exp 11/15/2024
- Was Add'l Preservative needed? Y (1) If	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y /N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Date & Time :
Logged by MGC Commer Life Reviewed by	ots: Missing HD-17 Raylum Cly from Missing cooler Ted Ex 72376474227
Reviewed by	Missing sumple arrived 6/12/23 Msungle

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	tage consists of:
X	(which	gnature page, and the laboratory review checklist consisting of Table 1, Reportable Data includes the reportable data identified on this page), Table 2, Supporting Data, and Exception Reports.
х	R1	Field chain-of-custody documentation
x	R2	Sample identification cross-reference
x	R3	Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)
, NA	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits
×	R ₅	Test reports/summary forms for blank samples
X	R6	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits
X	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits
X	R8	Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates
x	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix
x	R10	Other problems or anomalies
х		sception Report for every item for which the result is "No" or "NR" (Not Reviewed)
packag require reports by the	se Stat ge as be ements s. By m laborat	ement: I am responsible for the release of this laboratory data package. This data en reviewed by the laboratory and is complete and technically compliant with the of the methods used, except where noted by the laboratory in the attached exception y signature below, I affirm to the best of my knowledge, all problems/anomalies, observed tory as having the potential to affect the quality of the data, have been identified by the the Laboratory Review Checklist, and no information or data have been knowingly withheld
		ect the quality of the data.
respon used is	ding to	rule. This laboratory is an in-house laboratory controlled by the person rule. The official signing the cover page of the rule-required report in which these data are sible for releasing this data package and is by signature affirming the above release rue.
Susai	ny Ju	damann Signature Shirt 6.20-23 Official Title Date
Name	(printed	d) Signature Official Title Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh

Reviewer Name: Becky Podlasiak

LRC Date: 6/19/2023

Laboratory Job Number: 231716

Prep Batch Number(s): PB23061503

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
!	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
= 1	I	Were calculations checked by a peer or supervisor?	Yes	
	1	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	Ο, Ι	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
<u></u>	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	Ī	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh

Reviewer Name: Becky Podlasiak

LRC Date: 6/19/2023

Laboratory Job Number: 231716

Prep Batch Number(s): PB23061503

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	О, І	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	Ī	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	:
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		- "
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, 1	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		N
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: We	lsh
Reviewer Name: B	ecky Podlasiak
LRC Date: 6/19/20	
Laboratory Job Nu	mber: 231716
Prep Batch Number	

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	tage consists of	:				
	(which		eportable data ident	eview checklist consisting of T tified on this page), Table 2, Su			
	R1	Field chain-of	-custody document	ation			
	R2	Sample identif	fication cross-refere	ence			
	R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)						
	R4	(a) Calculate	overy data including d recovery (%R) atory's surrogate Q				
П	R5		ummary forms for				
	R6	Test reports/s (a) LCS spiki (b) Calculated	ummary forms for	laboratory control samples (LC	CSs) including:		
	R7	(a) Samples a(b) MS/MSD(c) Concentra(d) Calculate	associated with the spiking amounts ation of each MS/M	ike/matrix spike duplicates (M MS/MSD clearly identified ISD analyte measured in the pa percent differences (RPDs) C limits	-		
	R8	(a) The amou	unt of analyte meas lated RPD	f applicable) recovery and predured in the duplicate ranalytical duplicates	cision:		
	R9	List of method	l quantitation limits	s (MQLs) for each analyte for e	each method and matrix		
	R10	Other problem	ns or anomalies				
	The Ex	ception Report	t for every item for	which the result is "No" or "NF	R" (Not Reviewed)		
packag require reports by the laborat that we Check respon used is	ge as be ements s. By m laborat tory in t ould aff a, if app dding to	en reviewed by of the methods y signature beltory as having the Laboratory ect the quality of rule. The officiasible for release	the laboratory and used, except where low, I affirm to the he potential to affect Review Checklist, a of the data. This laboratory is an al signing the cover	release of this laboratory data is complete and technically conted by the laboratory in the best of my knowledge, all probet the quality of the data, have and no information or data have in-house laboratory controlled page of the rule-required repose and is by signature affirming	ompliant with the e attached exception clems/anomalies, observed been identified by the re been knowingly withheld ed by the person ort in which these data are		
Name	 (printed	d)	Signature	Official Title	Date		

Table 1. Reportable Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

I tem ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
		Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?		
		Were all departures from standard conditions described in an exception report?		
R2	O, I	Sample and quality control (QC) identification		
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?		
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?		
R3	O, I	Test reports		
		Were all samples prepared and analyzed within holding times?		
		Other than those results < MQL, were all other raw values bracketed by calibration standards?		
		Were calculations checked by a peer or supervisor?		
		Were all analyte identifications checked by a peer or supervisor?		
		Were sample quantitation limits reported for all analytes not detected?		
		Were all results for soil and sediment samples reported on a dry weight basis?		
		Was % moisture (or solids) reported for all soil and sediment samples?		
		If required for the project, TICs reported?		
R4	0	Surrogate recovery data		
		Were surrogates added prior to extraction?		
		Were surrogate percent recoveries in all samples within the laboratory QC limits?		
R5	Ο, Ι	Test reports/summary forms for blank samples		
		Were appropriate type(s) of blanks analyzed?		
		Were blanks analyzed at the appropriate frequency?		

I tem ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
		Were method blanks taken through the entire analytical process, including preparation and, if applicable,		
		cleanup procedures?		
		Were blank concentrations < MQL?		
R6	O, I	Laboratory control samples (LCS):		
		Were all COCs included in the LCS?		
		Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?		
		Were LCSs analyzed at the required frequency?		
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
		Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?		
		Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
		Were the project/method specified analytes included in the MS and MSD?		
		Were MS/MSD analyzed at the appropriate frequency?		
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		
		Were MS/MSD RPDs within laboratory QC limits?		
R8	O, I	Analytical duplicate data		
		Were appropriate analytical duplicates analyzed for each matrix?		
		Were analytical duplicates analyzed at the appropriate frequency?		
		Were RPDs or relative standard deviations within the laboratory QC limits?		
R9	O, I	Method quantitation limits (MQLs):		
		Are the MQLs for each method analyte included in the laboratory data package?		
		Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?		
		Are unadjusted MQLs included in the laboratory data package?		
R10	O, I	Other problems/anomalies		
-	,	Are all known problems/anomalies/special conditions noted in this LRC and ER?		
		Were all necessary corrective actions performed for the reported data?		
		Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?		

Table 2. Supporting Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number: _	
Prep Batch Number(s):	

Item ¹ Analytes ²		Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
		Initial calibration (ICAL)			
		Were response factors and/or relative response factors for each analyte within QC limits?			
		Were percent RSDs or correlation coefficient criteria met?			
		Was the number of standards recommended in the method used for all analytes?			
		Were all points generated between the lowest and highest standard used to calculate the curve?			
		Are ICAL data available for all instruments used?			
		Has the initial calibration curve been verified using an appropriate second source standard?			
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
		Was the CCV analyzed at the method-required frequency?			
		Were percent differences for each analyte within the method-required QC limits?			
		Was the ICAL curve verified for each analyte?			
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			
S3	0	Mass spectral tuning:			
		Was the appropriate compound for the method used for tuning?			
		Were ion abundance data within the method-required QC limits?			
S4	0	Internal standards (IS):			
		Were IS area counts and retention times within the method-required QC limits?			
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)			
		Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?			
		Were data associated with manual integrations flagged on the raw data?			

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
		Did dual column confirmation results meet the method-required QC?		
S7	0	Tentatively identified compounds (TICs):		
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		
S8	I	Interference Check Sample (ICS) results:		
		Were percent recoveries within method QC limits?		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?		
S10	O, I	Method detection limit (MDL) studies		
		Was a MDL study performed for each reported analyte?		
		Is the MDL either adjusted or supported by the analysis of DCSs?		
S11	O, I	Proficiency test reports:		
		Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?		
S12	O, I	Standards documentation		
		Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?		
S13	O, I	Compound/analyte identification procedures		
		Are the procedures for compound/analyte identification documented?		
S14	O, I	Demonstration of analyst competency (DOC)		
		Was DOC conducted consistent with NELAC Chapter 5C?		
		Is documentation of the analyst's competency up-to-date and on file?		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
		Are all the methods used to generate the data documented, verified, and validated, where applicable?		
S16	O, I	Laboratory standard operating procedures (SOPs):		
		Are laboratory SOPs current and on file for each method performed?		

Table 3. Exception Reports.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Prep Batch Number(s):	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231719 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-8 Customer Description: TG-32

Lab Number: 231719-001 Preparation:

Date Collected: 06/05/2023 10:13 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	0.012 μg/L	1	0.100	0.008 J1	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.24 μg/L	1	0.10	0.03	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Barium	25.9 μg/L	1	0.20	0.05	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.011 μg/L	1	0.050	0.007 J1	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Boron	0.932 mg/L	1	0.050	0.007	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.020 μg/L	1	0.020	0.004	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Calcium	19.3 mg/L	1	0.05	0.01	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.30	0.07 J1	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Cobalt	3.65 µg/L	1	0.020	0.005	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Lead	0. 12 μg/L	1	0.20	0.05 J1	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0664 mg/L	1	0.00030	0.00007	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/16/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Selenium	0.07 μg/L	1	0.50	0.04 J1	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.02 J1	GES	06/20/2023 12:23	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.44 pCi/L	0.12	0.16	TTP	06/26/2023 16:02	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.8 %					
Radium-228	0.24 pCi/L	0.12	0.40	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	94.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231719 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-9 Customer Description: TG-32

Lab Number: 231719-002 Preparation:

Date Collected: 06/06/2023 10:55 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 µg/L	1	0.100	0.008 J1	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Arsenic	1.15 µg/L	1	0.10	0.03	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Barium	39.8 μg/L	1	0.20	0.05	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Beryllium	0.502 μg/L	1	0.050	0.007	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Boron	0.083 mg/L	1	0.050	0.007	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Cadmium	0.135 μg/L	1	0.020	0.004	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Calcium	164 mg/L	1	0.05	0.01	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.30	0.07	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Cobalt	15.8 μg/L	1	0.020	0.005	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Lithium	0.661 mg/L	1	0.00030	0.00007	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/16/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Selenium	0.51 μg/L	1	0.50	0.04	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4
Thallium	0.14 µg/L	1	0.20	0.02 J1	GES	06/20/2023 12:28	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.71 pCi/L	0.15	0.19	TTP	06/26/2023 16:02	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.4 %					
Radium-228	1.15 pCi/L	0.15	0.46	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	86.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231719 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-15 Customer Description: TG-32

Lab Number: 231719-003 Preparation:

Date Collected: 06/05/2023 11:15 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.056	μg/L	1	0.100	0.008 J1	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Arsenic	7.67	μg/L	1	0.10	0.03	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Barium	86.9	μg/L	1	0.20	0.05	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Beryllium	0.237	μg/L	1	0.050	0.007	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Boron	0.194	mg/L	1	0.050	0.007	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.024	μg/L	1	0.020	0.004	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Calcium	2.92	mg/L	1	0.05	0.01	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Chromium	2.27	µg/L	1	0.30	0.07	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Cobalt	3.49	μg/L	1	0.020	0.005	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Lead	1.94	μg/L	1	0.20	0.05	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.00423	mg/L	1	0.00030	0.00007	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Mercury	6	ng/L	1	5	2	JAB	06/16/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1	μg/L	1	0.5	0.1 J1	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Selenium	1.23	μg/L	1	0.50	0.04	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4
Thallium	0.08	μg/L	1	0.20	0.02 J1	GES	06/20/2023 12:33	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.60 pCi/L	0.13	0.17	TTP	06/26/2023 16:02	SW-846 9315-1986, Rev. 0
Carrier Recovery	118 %					
Radium-228	0.77 pCi/L	0.15	0.48	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	83.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231719 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: DUPLICATE - PBAP Customer Description: TG-32

Lab Number: 231719-004 Preparation:

Date Collected: 06/05/2023 13:00 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.011 µg/L	1	0.100	0.008 J1	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Arsenic	0.25 µg/L	1	0.10	0.03	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Barium	26.6 μg/L	1	0.20	0.05	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Beryllium	0.044 µg/L	1	0.050	0.007 J1	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Boron	0.974 mg/L	1	0.050	0.007	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Cadmium	0.022 µg/L	1	0.020	0.004	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Calcium	20.4 mg/L	1	0.05	0.01	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.30	0.07	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Cobalt	3.81 µg/L	1	0.020	0.005	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Lead	0.34 µg/L	1	0.20	0.05	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Lithium	0.0646 mg/L	1	0.00030	0.00007	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/16/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Selenium	0.09 µg/L	1	0.50	0.04 J1	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4
Thallium	0.11 µg/L	1	0.20	0.02 J1	GES	06/20/2023 12:38	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231719 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: EQUIPMENT BLANK - PBAP Customer Description: TG-32

Lab Number: 231719-005 Preparation:

Date Collected: 06/05/2023 11:06 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Calcium	0.02 mg/L	1	0.05	0.01 J1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.30	0.07 J1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Cobalt	0.034 µg/L	1	0.020	0.005	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Lithium	0.00014 mg/L	1	0.00030	0.00007 J1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/16/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	06/20/2023 12:43	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231719 Customer: Welsh Power Station Date Reported: 10/29/2023

Customer Sample ID: FIELD BLANK - PBAP Customer Description: TG-32

Lab Number: 231719-006 Preparation:

Date Collected: 06/05/2023 11:01 EDT Date Received: 06/09/2023 13:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Calcium	0.01 mg/L	1	0.05	0.01 J1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Chromium	0.23 μg/L	1	0.30	0.07 J1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Cobalt	0.033 µg/L	1	0.020	0.005	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Lithium	0.00009 mg/L	1	0.00030	0.00007 J1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	06/16/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	06/20/2023 12:48	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.64 pCi/L	0.15	0.19	TTP	06/30/2023 08:57	SW-846 9315-1986, Rev. 0
Carrier Recovery	92.4 %					
Radium-228	0.12 pCi/L	0.13	0.43	ST	06/29/2023 13:45	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

231719 Job Comments:

Report originally issued 7/7/23. Report reissued 10/29/23 to correct rounding errors on report and EDD.

