

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT-SECOND SEMIANNUAL EVENT 2023

TEXAS STATE CCR RULE

H.W. Pirkey Power Plant Flue Gas Desulfurization Stackout Area Hallsville, Texas

Prepared for

American Electric Power 1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495

February 2024

TABLE OF CONTENTS

1.	INTRODUCTION AND SUMMARY			1
	1.2		nstration of Alternative Sources	
2.	SUM		OF SITE CONDITIONS	
	2.1 FGD Stackout Area Design and Construction			3
	2.2	Region	nal Geology / Site Hydrogeology	3
	2.3	Groun	dwater Monitoring System and Flow Conditions	3
3.	ALTERNATIVE SOURCE DEMONSTRATION4			4
	3.1		sed Alternative Source	
		3.1.1	Beryllium	4
		3.1.2	Cobalt	5
		3.1.3	Mercury	
		3.1.4	Conceptual Site Model	7
	3.2	Sampl	ing Requirements	7
4.	CONCLUSIONS AND RECOMMENDATIONS			
5.	REF	ERENC	CES	9

LIST OF TABLES

Table 1:	X-Ray Diffraction Results
----------	---------------------------

- Table 2:Summary of Key Analytical Data
- Table 3:Solid Phase Mercury Data

LIST OF FIGURES

- Figure 1: Potentiometric Contours Uppermost Aquifer October 2023
- Figure 2: Beryllium v. Groundwater Elevation
- Figure 3: AD-22 Beryllium v. Calcium and Lithium
- Figure 4: AD-22 Seasonal Water Table Geology
- Figure 5: AD-22 Cobalt v. Groundwater Elevation
- Figure 6: AD-22 Cobalt v. Calcium and Lithium
- Figure 7: Cobalt and Calcium Concentration Distribution
- Figure 8: Calcium Time Series Graph
- Figure 9: AD-22 Eh-pH Diagram
- Figure 10: AD-33 Boron and Sulfate Time Series

Figure 11: AD- 33 Mercury Time Series Graph

LIST OF ATTACHMENTS

Attachment A: Geologic Cross Sections

Attachment B: SP-B4 Boring Log

Attachment C: AD-22 Boring Log and Well Installation Diagram

Attachment D: FGD Sludge Materials Analytical Report

Attachment E: AD-33 Soil Samples Analytical Report

Attachment F: AD-33 Boring Log and Well Installation Diagram

Attachment G: Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

Å	angstrom
amsl	above mean sea level
ASD	alternative source demonstration
bgs	below ground surface
CCR	coal combustion residuals
EPRI	Electric Power Research Institute
FGD	flue gas desulfurization
GWPS	groundwater protection standard
LCL	lower confidence limit
MCL	maximum contaminant level
mg/L	milligrams per liter
SPLP	Synthetic Precipitation Leaching Procedure
SSL	statistically significant level
SU	standard unit
TAC	Texas Administrative Code
TCEQ	Texas Commission on Environmental Quality
µg/L	micrograms per liter
USEPA	United States Environmental Protection Agency
XRD	X-ray diffraction

February 2024

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) for beryllium, cobalt, and mercury in the groundwater monitoring network at the H.W. Pirkey Plant Flue Gas Desulfurization (FGD) Stackout Area in Hallsville, Texas, following the second semiannual assessment monitoring event of 2023. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the FGD Stackout Area (Figure 1).

In October 2023, a semiannual assessment monitoring event was conducted at the FGD Stackout Area in accordance with Title 30, §352.951(a) of the Texas Administrative Code (TAC). The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with the statistical analysis plan developed for the unit (Geosyntec 2021a) and the United States Environmental Protection Agency (USEPA) document *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance* (USEPA 2009). The GWPS for each parameter was established as the greater of either the background concentration or the maximum contaminant level (MCL). To determine background concentrations, an upper tolerance limit was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were recalculated for Appendix IV parameters at the compliance wells to assess whether these parameters were present at SSLs above the GWPSs. Seasonal patterns were observed for beryllium, cadmium, cobalt, combined radium, fluoride, lithium, and selenium at AD-22 (Geosyntec 2024). To correctly account for seasonality, confidence intervals for these wells and constituents were constructed using deseasonalized values. An SSL was attributed to a parameter if its lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the Pirkey FGD Stackout Area (Geosyntec 2024):

- The deseasonalized LCL for beryllium exceeded the GWPS of 0.00400 milligrams per liter (mg/L) at AD-22 (0.00557 mg/L).
- The deseasonalized LCL for cobalt exceeded the GWPS of 0.0600 mg/L at AD-22 (0.0791 mg/L).
- The LCL for mercury exceeded the GWPS of 0.00200 mg/L at AD-33 (0.00275 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSL is identified:

In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard

of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. (30 TAC §352.951(e))

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSLs identified for beryllium and cobalt at AD-22 and for mercury at AD-33 are from a source other than the FGD Stackout Area.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which each identified SSL could be attributed. Alternative sources were categorized into the following five types, based on methodology provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources

A demonstration was conducted to show that the SSLs identified for beryllium, cobalt, and mercury were based on a Type IV cause and not by a release from the Pirkey FGD Stackout Area.