Job ID: 231719

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Welsh Power Station Date Reported: 10/29/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bbrby Road

Groveport, Ohio 43125				Prog	ram:	Coal Co	mbustio	Program: Coal Combustion Residuals (CCR)	Is (CCR				
Contacts:					V)	Site Contact:	act:			Date:		2	For Lab Use Only:
Michael Onlinger (614-636-4164)	_					-				_		<u>3</u>	COC/Order *:
Project Name: Welsh PBAP							250 mL	Field-filter 500 mL	1,1	Three (six every			2
Contact Name: Rebecca Jones	Analysis T	umaround	Analysis Turnaround Time (in Calendar Days) Routine (28 days)	Nendar Di	(\$4)		bottle,	bottle,	bottle,	10th")	mL F d bot d ,**;		0777
Contact Phone: (737) 330-3725								HNO,	0-6°C	T L DOTTIES, pH<2, HNO ₃	enii		621-119
Sampler(s): Matt Hamilton Kenny McDonald						<i>p</i> / .	.48, 84, dq. o:	uM bas s	'os	822-1			
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Inl	8, Ca, Li, Sb, Be, Ca, Cr, C Mo, Se, TL	dissolved F	TDS, F, CI,	אפ-226, אנ /	_{БН}		Sample Specific Notes:
AD-8	6/5/2023	913	9	ωS	8		×			×	×	- 16	TG-32 needed
AD-9	6/6/2023	955	G	GW	5		×			×	×		The state of the s
AD-15	6/5/2023	1015	G	ВW	c,		×			×	×		
DUPLICATE - PBAP	6/5/2023	1200	ტ	ΜS	7		×				×		
EQUIPMENT BLANK - PBAP	6/5/2023	1006	g	GW	2		×				×		
FIELD BLANK - PBAP	6/5/2023	1001	g	Q.W	လ		×			×	×	_	
The state of the s													2
							i						
Preservation Used: 1= Ice. 2= HCl: 3= H2SO4: 4=HNO3: 5=NaOH: 6= Other	HNO3: 5=Na(2H; 6= Oth		; F= filter		in field	4	F4	L.	4	2		

^{*} Six 1L Bottles must be collected for Radium for every 10th sample.

Special instructions/QC Requirements & Comments:

Relinquished bo	Company	Date/Time: bac Received by	Received by:	Date/Time:
Relinquished by:	Company:	V / C > Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in abolatory by	Date/Time: 1;30.PM
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ord for Coal Combustion Residua	at (CCR) Sampling - S		

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type							
Cooler Box Bag Envelope	PONY UPS FOREX US	PS						
	Other	_						
Plant/Customer WCSh	Number of Plastic Containers:							
Opened By MCK	Number of Glass Containers:							
Date/Time 6/9/23 1,30PM	Number of Mercury Containers:							
Were all temperatures within 0-6°C? Y / N	or N/A Initial:on id	e / no ice						
(IR Gun Ser# 2213689000 , Expir. 03/24/2024		\sim						
Was container in good condition? (Y) / N	Comments							
Was Chain of Custody received? (Y)/ N	Comments							
Requested turnaround:	If RUSH, who was notified?							
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-d	iss (pres) (48 hr)						
Was COC filled out properly?	Comments							
Were samples labeled properly? N	Comments							
Were correct containers used?								
Was pH checked & Color Coding done? YN or N/A Initial & Date: Mbk 6/9/23								
pH paper (circle one): MQuant,PN1.09535.0001,LO	T#[OR] Lab Rat,PN4801,LOT#	X000RW0G21 Eφ 11/15/202						
- Was Add'l Preservative needed? Y / N)f	Yes: By whom & when:	(See Prep Book)						
Is sample filtration requested? Y / (§)	Comments	(See Prep Book)						
Was the customer contacted? If Yes:	Person Contacted:							
Lab ID# _ 7 3/7(9 Initial & D	Date & Time :							
Logged by MSO Commen	ts: Missing AD-8 Radi tHes. Likely in mu	Sity						
Reviewed by MCC	mainly bottles and C/12/23	7871 MS						

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

Ľ	(which		reportable data identi	fied on this page), Table		
x	R1	Field chain-o	f-custody documenta	tion		
×	R2	Sample ident	ification cross-refere	nce		
x	R3	(a) Items sp NELAC (b) Dilution (c) Preparat (d) Cleanup	ecified in NELAC Cha Standard factors ion methods methods	s) for each environmenta apter 5 for reporting resu statively identified comp	ilts, e.g., Sectio	
MA	R4	(a) Calculat	covery data including ed recovery (%R) ratory's surrogate QC			
х	R5	Test reports/	summary forms for b	lank samples		
x	R6	(a) LCS spik (b) Calculate	summary forms for la king amounts ed %R for each analyth tratory's LCS QC limit		es (LCSs) inclu	ding:
×	R7	(a) Samples(b) MS/MS(c) Concent(d) Calculat	associated with the I D spiking amounts ration of each MS/M	ke/matrix spike duplicat MS/MSD clearly identific SD analyte measured in percent differences (RPD Climits	ed the parent and	· ·
x	R8	(a) The amo	ount of analyte measuulated RPD	applicable) recovery and red in the duplicate analytical duplicates	l precision:	
x	R9	List of metho	d quantitation limits	(MQLs) for each analyte	for each meth	od and matrix
х	R10	Other proble	ms or anomalies			
x	The E	xception Repo	rt for every item for v	which the result is "No" o	r "NR" (Not R	eviewed)
packag requir report by the labora	ge as be ements s. By m labora tory in	een reviewed be of the method ny signature be tory as having	by the laboratory and is used, except where elow, I affirm to the be the potential to affect y Review Checklist, as	elease of this laboratory is complete and technica noted by the laboratory sest of my knowledge, all the quality of the data, and no information or dat	lly compliant of the attached problems/and have been ider	with the I exception omalies, observed ntified by the
respon used i staten	nding to s respon nent is t	rule. The officensible for release.	cial signing the cover sing this data packag	in-house laboratory con page of the rule-required e and is by signature affi	l report in whi rming the abo	ch these data are ve release
Susa	12 au	Jung LL	Sallam	ann Senior	Chenist	6.20-23
Name	(printe	d)	Signature	Official Title		Date
			tory Review Checklist (Page 1 of 6

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh

Reviewer Name: Becky Podlasiak

LRC Date: 6/19/2023

Laboratory Job Number: 231719

Prep Batch Number(s): PB23061608

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	·
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	:
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
4	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	1	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	,
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh

Reviewer Name: Becky Podlasiak

LRC Date: 6/19/2023

Laboratory Job Number: 231719

Prep Batch Number(s): PB23061608

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	0, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh

Reviewer Name: Becky Podlasiak

LRC Date: 6/19/2023

Laboratory Job Number: 231719

Prep Batch Number(s): PB23061608

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

³ NA - Not applicable; NR - Not reviewed.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	tage consists of	:				
	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.						
	R1	Field chain-of-custody documentation					
	R2	Sample identif	fication cross-refere	ence			
	R3	(a) Items speNELAC St(b) Dilution f(c) Preparation(d) Cleanup r	cified in NELAC Ch tandard actors on methods nethods	ts) for each environmental san apter 5 for reporting results, e ntatively identified compound	e.g., Section 5.5.10 in 2003		
	R4	(a) Calculate	overy data including d recovery (%R) atory's surrogate Q				
П	R5		ummary forms for				
	R6	Test reports/s (a) LCS spiki (b) Calculated	ummary forms for	laboratory control samples (LC	CSs) including:		
	R7	(a) Samples a(b) MS/MSD(c) Concentra(d) Calculate	associated with the spiking amounts ation of each MS/M	ike/matrix spike duplicates (M MS/MSD clearly identified ISD analyte measured in the pa percent differences (RPDs) C limits	-		
	R8	(a) The amou	unt of analyte meas lated RPD	f applicable) recovery and predured in the duplicate ranalytical duplicates	cision:		
	R9	List of method	l quantitation limits	s (MQLs) for each analyte for e	each method and matrix		
	R10	Other problem	ns or anomalies				
	The Ex	ception Report	t for every item for	which the result is "No" or "NF	R" (Not Reviewed)		
packag require reports by the laborat that we Check respon used is	ge as be ements s. By m laborat tory in t ould aff a, if app dding to	en reviewed by of the methods y signature beltory as having the Laboratory ect the quality of rule. The officiasible for release	the laboratory and used, except where low, I affirm to the he potential to affect Review Checklist, a of the data. This laboratory is an al signing the cover	release of this laboratory data is complete and technically conted by the laboratory in the best of my knowledge, all probet the quality of the data, have and no information or data have in-house laboratory controlled page of the rule-required repose and is by signature affirming	ompliant with the e attached exception clems/anomalies, observed been identified by the re been knowingly withheld ed by the person ort in which these data are		
Name	 (printed	d)	Signature	Official Title	Date		

Table 1. Reportable Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

I tem ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
		Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?		
		Were all departures from standard conditions described in an exception report?		
R2	O, I	Sample and quality control (QC) identification		
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?		
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?		
R3	O, I	Test reports		
		Were all samples prepared and analyzed within holding times?		
		Other than those results < MQL, were all other raw values bracketed by calibration standards?		
		Were calculations checked by a peer or supervisor?		
		Were all analyte identifications checked by a peer or supervisor?		
		Were sample quantitation limits reported for all analytes not detected?		
		Were all results for soil and sediment samples reported on a dry weight basis?		
		Was % moisture (or solids) reported for all soil and sediment samples?		
		If required for the project, TICs reported?		
R4	0	Surrogate recovery data		
		Were surrogates added prior to extraction?		
		Were surrogate percent recoveries in all samples within the laboratory QC limits?		
R5	Ο, Ι	Test reports/summary forms for blank samples		
		Were appropriate type(s) of blanks analyzed?		
		Were blanks analyzed at the appropriate frequency?		

I tem ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
		Were method blanks taken through the entire analytical process, including preparation and, if applicable,		
		cleanup procedures?		
		Were blank concentrations < MQL?		
R6	O, I	Laboratory control samples (LCS):		
		Were all COCs included in the LCS?		
		Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?		
		Were LCSs analyzed at the required frequency?		
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
		Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?		
		Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
		Were the project/method specified analytes included in the MS and MSD?		
		Were MS/MSD analyzed at the appropriate frequency?		
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		
		Were MS/MSD RPDs within laboratory QC limits?		
R8	O, I	Analytical duplicate data		
		Were appropriate analytical duplicates analyzed for each matrix?		
		Were analytical duplicates analyzed at the appropriate frequency?		
		Were RPDs or relative standard deviations within the laboratory QC limits?		
R9	O, I	Method quantitation limits (MQLs):		
		Are the MQLs for each method analyte included in the laboratory data package?		
		Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?		
		Are unadjusted MQLs included in the laboratory data package?		
R10	O, I	Other problems/anomalies		
-	,	Are all known problems/anomalies/special conditions noted in this LRC and ER?		
		Were all necessary corrective actions performed for the reported data?		
		Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?		

Table 2. Supporting Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number: _	
Prep Batch Number(s):	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
		Were response factors and/or relative response factors for each analyte within QC limits?		
		Were percent RSDs or correlation coefficient criteria met?		
		Was the number of standards recommended in the method used for all analytes?		
		Were all points generated between the lowest and highest standard used to calculate the curve?		
		Are ICAL data available for all instruments used?		
		Has the initial calibration curve been verified using an appropriate second source standard?		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
		Was the CCV analyzed at the method-required frequency?		
		Were percent differences for each analyte within the method-required QC limits?		
		Was the ICAL curve verified for each analyte?		
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?		
S3	0	Mass spectral tuning:		
		Was the appropriate compound for the method used for tuning?		
		Were ion abundance data within the method-required QC limits?		
S4	0	Internal standards (IS):		
		Were IS area counts and retention times within the method-required QC limits?		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
		Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?		
		Were data associated with manual integrations flagged on the raw data?		

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
		Did dual column confirmation results meet the method-required QC?		
S7	0	Tentatively identified compounds (TICs):		
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		
S8	I	Interference Check Sample (ICS) results:		
		Were percent recoveries within method QC limits?		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?		
S10	O, I	Method detection limit (MDL) studies		
		Was a MDL study performed for each reported analyte?		
		Is the MDL either adjusted or supported by the analysis of DCSs?		
S11	O, I	Proficiency test reports:		
		Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?		
S12	O, I	Standards documentation		
		Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?		
S13	O, I	Compound/analyte identification procedures		
		Are the procedures for compound/analyte identification documented?		
S14	O, I	Demonstration of analyst competency (DOC)		
		Was DOC conducted consistent with NELAC Chapter 5C?		
		Is documentation of the analyst's competency up-to-date and on file?		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
		Are all the methods used to generate the data documented, verified, and validated, where applicable?		
S16	O, I	Laboratory standard operating procedures (SOPs):		
		Are laboratory SOPs current and on file for each method performed?		

Table 3. Exception Reports.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Prep Batch Number(s):	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231698 Customer: Welsh Power Station Date Reported: 07/05/2023

Customer Sample ID: AD-1 Customer Description: TG-32

Lab Number: 231698-001 Preparation:

Date Collected: 06/06/2023 11:54 EDT Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	3.03 mg/L	2	0.04	0.01	CRJ	06/28/2023 08:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.24 mg/L	2	0.06	0.02	CRJ	06/28/2023 08:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	91.1 mg/L	2	0.6	0.1	CRJ	06/28/2023 08:33	EPA 300.1 -1997. Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	210 mg/L	1	50	20	ELT	06/12/2023 08:06	SM 2540C-2015

Customer Sample ID: AD-5 Customer Description: TG-32

Lab Number: 231698-002 Preparation:

Date Collected: 06/06/2023 10:00 EDT Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Chloride	16.1 mg/L	2	0.04	0.01	CRJ	06/28/2023 12:24	EPA 300.1 -1997, Rev. 1.0	-
Fluoride	0.15 mg/L	2	0.06	0.02	CRJ	06/28/2023 12:24	EPA 300.1 -1997, Rev. 1.0	
Sulfate	114 mg/L	10	3.0	0.6	CRJ	06/28/2023 11:51	EPA 300.1 -1997, Rev. 1.0	
M - 1 O b 1 - 1								
Wet Chemistry								

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	280 mg/L	1	50	20	ELT	06/12/2023 08:19	SM 2540C-2015

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231698-003 Preparation:

Date Collected: 06/06/2023 12:34 EDT Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	35.6 mg/L	5	0.10	0.03	CRJ	06/28/2023 14:35	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.05 mg/L	5	0.15	0.05 U1	CRJ	06/28/2023 14:35	EPA 300.1 -1997, Rev. 1.0
Sulfate	1190 mg/L	50	15	3	CRJ	06/28/2023 14:02	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

trot onomiou,							
Parameter	Result Units [Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS. Filterable Residue	1510 mg/L	2	100	40	FLT	06/12/2023 08:27	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Welsh Power Station Date Reported: 07/05/2023 Job ID: 231698

Customer Sample ID: DUPLICATE - BACKGROUND

Preparation:

Customer Description: TG-32

Lab Number: 231698-004

Date Received: 06/08/2023 11:00 EDT Date Collected: 06/06/2023 13:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	3.05 mg/L	2	0.04	0.01	CRJ	06/28/2023 13:29	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.24 mg/L	2	0.06	0.02	CRJ	06/28/2023 13:29	EPA 300.1 -1997, Rev. 1.0
Sulfate	92.1 mg/L	2	0.6	0.1	CRJ	06/28/2023 13:29	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units Dile	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
TDS, Filterable Residue	220 mg/L	1	50	20	ELT	06/12/2023 08:27	SM 2540C-2015	

Customer Sample ID: FIELD BLANK - BACKGROUND

Lab Number: 231698-005

<20 mg/L

Date Collected: 06/06/2023 12:22 EDT

Customer Description: TG-32

ELT

06/12/2023 08:34 SM 2540C-2015

Preparation:

Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

TDS, Filterable Residue

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	<0.01 mg/L	2	0.04	0.01 U1	CRJ	06/28/2023 15:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	06/28/2023 15:47	EPA 300.1 -1997, Rev. 1.0
Sulfate	<0.1 mg/L	2	0.6	0.1 U1	CRJ	06/28/2023 15:47	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method

20 U1

50

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231698 Customer: Welsh Power Station Date Reported: 07/05/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125				Prog	ram:	Coal Co	ombustic	Program: Coal Combustion Residuals (CCR)	Is (CCR				f)
Contacts: Michael Ohlinger (614-836-4184)						Site Contact:	act:			Date:		O	For Lab Use Only: COC/Order #:
Project Name: Welsh Background Contact Name: Rebecca Jones Contact Phone: (737) 330-3725	Analysis 7	umaround Routin	Analysis Turnaround Time (in Calendar Days) Routine (28 days)	endar D	878)		250 mL bottle, pH<2, HNO ₃	Field-filter 500 mL bottle, then pH<2, HNO ₃	1 L bottle, Cool, 0-6°C	Three (six every 10th*) 1 L bottles, pH<2, HNO ₃	40 mL Glass visi or 125 mL PTFE Ilned bottle, HCL**, PH<2	sy somethy assistantil	231698
Sampler(s): Matt Hamilton Kenny McDonald						elei?i	, 88, 88, ,dq ,o;	nM bns e	'os	822-8			
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Cont.	Sampler(s) Ini	B, Ca, Li, Sb Be, Cd, Cr, C Mo, Se, TL	i beviossib	т р \$, ғ , сі	Ra-226, Ra	вн		Sample Specific Notes:
AD-1	6/6/2023	1054	ŋ	S.W	-				×				TG-32 needed
AD-5	6/6/2023	900	Ø	GW	-				×				
AD-17	6/6/2023	1134	ŋ	βW	-				×				
DUPLICATE - BACKGROUND	6/6/2023	1200	၁	ΝS	-	\dashv			×			\dashv	
FIELD BLANK - BACKGROUND	6v6/2023	1122	Ø	Š	-				×			\dashv	
												\dashv	and the second
Preservation Used: 1ª Ice, 2ª HCl; 3ª H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Ot	her	; F= filter		in field	4	F4	F	4			
	100	ŀ											

^{*} Six 1L Bottles must be collected for Radium for every 10th sample.

Special instructions/QC Requirements & Comments:

Relinquished by	Hal	Company	Date/Time: 160c Received by:		Date/Time:
Refinquished by:		Company:	Date/Time:	Received by:	Date/Time
Relinquished by:		Company:	Date/Time:	Received in Laboration by:	Date: 11,00,AM
Form COC-04, AEP Chain of	Custody (COC) Re	Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	tal (CCR) Sampling - Sh	Ireveport, Rev. 1, 1/10/17 🗸	L

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
(Cooler Box Bag Envelope	PONY UPS FEDEX USPS
	Other
Plant/Customer Welsh Power	Number of Plastic Containers:
Opened By Misgina/Micha	Number of Glass Containers:
_	Number of Mercury Containers:
	or N/A Initial: /// on ice / no ice
	4) - If No, specify each deviation: Comments
Requested turnaround: Requested turnaround:	If RUSH, who was notified?
	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? (Y)/ N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: 123
pH paper (circle one): MQuant,PN1.09535.0001,LC	OT# [OR] Lab Rat,PN4801,LOT# X000KWDG21 Exp 11/15/200
- Was Add'l Preservative needed? Y / Ŋ If	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / 🕅	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# <u>93/698</u> Initial & C	Date & Time :
Logged by \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	nts:
1 (1 8 2 1/ 2	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	age consists	of:		
x	(which		reportable data identified	w checklist consisting of Table 1, l on this page), Table 2, Supporti	
x	R1	Field chain-	of-custody documentation	1	
x	R2	Sample iden	ntification cross-reference		
X	R3	(a) Items s NELAC (b) Dilution (c) Prepara (d) Cleanup	pecified in NELAC Chapte Standard n factors ation methods p methods	or each environmental sample ther 5 for reporting results, e.g., Sec every service to the service of the servic	ction 5.5.10 in 2003
x	R4	(a) Calcula	ecovery data including: ted recovery (%R) oratory's surrogate QC lin	nits	
x	R ₅		s/summary forms for blan		
×	R6	(a) LCS spi (b) Calcula	/summary forms for labo iking amounts ted %R for each analyte oratory's LCS QC limits	ratory control samples (LCSs) in	cluding:
×	R7	(a) Sample(b) MS/MS(c) Concent(d) Calcula	es associated with the MS/ SD spiking amounts	analyte measured in the parent a ent differences (RPDs)	
X	R8	(a) The am (b) The cal	analytical duplicate (if app tount of analyte measured culated RPD oratory's QC limits for an		
x	R9	List of meth	od quantitation limits (M	QLs) for each analyte for each m	ethod and matrix
x	R10	Other probl	ems or anomalies		
х	The Ex	ception Rep	ort for every item for whic	h the result is "No" or "NR" (Not	Reviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en reviewed of the metho y signature l ory as having he Laborator	by the laboratory and is or ds used, except where not below, I affirm to the best g the potential to affect th	use of this laboratory data package omplete and technically compliated by the laboratory in the attact of my knowledge, all problems/are quality of the data, have been in information or data have been	nt with the hed exception anomalies, observed dentified by the
respon used is statem	ding to respon ent is tr	rule. The off sible for rele	icial signing the cover pag	house laboratory controlled by the of the rule-required report in vold is by signature affirming the a	vhich these data are bove release
	Arnold		Um / Jely	Chemist Principle	6/30/23
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Tim Arnold

LRC Date: 6/30/23

Laboratory Job Number: 231698

Prep Batch Number(s): QC2306254

Item ¹ Analytes		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	- NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
,	1	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
_R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Tim Arnold

LRC Date: 6/30/23

Laboratory Job Number: 231698

Prep Batch Number(s): QC2306254

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
·	I ·	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
53	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
·	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)	,	
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		4
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nai	me: American Electric Power Dolan Chemical Laboratory
	Welsh Background
Reviewer Name	
LRC Date: 6/30	0/23
	Number: 231698
	mber(s): QC2306254

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
-	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