2. SUMMARY OF SITE CONDITIONS

The Stackout Area design and construction, regional geology and site hydrogeology, and groundwater monitoring system and flow conditions are described below.

2.1 FGD Stackout Area Design and Construction

The Pirkey FGD Stackout Area is an approximately 7-acre former FGD storage area located due west of the Pirkey Plant (**Figure 1**). It was designed for temporary stockpiling of stabilized FGD material placed on the native clay soil in the unit until it could be hauled to the on-site landfill for disposal (Arcadis 2023). Prior to closure, the natural ground surface elevation in the Stackout Area ranged from approximately 360 to 365 feet above mean sea level. Based on lithological borings advanced in the vicinity, the Stackout Area is underlain by approximately 20 feet of clay (Arcadis 2023).

A Closure Plan for the Stackout Area was developed in October 2016 and revised in May 2023 (American Electric Power [AEP] 2023). On September 1, 2023 AEP removed the final volume of CCR from the unit for the purpose of beneficial reuse and commenced closure of the unit in accordance with the requirements of 40 CFR §257.102(c) (which were adopted by the State of Texas under 30 TAC §352.1221) and the certified Closure Plan (AEP 2023). The removal of the remaining CCR material and an additional 12 inches of underlying soil was completed on September 18, 2023, and the removal was certified by Akron Consulting (2023).

2.2 Regional Geology / Site Hydrogeology

The Stackout Area is positioned on an outcrop of the Eocene Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis 2023). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine- to medium-grained sand interbedded with silt and clay.

The very-fine- to fine-grained clayey and silty sand located about 10 to 20 feet below the Stackout Area, with an average thickness of approximately 20 feet, is considered to be the uppermost aquifer below this CCR unit (Arcadis 2023).

2.3 Groundwater Monitoring System and Flow Conditions

The Stackout Area monitoring well network monitors groundwater within the uppermost aquifer, Geologic cross sections B-B', E-E', and F-F' from Arcadis (2023) show the subsurface structure of the uppermost aquifer (indicated on the figures as clayey silty sand, brown to gray in color) underlying the Stackout Area. These figures and a cross section location map are provided in **Attachment A**. The geologic cross sections demonstrate lateral continuity of the uppermost aquifer at and around the Stackout Area.

Groundwater flow direction at and near the Stackout Area is west-northwesterly (**Figure 1**). Groundwater flow velocities in the uppermost aquifer in the vicinity of the Stackout Area have been reported as approximately 5 to 35 feet per year. The Stackout Area monitoring well network consists of upgradient monitoring wells AD-12 and AD-13 and downgradient compliance wells AD-7R, AD-22, and AD-33, all of which are screened within the uppermost aquifer (Arcadis 2023). Downgradient well AD-7R was added to the network in December 2023 to replace well AD-7, which was plugged in September 2023 due to plant demolition activities in the area.

3. ALTERNATIVE SOURCE DEMONSTRATION

The ASD evaluation method and proposed alternative source of beryllium, cobalt, and mercury, and future groundwater sampling requirements are described below.

3.1 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not identify alternative sources for beryllium, cobalt, and mercury due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropogenic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ 2020). As described below, the SSLs for beryllium and cobalt have been attributed to natural variation associated with seasonal effects, which is a Type IV (natural variation) issue. The SSL for mercury has also been attributed to natural variation associated with the lithology of the uppermost aquifer.

3.1.1 Beryllium

An SSL was identified for beryllium at AD-22 using deseasonalized statistics (Geosyntec 2024). According to the *Unified Guidance*, "seasonal correction should be done both to minimize the chance of mistaking a seasonal effect for evidence of contaminated groundwater, and also to build more powerful background to compliance point tests. Problems can arise, for instance, from measurement variations associated with changing recharge rates during different seasons" (USEPA 2009a).

Previous ASDs for the FGD Stackout Area showed that beryllium concentrations at AD-22 appear to correlate with groundwater elevations (Geosyntec 2019, Geosyntec 2020a, Geosyntec 2020b, Geosyntec 2021b, Geosyntec 2021c, Geosyntec 2022, Geosyntec 2023a). This relationship generally still holds true (**Figure 2**). Beryllium concentrations at AD-22 are generally correlated with seasonal changes in other relatively mobile cationic constituents, including calcium and lithium (**Figure 3**). The correlation between beryllium and both monovalent (lithium) and divalent (calcium) cations suggests that the variability in observed beryllium concentrations is related to cation exchange behavior with clay minerals present in the native soil.