×	(which	nis signature page, and the laboratory review checklist consisting of Table 1, Reportable Data which includes the reportable data identified on this page), Table 2, Supporting Data, and able 3, Exception Reports.						
x	R ₁	Field	chain-of-cus	stody documen	itation			
X	R2	Samp	ple identifica	tion cross-refe	rence			
x	R3	(a) 1 (b) 1 (c) 1 (d) 0	Items specific NELAC Stand Dilution factor Preparation 1 Cleanup met	ed in NELAC C dard ors nethods hods	Chapter 5 for		sample that includes: s, e.g., Section 5.5.10 in 2003 ands (TICs)	
NA	R4	(a)	Calculated re	ry data includir covery (%R) ry's surrogate (
x	R ₅	Test	reports/sum	mary forms for	r blank samı	oles		
X	R6	(a) 1 (b) (LCS spiking a Calculated %		lyte	control samples	(LCSs) including:	
×	R7	(a) { (b) { (c) { (d) {	Samples asso MS/MSD spi Concentratio Calculated %	ciated with the king amounts on of each MS/	e MŚ/MSD o MSD analyto e percent dif	learly identified	e parent and spiked samples	
X	R8	(a) ' (b) '	The amount The calculate	of analyte mea	sured in the	-	precision:	
x	R9	List	of method qu	antitation limi	ts (MQLs) f	or each analyte f	or each method and matrix	
x	R10	Othe	r problems o	r anomalies				
x	The Ex	ceptio	on Report for	every item for	r which the 1	esult is "No" or '	'NR" (Not Reviewed)	
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en revof the y sign as tory as the La	viewed by the methods use nature below s having the p	e laboratory an ed, except whe , I affirm to the potential to aff riew Checklist,	d is complete re noted by the best of my ect the quali	e and technically he laboratory in knowledge, all p ty of the data, ha	ata package. This data y compliant with the the attached exception roblems/anomalies, observed ave been identified by the have been knowingly withheld	
respon used is statem Micha	ding to respon ent is tr ael Oh	rule. sible rue. llinge	The official s for releasing	igning the cove this data pack	er page of th	e rule-required i signature affirm Chemist	report in which these data are ning the above release 7/5/2023	
name	(printed	l)	Sig	gnature	()	Official Title	Date	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Michael Ohlinger

LRC Date: 7/5/2023

Laboratory Job Number: 231698

Prep Batch Number(s): QC2306119

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	-
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	*6
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
_	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
-	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Michael Ohlinger

LRC Date: 7/5/2023

Laboratory Job Number: 231698

Prep Batch Number(s): QC2306119

Item¹			Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	-
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
_ \$3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		1993. (6)
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
-	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA ·	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Michael Ohlinger

LRC Date: 7/5/2023

Laboratory Job Number: 231698

Prep Batch Number(s): QC2306119

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231693 Customer: Welsh Power Station Date Reported: 06/30/2023

Customer Sample ID: AD-8 Customer Description: TG-32

Lab Number: 231693-001 Preparation:

Date Collected: 06/05/2023 10:13 EDT Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	21.1 mg/L	2	0.04	0.01	CRJ	06/27/2023 17:11	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.86 mg/L	2	0.06	0.02	CRJ	06/27/2023 17:11	EPA 300.1 -1997, Rev. 1.0
Sulfate	155 mg/L	10	3.0	0.6	CRJ	06/27/2023 16:38	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
TDS, Filterable Residue	300 mg/L	1	50	20	ELT	06/08/2023 12:52	SM 2540C-2015	

Customer Sample ID: AD-9 Customer Description: TG-32

Lab Number: 231693-002 Preparation:

Date Collected: 06/05/2023 10:55 EDT Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Metnod
Chloride	78.3 mg/L	25	0.5	0.1	CRJ	06/27/2023 18:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.17 mg/L	2	0.06	0.02	CRJ	06/27/2023 19:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	1230 mg/L	25	8	2	CRJ	06/27/2023 18:50	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	1950 mg/L	1	50	20	ELT	06/08/2023 12:58	SM 2540C-2015

Customer Sample ID: AD-15 Customer Description: TG-32

Lab Number: 231693-003 Preparation:

Date Collected: 06/05/2023 11:15 EDT Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	28.6 mg/L	2	0.04	0.01	CRJ	06/27/2023 16:06	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.08 mg/L	2	0.06	0.02	CRJ	06/27/2023 16:06	EPA 300.1 -1997, Rev. 1.0
Sulfate	12.4 mg/L	2	0.6	0.1	CRJ	06/27/2023 16:06	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	140 mg/L	1	50	20	ELT	06/08/2023 12:58	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231693 Customer: Welsh Power Station Date Reported: 06/30/2023

Customer Sample ID: DUPLICATE-PBAP Customer Description: TG-32

Lab Number: 231693-004 Preparation:

Date Collected: 06/05/2023 13:00 EDT Date Received: 06/08/2023 11:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	21.2 mg/L	2	0.04	0.01	CRJ	06/27/2023 21:02	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.85 mg/L	2	0.06	0.02	CRJ	06/27/2023 21:02	EPA 300.1 -1997, Rev. 1.0
Sulfate	156 mg/L	10	3.0	0.6	CRJ	06/27/2023 20:29	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
TDS, Filterable Residue	310 mg/L	1	50	20	ELT	06/08/2023 13:04	SM 2540C-2015	

Customer Sample ID: Field Blank-PBAP Customer Description: TG-32

Lab Number: 231693-005 Preparation:

<20 mg/L

Date Collected: 06/05/2023 11:01 EDT Date Received: 06/08/2023 11:00 EDT

50

Ion Chromatography

TDS, Filterable Residue

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	<0.01 mg/L	2	0.04	0.01 U1	CRJ	06/27/2023 18:17	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	06/27/2023 18:17	EPA 300.1 -1997, Rev. 1.0
Sulfate	<0.1 mg/L	2	0.6	0.1 U1	CRJ	06/27/2023 18:17	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method

20 U1

ELT

06/08/2023 13:04 SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231693 Customer: Welsh Power Station Date Reported: 06/30/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Groveport, Ohlo 43125				Prog	ram: (Soal Co	mbustio	Program: Coal Combustion Residuals (CCR)	Is (CCR)			
Contacts:					S	Site Contact:	i;			Date:	!	For Lab Use Only:
Michael Ohlinger (614-836-4184)												COCOCIEE #.
Project Name: Welsh PBAP								Field-filter 500 mL	7	Three (aix every	ass vial L PTFE tle, H<2	
Contact Name: Rebecca Jones	Analysis Turnsround Time (In Calendar Days) Routine (28 days)	- Routine	Fime (In Ca (28 days)	endar Da) S		bottle,	bottle,	bottle,	10th")		321/02
Contact Phone; (737) 330-3725								HNO,	0-6°C	1 L Bottles, pH<2, HNO ₃	f 10 enil	4-216-75
Sampler(s): Matt Hamilton Kenny McDonald							,88, 88, 0, Pb,	uM bns ('os	822-		
Sample Identification	Sample S Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Inli	B, Ca, Li, Sb, Be, Cd, Cr, C Mo, Se, TL	dissolved Fe	,IO ,7 , 2 0T	Ra-226, Ra	вн	Sample Specific Notes:
AD-8	6/5/2023	913	ŋ	ΑS	-				×			Routine (28 days)
AD-9	6/6/2023	955	O	ΜS	-				×			TG-32 needed
AD-15	6/5/2023	1015	O	GW	-				×			
DUPLICATE - PBAP	6/5/2023	1200	ဗ	§ S	-				×			
FIELD BLANK - PBAP	6/5/2023	1001	၅	GW	-				×			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=NaO	H; 6= Oth	ler	; F= filter	lter in field	leid	4	F4	1	4		0.30
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th s	атрів.										

Special instructions/QC Requirements & Comments:

7				
Relinquished by, Style 18	Company	Date/Time: 1/cz	Received by:	Date/Time,
Relinquished by:	Company	Date/Time:	Received by:	Date/Time;
Relinquished by:	Company	Date/Time:	Received in Laborator by:	Date/Time: 6/8/23 10,00 Am
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ard for Coal Combustion Residua	il (CCR) Sampling - Sh	Ireveport, Rev. 1, 1/10/17	

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type						
(Cooler) Box Bag Envelope	PONY UPS FEEEX USPS						
	Other						
Plant/Customer Welsh Power	Number of Plastic Containers:5						
Opened By Misgina Michael Number of Glass Containers:							
	Number of Mercury Containers:						
	or N/A Initial: /// on ice / no ice						
*	4) - If No, specify each deviation: Comments						
Was Chain of Custody received? () / N Requested turnaround:							
	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)						
Was COC filled out property? (Y/ N	Comments						
Were samples labeled property? (V)/ N	Comments						
	Comments						
Was pH checked & Color Coding done? (1) N or N/A Initial & Date: 106/08/23							
pH paper (circle one): MQuant,PN1.09535.0001,LOT# [OR] Lab Rat,PN4801,LOT# X000(WDG21 Exp 11/19/202							
•	Yes: By whom & when: (See Prep Book)						
Is sample filtration requested? Y / ()	Comments (See Prep Book)						
Was the customer contacted? If Yes:	Person Contacted:						
Lab ID# 23/693 Initial & I	Date & Time :						
Logged by SO	nts:						
Reviewed by MMC							

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	age consists o	of:				
x	(which		reportable data identified	w checklist consisting of Table 1, d on this page), Table 2, Supporti			
x	R1	Field chain-o	f-custody documentation	n			
×	R2	Sample identification cross-reference					
X	R3	(a) Items sp NELAC S (b) Dilution (c) Preparat (d) Cleanup	ecified in NELAC Chapte Standard factors ion methods methods	or each environmental sample the cr 5 for reporting results, e.g., Section 1975 of the compounds (TICs ively identified compounds (TICs	ction 5.5.10 in 2003		
х	R4	(a) Calculate	covery data including: ed recovery (%R) ratory's surrogate QC lin	nits			
х	R5	Test reports/	summary forms for blan	k samples			
X	R6	(a) LCS spile (b) Calculate		ratory control samples (LCSs) in	cluding:		
×	R7	(a) Samples(b) MS/MSI(c) Concent(d) Calculate	associated with the MS/ D spiking amounts	analyte measured in the parent a ent differences (RPDs)			
X	R8	(a) The amo	ount of analyte measured	-			
x	R9	List of metho	d quantitation limits (M	QLs) for each analyte for each m	ethod and matrix		
x	R10	Other proble	ms or anomalies				
x	The Ex	ception Repo	rt for every item for whic	h the result is "No" or "NR" (Not	Reviewed)		
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en reviewed b of the method y signature be ory as having	y the laboratory and is co is used, except where not elow, I affirm to the best the potential to affect the Review Checklist, and r	ase of this laboratory data package omplete and technically complianted by the laboratory in the attack of my knowledge, all problems/a e quality of the data, have been in the information or data have been	nt with the ned exception nomalies, observed dentified by the		
respon used is	ding to	rule. The offic sible for relea	cial signing the cover pag	house laboratory controlled by the of the rule-required report in wind is by signature affirming the a	hich these data are		
Tim A	Arnold		Chu Chal	Chemist Principle	6/30/23		
Name	(printed	H)	Signature	Official Title	Date		

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Tim Arnold

LRC Date: 6/30/23

Laboratory Job Number: 231693

Prep Batch Number(s): QC2306254

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	· I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	1	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	_ I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	!
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	23
	a: I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	1	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I ,	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	W I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix Interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Tim Arnold

LRC Date: 6/30/23

Laboratory Job Number: 231693

Prep Batch Number(s): QC2306254

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	[02:00:00:00:00:00
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
\$4	0	Internal standards (IS):		,
·	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	82 3

Ion Chromatography Laboratory Review Checklist

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
S7	0	Tentatively identified compounds (TICs):			
4	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions			
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	O, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	O, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	O, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	O, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	0, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
7.2	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):			
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Ion Chromatography Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Tim Arnold

LRC Date: 6/30/23

Laboratory Job Number: 231693

Prep Batch Number(s): QC2306254

Exception Report No.	Description								
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>								

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R₁ Field chain-of-custody documentation × R_2 Sample identification cross-reference Test reports (analytical data sheets) for each environmental sample that includes: \mathbf{x} R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA. **R**4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples х **R**5 X R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: X **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix $|\mathbf{x}|$ R9 $\left[\mathbf{x} \right]$ Other problems or anomalies X The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Michael Ohlinger

Name (printed)

6/30/23

Date

Official Title

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Michael Ohlinger

LRC Date: 6/30/2023

Laboratory Job Number: 231693

Prep Batch Number(s): QC2306117

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	ı	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹ Analytes		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes		
	I	Were blank concentrations < MQL?	Yes		
R6	. O, I	Laboratory control samples (LCS):			
	I	Were all COCs included in the LCS?	Yes		
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes		
	I	Were LCSs analyzed at the required frequency?	Yes		
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes		
	I	Was the LCSD RPD within QC limits?	Yes		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data			
	I	Were the project/method specified analytes included in the MS and MSD?	NA		
	I	Were MS/MSD analyzed at the appropriate frequency?	NA		
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA		
	I	Were MS/MSD RPDs within laboratory QC limits?	NA		
R8	O, I	Analytical duplicate data			
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes		
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes		
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes		
R9	O, I	Method quantitation limits (MQLs):			
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes		
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes		
	I	Are unadjusted MQLs included in the laboratory data package?	Yes		
R10	O, I	Other problems/anomalies			
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes		
	I	Were all necessary corrective actions performed for the reported data?	Yes	:	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes		

Table 2. Supporting Data.

Laboratory Nam	ne: American Electric Power Dolan Chemical Laboratory
Project Name: 💄	
_	Michael Ohlinger
LRC Date:	- 3
Laboratory Job	Number: 231693
	ber(s): QC2306117

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹ Analytes		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	Sq.
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S 16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Michael Ohlinger

LRC Date: 6/30/2023

Laboratory Job Number: 231693

Prep Batch Number(s): QC2306117

Exception Report No.	Description	Figure 1
·		27.5 27.
	190	
	11.0	
	N. 13 P. S.	
	41 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	1	
	10-20	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233117 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: AD-1 Customer Description: TG-32

Lab Number: 233117-001 Preparation:

Date Collected: 10/04/2023 11:11 EDT Date Received: 10/04/2023 10:11 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL Data Qua	alifiers Analyst	Analysis Date	Method
Antimony	0.029	μg/L	1	0.100	0.008 J1	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Arsenic	0.19	μg/L	1	0.10	0.03	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Barium	80.0	μg/L	1	0.20	0.05	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Beryllium	1.06	µg/L	1	0.050	0.007	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Boron	0.901	mg/L	1	0.050	0.007	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0.027	µg/L	1	0.020	0.004	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Calcium	6.56	mg/L	1	0.05	0.01	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.38	µg/L	1	0.30	0.07	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Cobalt	2.25	μg/L	1	0.020	0.005	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Lead	0.44	µg/L	1	0.20	0.05	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0103	mg/L	1	0.00030	0.00007	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Mercury	2	ng/L	1	5	2 J1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1 U1	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Selenium	9.26	µg/L	1	0.50	0.04	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4
Thallium	0.05	µg/L	1	0.20	0.02 J1	GES	10/17/2023 13:26	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.69 pCi/L	0.14	0.14	TTP	10/23/2023 17:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	76.5 %					
Radium-228	1.17 pCi/L	0.15	0.47	ST	11/02/2023 17:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	74.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233117 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: AD-5 Customer Description: TG-32

Lab Number: 233117-002 Preparation:

Date Collected: 10/04/2023 12:18 EDT Date Received: 10/04/2023 10:11 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Arsenic	2.94 μg/L	1	0.10	0.03	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Barium	63.9 μg/L	1	0.20	0.05	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.049 μg/L	1	0.050	0.007 J1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Boron	0.042 mg/L	1	0.050	0.007 J1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Calcium	35.2 mg/L	1	0.05	0.01	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.30 µg/L	1	0.30	0.07	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Cobalt	12.8 µg/L	1	0.020	0.005	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.143 mg/L	1	0.00030	0.00007	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.05 µg/L	1	0.50	0.04 J1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	10/17/2023 13:31	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.28 pCi/L	0.18	0.14	TTP	10/23/2023 17:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.5 %					
Radium-228	2.29 pCi/L	0.21	0.62	ST	11/02/2023 17:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	75.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233117 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 233117-003 Preparation:

Date Collected: 10/04/2023 12:07 EDT Date Received: 10/04/2023 10:11 EDT

Metals

Parameter	Result Unit	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.08 µg/L	10	1.00	0.08 U1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.5 µg/L	10	1.0	0.3 J1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Barium	11.8 µg/l	10	2.0	0.5	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.07 µg/L	10	0.50	0.07 U1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Boron	0.14 mg/	10	0.50	0.07 J1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.04 µg/L	10	0.20	0.04 U1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Calcium	176 mg/	10	0.5	0.1 M1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Chromium	1.3 µg/l	10	3.0	0.7 J1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Cobalt	41.2 µg/l	10	0.20	0.05	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Lead	<0.5 µg/L	10	2.0	0.5 U1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.305 mg/	10	0.0030	0.0007 M1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<1 µg/l	10	5	1 U1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Selenium	<0.4 µg/L	10	5.0	0.4 U1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	10	2.0	0.2 U1	GES	10/17/2023 13:36	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.65 pCi/L	0.12	0.12	TTP	10/23/2023 17:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.9 %					
Radium-228	1.40 pCi/L	0.21	0.66	ST	11/02/2023 17:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	70.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233117 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: DUPLICATE - BACKGROUND Customer Description: TG-32

Lab Number: 233117-004 Preparation:

Date Collected: 10/04/2023 13:00 EDT Date Received: 10/04/2023 10:11 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.039 μg/L	1	0.100	0.008 J1	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Arsenic	0.22 µg/L	1	0.10	0.03	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Barium	82.9 μg/L	1	0.20	0.05	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Beryllium	0.997 µg/L	1	0.050	0.007	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Boron	0.907 mg/L	1	0.050	0.007	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Cadmium	0.027 µg/L	1	0.020	0.004	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Calcium	6.77 mg/L	1	0.05	0.01	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.30	0.07	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Cobalt	2.39 µg/L	1	0.020	0.005	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Lead	0.45 µg/L	1	0.20	0.05	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Lithium	0.00980 mg/L	1	0.00030	0.00007	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Selenium	10.0 µg/L	1	0.50	0.04	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.02 J1	GES	10/17/2023 13:51	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233117 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: EB - BACKGROUND Customer Description: TG-32

Lab Number: 233117-005 Preparation:

Date Collected: 10/04/2023 10:49 EDT Date Received: 10/04/2023 10:11 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 μg/L	1	0.30	0.07	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Cobalt	0.085 μg/L	1	0.020	0.005	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	10/17/2023 14:48	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233117 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: FIELD BLANK - BACKGROUND Customer Description: TG-32

Lab Number: 233117-006 Preparation:

Date Collected: 10/04/2023 12:10 EDT Date Received: 10/04/2023 10:11 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 μg/L	1	0.30	0.07	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Cobalt	0.039 µg/L	1	0.020	0.005	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	10/17/2023 14:53	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233117 Customer: Welsh Power Station Date Reported: 11/15/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhuel S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Groveport, Ohio 43125				Prog	ram: (Soal Co	mbustio	Program: Coal Combustion Residuals (CCR)	s (CCR)			
Contacts: Michael Ohlinger (614-836-4184)					Ś	Site Contact:	act:			Date:		For Lab Use Only: COC/Order #:
Project Name: Welsh Background	Analysis T	urmaround	Analyais Turnaround Time (in Calendar Days)	lendar Da	(<u>%</u>				1 L bottle,	Three (six every 10th")), PHFE bottle, ', pH<2	
		Routin	Routine (28 days)				PH<2, HNO,	then pH<2, HNO ₃	Coof, 0-6°C	1 L bottles, pH<2, HNO ₃	banii	654 633117
Sampler(s): Matt Hamilton Kenny McDonald							,68,88, ,d9,0;	oM bas e	'os	1-228		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	# of Conf.	Sampler(s) Ini	B, Ca, Ll, Sb, Be, Cd, Cr, C Mo, Se, TL	dissolved Fe	, TDS, F, CI,	년 년 - 226, 년 :	бн	Sample Specific Notes:
AD-1	10/4/2023	1011	ტ	GW	80		×			×	×	Routine (28 days)
AD-5	10/4/2023	1118	თ	GW	-Cr		×			×	×	TG-32 needed
AD-17	10/4/2023	1107	g	GW	2		×			×	×	
DUPLICATE - BACKGROUND	10/4/2023	1200	ဖ	οW	2		×				×	
EQUIPMENT BLANK - BACKGROUND	10/4/2023	949		GW	2		×				×	
FIELD BLANK - BACKGROUND	10/4/2023	1110	ტ	GW	-		×			22		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	DH; 6= Oth	ner	FE f	; F= filter in field	eld	4	F4	F	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.										

Special instructions/QC Requirements & Comments:

		١		
Relinquished by The Hand	Company	Date/Time: 60	(6 cm* Received by:	Date/ Lime:
Relinquished by	Company	Date/Time:		Date/Time:
Relinquished by	Company:	Date/Time	Received Hoperatory by D. C.	Date/Time 7 9/0/23
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR)	rd for Coal Combustion Residu:	al (CCR) Sampling - Sh	Sampling - Shreveport, Rev. 1, 1/10/17	

AFF WATER & WASTE SAMPLE RECEIPT FORM

Package Type Delivery Type								
Coole Box Bag Envelope PONY UPS FedEX USPS								
Other								
Plant/Customer Nelsh Power Number of Plastic Containers: 18								
Opened By Misgrina Number of Glass Containers:								
Date/Time 10/09/23 11:30 Am Number of Mercury Containers: 5								
Were all temperatures within 0-6°C? Y / N or NA Initial: M/r/c on ice / no ice								
(IR Gun Ser# 2213689000 , Expir. 03/24/2024) - If No, specify each deviation:								
Was container in good condition? W/ N Comments								
Was Chain of Custody received? (V) N Comments								
pH (15 min) Cr ⁴⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres)								
(24 hr) (48 hr)								
Was COC filled out properly? (Y/N Comments								
Were samples labeled properly? (*/) N Comments								
were correct containers used? (Y// N Comments								
Was pH checked & Color Coding done? (V) N or N/A Initial & Date: MGC 10/09/23								
pH paper (circle one): MQuant,PN1.09535.0001,LOT# [OR] Lab Rat,PN4801.LOT# xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx								
- Was Add'l Preservative needed? Y / N If Yes: By whom & when: (See Prep Book)								
Is sample filtration requested? Y / N Comments (See Prep Book)								
Was the customer contacted? If Yes: Person Contacted:								
Lab ID#								
Logged by M 50								
Reviewed by MFIC								

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

I III3 ua	ta pack	age consists or.					
х	(which		portable data iden		dist consisting of Ta s page), Table 2, Sup		
×	R1	Field chain-of-	custody document	ation			
×	R2	Sample identifi	cation cross-refer	ence			
×	R3	(a) Items spec NELAC State(b) Dilution fa(c) Preparation(d) Cleanup m	cified in NELAC Ch andard actors in methods aethods	napter 5 for	environmental sam reporting results, e., entified compounds	g., Section	
M	R4	(a) Calculated	very data including recovery (%R) tory's surrogate Q	_			
x	R ₅	Test reports/su	ımmary forms for	blank samp	les		
x	R6	(a) LCS spikir(b) Calculated		⁄te	control samples (LC	Ss) includ	ding:
X	R7	(a) Samples a(b) MS/MSD(c) Concentra(d) Calculated	ssociated with the spiking amounts	MS/MSD c ISD analyte percent diff	measured in the pa		-
х	R8	(a) The amou(b) The calcul	nt of analyte meas	ured in the	_	ision:	
X	R9	List of method	quantitation limit	s (MQLs) fo	or each analyte for ea	ach meth	od and matrix
х	R10	Other problem	s or anomalies				
х	The Ex	ception Report	for every item for	which the r	esult is "No" or "NR	" (Not Re	viewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en reviewed by of the methods y signature bel ory as having tl	the laboratory and used, except wher ow, I affirm to the ne potential to affe Review Checklist, a	l is complet e noted by t best of my l ct the quali	nis laboratory data pe e and technically con he laboratory in the knowledge, all proble ty of the data, have b rmation or data have	mpliant w attached ems/ano been iden	vith the exception malies, observed tified by the
respon used is	ding to	rule. The official sible for releasi	al signing the cove ng this data packa	r page of the ge and is by	aboratory controlled e rule-required repo signature affirming	rt in whic the abov	ch these data are
Susa	nn Su	Izmann	Jusann In	7 Many	Senior Chemist		11-02-2023
Name	(printed	d)	Signature		Official Title		Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Power Station

Reviewer Name: Susann Sulzmann

LRC Date: 11-03-2023

Laboratory Job Number: 233117

Prep Batch Number(s): PB23101204

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
•	I	Were all samples prepared and analyzed within holding times?	yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
-	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	ves	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	ves	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	ves	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Power Station

Reviewer Name: Susann Sulzmann

LRC Date: 11-03-2023

Laboratory Job Number: 233117

Prep Batch Number(s): PB23101204

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	2
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?		
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹ Analytes²		Analytes ² Description			
S6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
S7	0	Tentatively identified compounds (TICs):			
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions			
<u> </u>	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	O, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	O, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	O, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	0, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	O, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):		-	
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Power Station