In March of 2020, the geology near AD-22 was relogged at soil boring SP-B4. Clay materials were present in the seasonally saturated zones above the permanent water table (**Figure 4**). The boring log for SP-B4 is provided in **Attachment B**, and the original boring log and well construction diagram for AD-22 is provided in **Attachment C**. At AD-22, the depth to water fluctuated between approximately 3 and 12 feet below ground surface (bgs). Clay was identified from approximately 0.7 feet bgs to 13.3 feet bgs, where it transitioned to a clayey silt (**Attachment B**). Analysis by X-ray diffraction (XRD) confirmed the presence of clay minerals within the seasonal water table and sand within the screened intervals for AD-22, as summarized in **Table 1**. The clay fraction of the uppermost samples collected from within the seasonal water table was further analyzed to identify the type of clays present. Smectite-type clays, which are 2:1-layer high-activity clays with characteristically high cation exchange capacity (compared to low-activity 1:1 clay minerals), make up the majority of the clay minerals present at those intervals.

Sorption and desorption of beryllium from smectite-type clays is well documented (You et al. 1989, Boschi and Willenbring 2016a). Desorption was found to be affected by pH, with 75% of beryllium desorbing from a smectite-type clay as pH decreased from 6.0 standard units (SU) to 3.0 SU (Boschi and Willenbring 2016b). The pH values recorded at AD-22 for samples collected under the Texas CCR Rule ranged from 3.5 to 5.1 SU, suggesting that conditions are favorable for beryllium desorption from smectite-type clays. The presence of these exchangeable clays provides further evidence that the exceedance of beryllium at AD-22 can be attributed to the effects on groundwater quality of seasonal groundwater elevation changes and the resulting cation exchange between groundwater and the exchangeable clay within the seasonal water table.

3.1.2 Cobalt

An SSL was identified for cobalt at AD-22 using deseasonalized statistics (Geosyntec 2024). As shown in previous ASDs (Geosyntec 2020a, Geosyntec 2020b, Geosyntec 2021b, Geosyntec 2021c, Geosyntec 2022, Geosyntec 2023a), the cobalt groundwater concentrations at AD-22 also appear to correlate with seasonal changes in groundwater elevation (**Figure 5**). In addition, the cobalt concentrations are well correlated with changes in other cations, including calcium and lithium (**Figure 6**), which suggests that natural variability associated with groundwater-mineral interactions within the seasonally saturated zone is governing dissolved cobalt concentrations.

A sample of the solid FGD sludge material accumulated on the FGD Stackout Area was collected in July 2019 and submitted for laboratory analyses. The solid-phase sample was leached using both Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) and Seven-Day Distilled Water Leachate Test Procedure (7-day leaching procedure) analysis (Appendix 4 of 30 TAC Chapter 335, Subchapter R [TAC 2016]) to evaluate the material as a potential source of cobalt. No changes to material handling or plant operations occurred prior to ceasing operations that would have altered the anticipated chemical composition since this sample was initially collected. Calcium-cobalt ratios for the leached sludge material and site groundwater are displayed on Figure 7. The concentration ratio between calcium and cobalt is consistently on the order of 100:1 at both upgradient and downgradient locations (Figure 7). Calcium concentrations in groundwater are generally consistent between AD-22 and upgradient well AD-13 (Figure 8); however, leached calcium concentrations from the FGD sludge material are approximately two to three orders of magnitude greater than concentrations in site groundwater. The difference between the ratio of calcium to cobalt in the leached FGD sludge material (about 45,000:1) compared to the ratio for groundwater suggests that dissolved calcium concentrations at AD-22 would be significantly higher if the groundwater at this location were affected by leachate.

Siderite and pyrite, both reduced iron-bearing minerals, were identified below the seasonal water table (within the saturated zone) at AD-22 (**Table 1**). Cobalt is known to undergo isomorphic substitution for iron in both siderite and pyrite (Gross 1965, Hitzman et al. 2017, Krupka and Serne 2002). This is due to the similarity of their ionic radii (approximately 1.56 angstrom [Å] for iron and 1.52 Å for cobalt [Clementi and Raimondi 1963]). The proposed substitution of cobalt for iron in the crystal lattice of pyrite has been documented in other ASDs prepared for the Pirkey Plant's East Bottom Ash Pond (Geosyntec 2023b) and West Bottom Ash Pond (Geosyntec 2023c).