Reviewer Name: Susann Sulzmann

LRC Date: 11-03-2023

Laboratory Job Number: 233117

Prep Batch Number(s): PB23101204

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
· · · · · · · · · · · · · · · · · · ·	
 -	
<u> </u>	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	age	consists of:							
×	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.									
x	R1	Field chain-of-custody documentation								
×	R2	Sample identification cross-reference								
x	R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in some NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)									
NA	R4	(a)	rogate recovery data in Calculated recovery (9 The laboratory's surro	6R)						
х	R5		t reports/summary for	_	ples					
x	R6	(a) (b)	t reports/summary for LCS spiking amounts Calculated %R for eac The laboratory's LCS (h analyte	control samples (LCS	s) including:				
×	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked sample (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits								
x	R8	(a) (b)	oratory analytical dupl The amount of analyte The calculated RPD The laboratory's QC li	e measured in the	duplicate	sion:				
x	R9		of method quantitation	· ·	_	ch method and matrix				
X.	R10	Oth	er problems or anomal	ies						
х	The Ex	cept	ion Report for every ite	em for which the	result is "No" or "NR"	(Not Reviewed)				
packag require reports by the laborat that we	e as be ements s. By m laborat tory in t	en re of th y sig tory : the L ect t	as having the potential aboratory Review Cheche quality of the data.	ory and is comple t where noted by to the best of my to affect the qual eklist, and no info	te and technically con the laboratory in the a knowledge, all proble ity of the data, have be rmation or data have	npliant with the attached exception ms/anomalies, observed een identified by the been knowingly withheld				
respon used is	ding to	rule sible	This laborato The official signing the for releasing this data	e cover page of the package and is b	ie rule-required repor	t in which these data are				
Jona	than E	Barn	hill	Benefit of the comment served of the comment served of the comment	Lab Supervisor	11/8/2023				
Name	(printed	d)	Signature		Official Title	Date				

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 11/8/2023

Laboratory Job Number: 233117

Prep Batch Number(s): PB23101209 QC2310150

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
-	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5 _	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	3
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 11/8/2023

Laboratory Job Number: 233117

Prep Batch Number(s): PB23101209 QC2310150

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
S1	O, I	Initial calibration (ICAL)			
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA		
	I	Were percent RSDs or correlation coefficient criteria met?	Yes		
	I	Was the number of standards recommended in the method used for all analytes?	Yes		
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes		
	I	Are ICAL data available for all instruments used?	Yes		
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
	I	Was the CCV analyzed at the method-required frequency?	Yes		
	I	Were percent differences for each analyte within the method-required QC limits?	Yes		
	I	Was the ICAL curve verified for each analyte?	Yes		
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2	
S3	0	Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	Yes		
	I	Were ion abundance data within the method-required QC limits?	Yes	-	
54	0	Internal standards (IS):			
	I	Were IS area counts and retention times within the method-required QC limits?	Yes		
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)			
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes		
	I	Were data associated with manual integrations flagged on the raw data?	NA		

Item ¹ Analytes ²		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	Ο, Ι	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	- ** 91-34-
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		500 m
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 11/8/2023

Laboratory Job Number: 233117

Prep Batch Number(s): PB23101209 QC2310150

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Sample 233117-003 failed acceptance criteria on Matrix spike for Calcium and Lithium

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233118 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: AD-8 Customer Description: TG-32

Lab Number: 233118-001 Preparation:

Date Collected: 10/03/2023 11:20 EDT Date Received: 10/09/2023 12:00 EDT

Metals

Parameter	Result Un	ts Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/	L 1	0.100	0.008 J1	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 μg/	L 1	0.10	0.03	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Barium	24.2 μg/	L 1	0.20	0.05	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/	L 1	0.050	0.007 U1	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Boron	1 .06 mg	′L 1	0.050	0.007	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Cadmium	0.020 μg/	L 1	0.020	0.004	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Calcium	18.9 mg	′L 1	0.05	0.01	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 μg/	L 1	0.30	0.07	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Cobalt	3.95 µg∕	L 1	0.020	0.005	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/	L 1	0.20	0.05 U1	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Lithium	0.0732 mg	′L 1	0.00030	0.00007	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	L 1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	L 1	0.5	0.1 U1	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Selenium	0.05 μg/	L 1	0.50	0.04 J1	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 0 µg/	L 1	0.20	0.02 J1	GES	10/17/2023 14:58	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.64 pCi/L	0.13	0.14	TTP	10/23/2023 17:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.2 %					
Radium-228	0.60 pCi/L	0.16	0.54	ST	11/02/2023 17:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	78.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233118 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: AD-9 Customer Description: TG-32

Lab Number: 233118-002 Preparation:

Date Collected: 10/03/2023 10:23 EDT Date Received: 10/09/2023 12:00 EDT

Metals

Parameter	Result Un	ts Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/	L 1	0.100	0.008 U1	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Arsenic	1.57 µg/	L 1	0.10	0.03	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Barium	37.0 μg/	L 1	0.20	0.05	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Beryllium	0.788 μg/	L 1	0.050	0.007	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Boron	0.168 mg	′L 1	0.050	0.007	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Cadmium	0. 1 95 μg/	L 1	0.020	0.004	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Calcium	168 mg	′L 1	0.05	0.01	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Chromium	0.48 μg/	L 1	0.30	0.07	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Cobalt	17.4 µg/	L 1	0.020	0.005	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Lead	0.47 µg/	L 1	0.20	0.05	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Lithium	0.777 mg	′L 1	0.00030	0.00007	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	L 1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	L 1	0.5	0.1 U1	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Selenium	0.44 µg/	L 1	0.50	0.04 J1	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 6 μg/	L 1	0.20	0.02 J1	GES	10/17/2023 15:03	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.81 pCi/L	0.15	0.14	TTP	10/23/2023 17:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	85.8 %					
Radium-228	1.30 pCi/L	0.19	0.61	ST	11/02/2023 17:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	71.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233118 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: AD-15 Customer Description: TG-32

Lab Number: 233118-003 Preparation:

Date Collected: 10/03/2023 10:40 EDT Date Received: 10/09/2023 12:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.014 μg/L	1	0.100	0.008 J1	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Arsenic	3.01 µg/L	1	0.10	0.03	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Barium	69.8 μg/L	1	0.20	0.05	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Beryllium	0.139 µg/L	1	0.050	0.007	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Boron	0.179 mg/L	1	0.050	0.007	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Cadmium	0.013 µg/L	1	0.020	0.004 J1	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Calcium	2.47 mg/L	1	0.05	0.01	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Chromium	0.37 µg/L	1	0.30	0.07	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Cobalt	3.06 µg/L	1	0.020	0.005	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Lithium	0.00398 mg/L	1	0.00030	0.00007	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Selenium	0.54 µg/L	1	0.50	0.04	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4
Thallium	0.06 µg/L	1	0.20	0.02 J1	GES	10/17/2023 15:08	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.68 pCi/L	0.13	0.15	TTP	10/23/2023 17:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	97.8 %					
Radium-228	1.42 pCi/L	0.14	0.40	ST	11/02/2023 17:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	82.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233118 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: DUPLICATE - PBAP Customer Description: TG-32

Lab Number: 233118-004 Preparation:

Date Collected: 10/03/2023 13:00 EDT Date Received: 10/09/2023 12:00 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 µg/L	1	0.10	0.03	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Barium	24.4 μg/L	1	0.20	0.05	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Boron	1.07 mg/L	1	0.050	0.007	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.023 µg/L	1	0.020	0.004	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Calcium	19.0 mg/L	1	0.05	0.01	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.46 µg/L	1	0.30	0.07	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Cobalt	4.04 µg/L	1	0.020	0.005	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.0702 mg/L	1	0.00030	0.00007	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Selenium	0.05 µg/L	1	0.50	0.04 J1	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4
Thallium	0. 11 µg/L	1	0.20	0.02 J1	GES	10/17/2023 15:13	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233118 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: EQUIPMENT BLANK - PBAP Customer Description: TG-32

Lab Number: 233118-005 Preparation:

Date Collected: 10/03/2023 10:57 EDT Date Received: 10/09/2023 12:00 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Calcium	0.02 mg/L	1	0.05	0.01 J1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.37 μg/L	1	0.30	0.07	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Cobalt	0.032 μg/L	1	0.020	0.005	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.00012 mg/L	1	0.00030	0.00007 J1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/12/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	10/17/2023 15:18	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233118 Customer: Welsh Power Station Date Reported: 11/15/2023

Customer Sample ID: FIELD BLANK - PBAP Customer Description: TG-32

Lab Number: 233118-006 Preparation:

Date Collected: 10/03/2023 10:59 EDT Date Received: 10/09/2023 12:00 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	s Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 μg/L	1	0.30	0.07	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Cobalt	0.042 μg/L	1	0.020	0.005	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.00009 mg/L	1	0.00030	0.00007 J1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	10/17/2023 15:23	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233118 Customer: Welsh Power Station Date Reported: 11/15/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road Gravemort Other 43125				, 6	· mez	loo leo	philatio	Program: Coal Combustion Residuals (CCR)	A (CCR	_			
Contacts:					8	Site Contact:	ų.			Date:		For Lab Use Only:	
Michael Ohlinger (614-836-4184)					_	ŀ	ľ			-		COCOGGE *:	
Project Name Welsh PBAP						_ N		Field-filter 500 mL	11	Three (six every			
Contact Name: Rebecca Jones	Analysis	Furmaround Routin	Analysis Turnaround Time (in Calendar Days) Routine (28 days)	lendar Da	<u>e</u>		bottle, nH<2.	bottle,	bottle,	10th*)	mL i d bod d bod	(
Contact Phone: (737) 330-3725							\neg	H Q	0-6°C	pH<2, HNO,	euli	253118	
Sampler(s): Matt Hamilton Kenny McDonald							'qa 'o	nM bns e	'os	977-1			
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Ini	Be, Cd, Cr, C Mo, Se, TL	dissolved Fe	, F, CI,	Ra-226, Ra	вн	Sample Specific Notes:	
AD-8	10/3/2023	1020	9	GW	80		×			×	×	TG-32 needed	
AD-9	10/3/2023	923	၅	GW	ιΩ		×			×	×		
AD-15	10/3/2023	940	ဖ	W _O	'n		×			×	×		
DUPLICATE - PBAP	10/3/2023	1200	O	δW	7	\dashv	×				×		
EQUIPMENT BLANK - PBAP	10/3/2023	957	တ	ΒW	7	+	×				×		T
FIELD BLANK - PBAP	10/3/2023	959	g	GW	-		×						
						_		ia—					
		- 33 9											
	0	6.270									1000000		
										S 80			
							*						
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5≈Na	OH; 6= Of	ther	. F=f	_; F= filter in field	ple	4	F4	1	4	2		
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.										ं व	

Special Instructions/QC Requirements & Comments:

0					_
Relinquished by Manual	Company	Date/Time. 16%	FS /6% Received by:	Date/Time:	
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:	
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Date/Time: 10/10/2 >	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type		Delivery Type	
Cooler Box Bag Enve			JSPS
	Other		
Plant/Customer Welsh	Power Station	Plastic Containers:	Ŕ
Opened By Misgha	Number of 0		
Date/Time 10/09/23	11:30 Am Number of N	Mercury Containers:	5
Were all temperatures within 0-6	C? Y/N or NA Initial:	M_{J-1} on	ice / no ice
(IR Gun Ser# 2213689000 , Expi			
Was Chain of Custody received?	ACA		
Requested turnaround: 28/		was notified?	
pH (15 min) Cr ⁺⁶ (pres) (24 hr)	NO ₂ or NO ₃ (48 hr)	ortho-PO ₄ (48 hr) Hg	-diss (pres) (48 hr)
Was COC filled out properly?	(V) N Comments		
Were samples labeled properly?	N Comments		
Were correct containers used?	2.7		
Was pH checked & Color Coding			
pH paper (circle one): MQuant,PN1.	09535.0001,LOT#	[OR] Lab Rat,PN4801.LO	# X050RWDG21 Exp 11/15/202
- Was Add'l Preservative needed	l? Y / ∭ If Yes: By whom 8	when:	_ (See Prep Book)
Is sample filtration requested?	Y / N) Comments	7/4	_ (See Prep Book)
Was the customer contacted?	If Yes: Person Contact		
Lab ID# 233 11 8	initial & Date & Time :		
Logged by MSO	Comments:		
Reviewed by MGC			

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

x	(which		reportable data identified on	ecklist consisting of Table 1, Rothis page), Table 2, Supporting	
x	Rı	Field chain-o	of-custody documentation		
x	R2	Sample iden	tification cross-reference		
x	R3	(a) Items spNELAC(b) Dilution(c) Prepara(d) Cleanup	pecified in NELAC Chapter 5 f Standard factors tion methods methods	ch environmental sample that or reporting results, e.g., Secti identified compounds (TICs)	
NA	R4	(a) Calculat	covery data including: red recovery (%R) oratory's surrogate QC limits		
х	R ₅	Test reports,	summary forms for blank sar	nples	
×	R6	(a) LCS spi (b) Calculat	summary forms for laborator king amounts ed %R for each analyte oratory's LCS QC limits	ry control samples (LCSs) inclu	ıding:
x	R7	(a) Samples(b) MS/MS(c) Concent(d) Calculat	s associated with the MS/MSI D spiking amounts	yte measured in the parent and	_
x	R8	(a) The ame	nalytical duplicate (if applica ount of analyte measured in the culated RPD oratory's QC limits for analytic	he duplicate	
x	R9	List of meth	od quantitation limits (MQLs)) for each analyte for each met	hod and matrix
x	R10	Other proble	ems or anomalies		
х	The Ex	ception Repo	ort for every item for which the	e result is "No" or "NR" (Not R	Reviewed)
packag require report by the labora	ge as beements s. By m labora tory in	en reviewed l of the method y signature l tory as having	by the laboratory and is comp ds used, except where noted b below, I affirm to the best of m g the potential to affect the qu y Review Checklist, and no in	f this laboratory data package. lete and technically compliant y the laboratory in the attache y knowledge, all problems/an ality of the data, have been ide formation or data have been k	with the d exception omalies, observed ntified by the
respor used is	iding to	rule. The offi sible for relea	cial signing the cover page of asing this data package and is	se laboratory controlled by the the rule-required report in wh by signature affirming the abo	ich these data are
Susa	ınn Su	Izmann	Susann Julquany Signature	Senior Chemist	11-02-2023
Name	(printe	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Power Station

Reviewer Name: Susann Sulzmann

LRC Date: 11-03-2023

Laboratory Job Number: 233118

Prep Batch Number(s): PB23101204

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	Ι ,Ο	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	ves	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	ves	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	ves	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Power Station

Reviewer Name: Susann Sulzmann

LRC Date: 11-03-2023

Laboratory Job Number: 233118

Prep Batch Number(s): PB23101204

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?		
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
_	I	Was the appropriate compound for the method used for tuning?	NA	2 - 4 - 12 - 12 - 12 - 12 - 12 - 12 - 12
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	1	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
\$15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:
American Electric Power Dolan Chemical Laboratory

Project Name:
Welsh Power Station

Reviewer Name:
Susann Sulzmann

LRC Date:
11-03-2023

Laboratory Job Number:
233118

Prep Batch Number(s):
PB23101204

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
	Water and the state of the stat

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

³ NA - Not applicable; NR - Not reviewed.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	age consists of	:		
×	(which		eportable data identi	riew checklist consisting of T ied on this page), Table 2, Su	
x	R1	Field chain-of	-custody documentat	ion	
×	R2	Sample identi	fication cross-referer	ce	
х	R3	(a) Items spe NELAC S (b) Dilution i (c) Preparati (d) Cleanup i	cified in NELAC Cha tandard factors on methods methods) for each environmental san pter 5 for reporting results, e atively identified compound	.g., Section 5.5.10 in 2003
NA	R4	(a) Calculate	overy data including: d recovery (%R) atory's surrogate QC	limits	
х	R ₅		summary forms for bl		
x	R6	Test reports/s (a) LCS spiki (b) Calculate	summary forms for la	boratory control samples (LC	CSs) including:
×	R7	(a) Samples(b) MS/MSD(c) Concentr(d) Calculate	associated with the M spiking amounts ation of each MS/MS	e/matrix spike duplicates (M S/MSD clearly identified D analyte measured in the pa ercent differences (RPDs) limits	
x	R8	(a) The amount (b) The calcu	unt of analyte measu	-	cision:
x	R9	List of method	d quantitation limits	MQLs) for each analyte for e	each method and matrix
x	R10	Other problem	ns or anomalies		
х	The Ex	ception Repor	t for every item for w	nich the result is "No" or "NF	R" (Not Reviewed)
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be tory as having t	y the laboratory and in sused, except where in low, I affirm to the both the potential to affect Review Checklist, an	lease of this laboratory data scomplete and technically conted by the laboratory in the est of my knowledge, all probes the quality of the data, have d no information or data have	ompliant with the attached exception lems/anomalies, observed been identified by the
respon used is	ding to	rule. The offici sible for releas	ial signing the cover p sing this data package	n-house laboratory controlle page of the rule-required repo and is by signature affirmin	ort in which these data are
Jona	than E	Barnhill	Openin agent in collette best of the standard formular plant of production of prime common relations for the prime common relations for the standard for the standard plant of the standard for the standard plant of the death of the standard formular standard plant of the death of the standard formular standard plant of the death of the standard formular standard plant of the standard plant of the death of the standard plant of the standard plant of the standard plant of the death of the standard plant	Lab Supervisor	11/8/2023
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 11/8/2023

Laboratory Job Number: 233118

Prep Batch Number(s): PB23101209 QC2310150

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
<u> </u>	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 11/8/2023

Laboratory Job Number: 233118

Prep Batch Number(s): PB23101209 QC2310150

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	1	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	0, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	a .
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	3.4.45.38.40.38
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	0, 1	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Welsh CCR
Reviewer Name: Jonathan Barnhill
LRC Date: 11/8/2023
Laboratory Job Number: 233118
Prep Batch Number(s): PB23101209 QC2310150

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233091 Customer: Welsh Power Station Date Reported: 11/01/2023

Customer Sample ID: AD-8 Customer Description:

Lab Number: 233091-001 Preparation:

Date Collected: 10/03/2023 11:20 EDT Date Received: 10/06/2023 09:50 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	21.5 mg/L	2	0.04	0.01	CRJ	10/17/2023 02:59	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.94 mg/L	2	0.06	0.02	CRJ	10/17/2023 02:59	EPA 300.1 -1997, Rev. 1.0
Sulfate	137 mg/L	10	3.0	0.6	CRJ	10/16/2023 20:24	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	310 mg/L	1	50	20	ELT	10/06/2023 12:32	SM 2540C-2015

Customer Sample ID: AD-9 Customer Description:

Lab Number: 233091-002 Preparation:

Date Collected: 10/03/2023 10:23 EDT Date Received: 10/06/2023 09:50 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	75.4 mg/L	25	0.5	0.1	CRJ	10/16/2023 20:57	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.1 mg/L	2	0.06	0.02	CRJ	10/17/2023 05:11	EPA 300.1 -1997, Rev. 1.0
Sulfate	1200 mg/L	25	8	2	CRJ	10/16/2023 20:57	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method

ELT

10/06/2023 12:45 SM 2540C-2015

20

Customer Sample ID: AD-15 Customer Description:

Lab Number: 233091-003 Preparation:

1910 mg/L

Date Collected: 10/03/2023 10:40 EDT Date Received: 10/06/2023 09:50 EDT

50

Ion Chromatography

TDS, Filterable Residue

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	27.5 mg/L	2	0.04	0.01	CRJ	10/16/2023 21:30	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	10/16/2023 21:30	EPA 300.1 -1997, Rev. 1.0
Sulfate	9.9 mg/L	2	0.6	0.1	CRJ	10/16/2023 21:30	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	140 mg/L	1	50	20	ELT	10/06/2023 12:45	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233091 Customer: Welsh Power Station Date Reported: 11/01/2023

Customer Sample ID: DUPLICATE - PBAP

Customer Description:

Lab Number: 233091-004

Preparation:

Date Collected: 10/03/2023 13:00 EDT

290 mg/L

Date Received: 10/06/2023 09:50 EDT

ELT

10/06/2023 13:04 SM 2540C-2015

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	21.6 mg/L	2	0.04	0.01	CRJ	10/17/2023 05:44	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.91 mg/L	2	0.06	0.02	CRJ	10/17/2023 05:44	EPA 300.1 -1997, Rev. 1.0
Sulfate	132 mg/L	25	8	2	CRJ	10/16/2023 22:03	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method

20

50

TDS, Filterable Residue

233091-001 Comments:

TG-32

233091-002 Comments:

TG-32

233091-003 Comments:

TG-32

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233091 Customer: Welsh Power Station Date Reported: 11/01/2023

233091-004 Comments:

TG-32

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael & Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road Groveport, Ohio 43125				Prog	ram: (oal Con	bustion	Program: Coal Combustion Residuals (CCR)	s (CCR)			
Contacts: Michael Ohlinger (614-836-4184)					S	Site Contact:				Date:		COC/Order #:
Project Name: Welsh PBAP Contact Name: Rebecca Jones Contact Phone (737) 330-3725	Analysis T	umaround Routine	Analysis Turnaround Time (in Calendar Days) Routine (28 days)	lendar Da	<u> </u>	25 0 0 1	250 mL bottle, pH<2, HNO.	Field-filter 500 mL bottle, then pH<2,	1 L bottle, Cool,	Three (six every 10th*) 1 L bottles,	10 mL Glass vial hed bottle, 4CL**, pH<2	233041
Sampler(s): Matt Hamilton Kenny McDonald							'qa 'o	nM bns e	'os	-228		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	Comt.	Sampler(s) Inl	Be, Cd, Cr, C Mo, Se, TL	dissolved Fe	,ID ,F ,CI,	Ra-226, Ra	бн	Sample Specific Notes:
AD-8	10/3/2023	1020	G	W.S	-				×			Routine (28 days)
AD-9	10/3/2023	923	G	GW	1	_			×			TG-32 needed
AD-15	10/3/2023	940	ပ	GW	-	Н			×			
DUPLICATE - PBAP	10/3/2023	1200	g	GW				100000	×			
0.000			0 :									
										0.000		
				30.00		_						
											N.S	
2006												
		-										
					Н							
Preservation Used: 1= ice, 2= HCi; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na()H; 6= Otl	ner	; F= filter	itter in field	eld	4	F4	1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.										

Special Instructions/QC Requirements & Comments:

Date/Time:	Date/Time:	Minuso Date 10/6/23 9150 An
S-23 164 Received by:	me: Received by:	me: Received in Laddratonylby:
Company: Date/Til	Company. Date/Tir	Company: Date/Tin
Relinquished by Mother Amila	Relinquished by:	Relinquished by:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

MATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Gooler Box Bag Envelope	PONY UPS FEEEX USPS
1	Other
Plant/Customer Nolch	Number of Plastic Containers:
Opened By	Number of Glass Containers:
Date/Time 10/6/23 9,50/2m	Number of Mercury Containers:
Were all temperatures within 0-6°C7(Y) N	or N/A Initial:
	24) - If No, specify each deviation:
	Comments
Was Chain of Custody received? (Y) N	Comments
Requested turnaround: Koutine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y)/ N	Comments
Were samples labeled properly?	Comments
Were correct containers used? Y N	Comments
Was pH checked & Color Coding done Y	N or N/A Initial & Date: MS0 10/6/23
pH paper (circle one): MQuant,PN1.09535.0001,L0	OT#[ORTLab Rat,PN4801,LOT# X000RWDG21 Exp 11/15/2024
- Was Add'l Preservative needed? Y	Yes: By whom & when: (See Prep Book)
Is sample filtration requested?	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
	Date & Time :
Lawred by MSD	nts:
nni	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X Field chain-of-custody documentation R_1 X R₂ Sample identification cross-reference х Rз Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) $\overline{\mathbf{x}}$ Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits x **R**5 Test reports/summary forms for blank samples X **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits [x]**R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix X R9 × **R10** Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. **Principle Chemist** Tim Arnold 10/18/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Tim Arnold

LRC Date: 10/18/2023

Laboratory Job Number: 233091

Prep Batch Number(s): QC2310136

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
R1	0, I	Chain-of-custody (COC)			
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes		
	I	Were all departures from standard conditions described in an exception report?	Yes		
R2	O, I	Sample and quality control (QC) identification			
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes		
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes		
R3	O, I	Test reports			
	I	Were all samples prepared and analyzed within holding times?	Yes		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes		
	I	Were calculations checked by a peer or supervisor?	Yes		
	I	Were all analyte identifications checked by a peer or supervisor?	Yes		
	I	Were sample quantitation limits reported for all analytes not detected?	Yes		
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA		
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA		
	I	If required for the project, TICs reported?	NA		
R4	0	Surrogate recovery data			
	I	Were surrogates added prior to extraction?	Yes		
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes		
R5	O, I	Test reports/summary forms for blank samples			
	I	Were appropriate type(s) of blanks analyzed?	Yes		
	I	Were blanks analyzed at the appropriate frequency?	Yes		

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	×
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, 1	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Tim Arnold

LRC Date: 10/18/2023

Laboratory Job Number: 233091

Prep Batch Number(s): QC2310136

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	1	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
S 7	0	Tentatively identified compounds (TICs):	TĀ.		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions			
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	O, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11_	O, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	O, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	O, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
514	0, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):			
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Tim Arnold

LRC Date: 10/18/2023

Laboratory Job Number: 233091

Prep Batch Number(s): QC2310136

Exception Report No.	Description							
ER1	CCB acceptance criteria is CCB <mql.< td=""></mql.<>							
	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1							

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. \square R1 Field chain-of-custody documentation X R2 Sample identification cross-reference X R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate OC limits х Test reports/summary forms for blank samples **R**5 х R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X Other problems or anomalies **R10** x The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Michael Ohlinger

Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Michael Ohlinger

LRC Date: 11/1/23

Laboratory Job Number: 233091

Prep Batch Number(s): QC2310085

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification	•	
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	D
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	r	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
ŧ	Ī	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Michael Ohlinger

LRC Date: 11/1/23

Laboratory Job Number: 233091

Prep Batch Number(s): QC2310085

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S 1	O, I	Initial calibration (ICAL)			
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA		
	I	Were percent RSDs or correlation coefficient criteria met?	NA		
	I	Was the number of standards recommended in the method used for all analytes?	NA		
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA		
	I	Are ICAL data available for all instruments used?	NA		
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
	I	Was the CCV analyzed at the method-required frequency?	NA		
	I	Were percent differences for each analyte within the method-required QC limits?	NA		
	I	Was the ICAL curve verified for each analyte?	NA		
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA		
S3	0	Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	NA		
	I	Were ion abundance data within the method-required QC limits?	NA		
54	0	Internal standards (IS):			
	I	Were IS area counts and retention times within the method-required QC limits?	NA		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)			
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes		
	I	Were data associated with manual integrations flagged on the raw data?	NA		

Item¹	Analytes ²	Analytes ² Description				
S6	0	Dual column confirmation				
	I	Did dual column confirmation results meet the method-required QC?	NA			
S 7	0	Tentatively identified compounds (TICs):				
	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?					
S8	I	Interference Check Sample (ICS) results:				
	I	Were percent recoveries within method QC limits?	NA			
S9	I	Serial dilutions, post digestion spikes, and method of standard additions				
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA			
S10	O, I	Method detection limit (MDL) studies				
	I	Was a MDL study performed for each reported analyte?	Yes			
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes			
S11	O, I	Proficiency test reports:				
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes			
S12	O, I	Standards documentation				
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes			
S13	O, I	Compound/analyte identification procedures				
	I	Are the procedures for compound/analyte identification documented?	Yes			
S14	O, I	Demonstration of analyst competency (DOC)				
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes			
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes			
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		3		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes			
S16	O, I	Laboratory standard operating procedures (SOPs):				
	I	Are laboratory SOPs current and on file for each method performed?	Yes	= =		

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh PBAP

Reviewer Name: Michael Ohlinger

LRC Date: 11/1/23

Laboratory Job Number: 233091

Prep Batch Number(s): QC2310085

Exception Report No.	Description	
		_
		_
		_
		—
	<u> </u>	_
	03:	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233093 Customer: Welsh Power Station Date Reported: 11/02/2023

Customer Sample ID: AD-1 Customer Description:

Lab Number: 233093-001 Preparation:

Date Collected: 10/04/2023 11:11 EDT Date Received: 10/06/2023 09:50 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	3.03 mg/L	2	0.04	0.01	CRJ	10/17/2023 17:15	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.20 mg/L	2	0.06	0.02	CRJ	10/17/2023 17:15	EPA 300.1 -1997, Rev. 1.0
Sulfate	80.7 mg/L	2	0.6	0.1	CRJ	10/17/2023 17:15	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
TDS, Filterable Residue	200 mg/L	1	50	20	ELT	10/09/2023 12:54	SM 2540C-2015

Customer Sample ID: AD-5 Customer Description:

Lab Number: 233093-002 Preparation:

Date Collected: 10/04/2023 12:18 EDT Date Received: 10/06/2023 09:50 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	17.5 mg/L	2	0.04	0.01	CRJ	10/17/2023 20:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.17 mg/L	2	0.06	0.02	CRJ	10/17/2023 20:00	EPA 300.1 -1997, Rev. 1.0
Sulfate	132 mg/L	10	3.0	0.6	CRJ	10/17/2023 18:21	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method

20

ELT

10/09/2023 12:54 SM 2540C-2015

Customer Sample ID: AD-17 Customer Description:

Lab Number: 233093-003 Preparation:

290 mg/L

Date Collected: 10/04/2023 12:07 EDT Date Received: 10/06/2023 09:50 EDT

50

Ion Chromatography

TDS, Filterable Residue

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	37.9 mg/L	5	0.10	0.03	CRJ	10/17/2023 20:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	5	0.15	0.05 J1	CRJ	10/17/2023 20:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	1180 mg/L	50	15	3	CRJ	10/17/2023 18:54	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Wot offormstry								
Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
TDS. Filterable Residue	1520 mg/L	2	100	40	ELT	10/09/2023 12:59	SM 2540C-2015	

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233093 Customer: Welsh Power Station Date Reported: 11/02/2023

Customer Sample ID: DUPLICATE - BACKGROUND

170 mg/L

Customer Description:

Lab Number: 233093-004

Preparation:

Date Collected: 10/04/2023 13:00 EDT

Date Received: 10/06/2023 09:50 EDT

ELT

10/09/2023 12:59 SM 2540C-2015

Ion Chromatography

TDS, Filterable Residue

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Chloride	3.01 mg/L	2	0.04	0.01	CRJ	10/17/2023 17:48	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.20 mg/L	2	0.06	0.02	CRJ	10/17/2023 17:48	EPA 300.1 -1997, Rev. 1.0
Sulfate	80.3 mg/L	2	0.6	0.1	CRJ	10/17/2023 17:48	EPA 300.1 -1997, Rev. 1.0
Wet Chemistry							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method

40

100

233093-001 Comments:

TG-32

233093-002 Comments:

TG-32

233093-003 Comments:

TG-32

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233093 Customer: Welsh Power Station Date Reported: 11/02/2023

233093-004 Comments:

TG-32

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road				5	į '	5	් දිනු :	piocet in cost of the	5				
Groveport, Onio 43125				20 0		Coal Con	nbustio	Program: Coal Combustion Residuals (CCR)	S (CCR				
Contacts: Michael Ohlinger (614-836-4184)					<u> </u>	Site Contact:	H			Date		COC/Order #.	37.34
Project Name: Welsh Background						- 25		Field-filter 500 mL	=	Three (six every			
Contact Name: Rebecca Jones	Analysis	Furmaround Routine	Analysis Turnaround Time (in Calendar Days) Routine (28 days)	lendar Da		Δ 6	bottle, nH<2	bottle,	bottle,	10th*)		7320	UX!
Contact Phone: (737) 330-3725						-		HNO	0-6°C,	pH<2, HNO,	f 10	C>2043	90
Sampler(s): Matt Hamilton Kenny McDonald							'9a '0	nM bns e	'os	1-228			9 3
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	Conf.	B, Ca, Ll, Sb,	Be, Cd, Cr, C Mo, Se, TL	dissolved Fe	, F, CI,	Ra-226, Ra	6H	Sample Specific Notes:	
AD-1	10/4/2023		9		-				×			TG-32 needed	
AD-5	10/4/2023	1118	9	GW	-			33	×				
AD-17	10/4/2023	1107	9	GW	-				×				
DUPLICATE - BACKGROUND	10/4/2023	1200		GW	-				×				
					+		2						
				\dagger	\dagger	+	\dagger		1				_
													T
					1								
								0.000					
Preservation Used: 1= ice, 2= HCl; 3= H2SO4, 4=HN03; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Ot	her	j Feff	Fe filter in field	leld	4	F4	ı	4			100
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.											

Special Instructions/QC Requirements & Comments:

		FOAM
Date/Time:	Date/Time:	Date/Time: 9:50/Am
Received by:	Received by:	Received in Liborator by:
Date/Time: 6a Received by:	Date/Time;	Date/Time:
Company	Company	Company:
velinquished by Med basinphilips	(elinquished by:	Relinquished by:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Gooler Box Bag Envelope	PONY UPS FEEEX USPS
	Other
Plant/Customer Welch	Number of Plastic Containers:
Opened By MS 3	Number of Glass Containers:
	Number of Mercury Containers: or N/A Initial:
	4) - If No, specify each deviation:
Was container in good condition? (Y)/ N	Comments
Was Chain of Custody received? N	Comments
Requested turnaround: Routine	If RUSH, who was notified?
pH (15 min) Cr*6 (pres) NO₂ or N (24 hr)	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y)/ N	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done Y	N or N/A Initial & Date: MS0 10/6/23
pH paper (circle one): MQuant,PN1.09535.0001,L0	OT#ORTLab Rat, PN4801, LOT#X000RWDG21 Exp 11/15/2024
- Was Add'l Preservative needed? Y N	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 233993 Initial & [Date & Time :
Lamada, MSD	nts:

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ita pack	age consists of	f :		
×	(which		eportable data identified	checklist consisting of Table 1 on this page), Table 2, Support	
х	R1	Field chain-of	-custody documentation		
x	R2	Sample identi	fication cross-reference		
X	R3	(a) Items specified NELAC S(b) Dilution S(c) Preparation (d) Cleanup S	ecified in NELAC Chapter tandard factors on methods methods	r each environmental sample the 5 for reporting results, e.g., Secretary results and the feet of the f	ection 5.5.10 in 2003
×	R4	(a) Calculate	overy data including: ed recovery (%R) eatory's surrogate QC lim	its	
x	R5	Test reports/s	summary forms for blank	samples	
x	R6	(a) LCS spik (b) Calculate		atory control samples (LCSs) in	ncluding:
x	R7	(a) Samples(b) MS/MSI(c) Concentr(d) Calculate	associated with the MS/I spiking amounts	nalyte measured in the parent nt differences (RPDs)	
X	R8	(a) The amo (b) The calcu	unt of analyte measured	-	:
x	R9	List of metho	d quantitation limits (MC	Ls) for each analyte for each n	nethod and matrix
x	R10	Other problem	ns or anomalies		
х	The Ex	ception Repor	t for every item for which	the result is "No" or "NR" (No	t Reviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be tory as having	y the laboratory and is co s used, except where note clow, I affirm to the best of the potential to affect the Review Checklist, and no	se of this laboratory data packa mplete and technically complia d by the laboratory in the attac of my knowledge, all problems/ quality of the data, have been o information or data have bee	ant with the ched exception anomalies, observed identified by the
respon used is	ding to	rule. The offic sible for releas	ial signing the cover page	ouse laboratory controlled by to the rule-required report in d is by signature affirming the	which these data are
Tim /	Arnold		Jun Under	Principle Chemist	10/18/2023
Name (printed)			Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Tim Arnold

LRC Date: 10/18/2023

Laboratory Job Number: 233093

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		2
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	:
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	-25
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
•	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Tim Arnold

LRC Date: 10/18/2023

Laboratory Job Number: 233093

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		Ţ.
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
- 1	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S 15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh CCR

Reviewer Name: Tim Arnold

LRC Date: 10/18/2023

Laboratory Job Number: 233093

Prep Batch Number(s): QC2310142

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
<u></u>	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. x Field chain-of-custody documentation R1 X R₂ Sample identification cross-reference х Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits х Test reports/summary forms for blank samples **R**5 x R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits x Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X **R8** Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 х R10 Other problems or anomalies X The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are

used is responsible for releasing this data package and is by signature affirming the above release

statement is true. Michael Ohlinger

Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Michael Ohlinger

LRC Date: 11/2/23

Laboratory Job Number: 233093

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	100
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	ı	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	ī	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Michael Ohlinger

LRC Date: 11/2/23

Laboratory Job Number: 233093

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	E-10-10
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA .	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)	K 19	
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Welsh Background

Reviewer Name: Michael Ohlinger

LRC Date: 11/2/23

Laboratory Job Number: 233093

Prep Batch Number(s): QC2310087

Exception Report No.	Description
	V.Sta
-	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."