Goethite (an iron hydroxide) was identified within the seasonally saturated zone and the screened interval at AD-22 (**Table 1**). The weathering of siderite and pyrite to goethite under oxidizing conditions is a well-understood phenomenon, including in formations in East Texas (Senkayi et

al. 1986, Dixon et al. 1982) and may have occurred within the seasonally saturated zone. Eh-pH (Pourbaix) diagrams can be used to illustrate the predicted speciation of specific analytes at thermodynamic equilibrium under the conditions observed for a groundwater sample. An Eh-pH diagram generated using geochemical conditions at AD-22 shows that the conditions observed at AD-22 are favorable for goethite formation (**Figure 9**). During weathering from reduced (pyrite and siderite) to oxidized (goethite) iron minerals, isomorphically substituted cobalt may be released from the mineral structure into groundwater. The mobilization of cobalt, which was released during weathering of siderite or pyrite to goethite in the seasonally saturated zone, may explain the variability in aqueous cobalt concentrations and their correlation with the groundwater elevation as more or less aquifer solids are saturated with groundwater.

3.1.3 Mercury

An SSL was identified for mercury at AD-33 (Geosyntec 2024). If the mercury detected at AD-33 were derived from CCR leachate from the FGD Stackout Area, we would anticipate similar trends for the concentrations of other CCR constituents, particularly those known to be more conservative. Boron, a geochemically conservative parameter, has high leachability from FGD material (USEPA 2009b). A release from the FGD Stackout Area would be anticipated to result in higher concentrations of boron and other conservative parameters, such as sulfate; however, the observed boron and sulfate concentrations at AD-33 do not display increasing trends (Figure 10). Two samples of FGD sludge material from the Stackout Area were collected in 2019 for characterization to assess if the FGD material was a likely source of mercury to groundwater at AD-33. As summarized in Table 2, both the historical average and the most recent boron groundwater concentrations at AD-33 are two orders of magnitude lower than the boron concentrations in leachate from both Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) and Seven-Day Distilled Water Leachate Test Procedure (7-day leaching procedure) analysis (Appendix 4 of 30 TAC Chapter 335, Subchapter R [TAC 2016]) of FGD sludge (Attachment D). The lack of increasing boron in AD-33 groundwater despite the relatively higher concentration of leached boron from the FGD sludge suggests groundwater at AD-33 is not impacted by the unit.

The FGD sludge material had detectable levels of total mercury at concentrations greater than those reported for two samples of aquifer solids collected from a soil boring advanced adjacent to AD-33 (**Table 3**, **Attachment E**). While the concentration of mercury in the aquifer solids is lower than the total mercury concentration in FGD sludge material, the low mobility of mercury from FGD suggests the FGD sludge is not the source of mercury in groundwater (USEPA 2009b, Hao et al. 2016). As shown in **Figure 11**¹, previous mercury groundwater concentrations at AD-33 were consistently at or above the mercury concentrations of leachate from SPLP analysis of FGD sludge material (**Table 2**, **Attachment D**). Mercury concentrations of leachate from 7-day leaching procedure analysis of FGD sludge material were below the laboratory detection limit of 0.005 mg/L. These results are in agreement with previous studies that have found that leached mercury concentrations are not correlated with total solid phase mercury in FGD samples (USEPA 2009b).

¹ Due to a change in reported concentrations of more recent data, historical mercury data at well AD-33 were truncated to represent current groundwater quality conditions (Geosyntec 2023a).

Detectable concentrations of mercury in aquifer solids at AD-33 present an alternative source of mercury in groundwater. Mercury is naturally occurring in soils and known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite (Manceau et. al 2018). Analysis by XRD of material from the AD-33 soil boring showed detectable levels of pyrite below the seasonal water table (**Table 1**).

Reported differences between the total and dissolved mercury groundwater concentrations suggests that mercury is associated with colloidal material native from the aquifer. Dissolved concentrations of mercury at AD-33 are consistently lower than the reported total values (**Figure 11**), with most dissolved concentrations detected below the MCL of 2 μ g/L. The method for measuring dissolved mercury in groundwater (EPA Method 245.7 [USEPA 2005]) involves filtering the sample through a 0.45 μ m filter prior to analysis, which would remove colloid-sized particles prior to preservation. The inclusion of suspended particles (including colloids) in totals samples is likely to result in an overestimation of metals due to the mobilization of metals from the colloidal or solid to aqueous phase following acid preservation during sample collection. Thus, the lower dissolved mercury concentrations compared to total aqueous mercury suggests that mercury is associated with colloidal material from the aquifer and the SSL of mercury at AD-33 is not due to a release from the FGD Stackout Area.

3.1.4 Conceptual Site Model

The seasonal fluctuations in beryllium and cobalt concentrations at AD-22 can be attributed to variations in the amount of the aquifer solids that are in contact with groundwater as the water table elevation changes. When the water table is higher, more clay material is in contact with groundwater, allowing greater desorption of cations (including beryllium) from the cation exchange sites on the clay. In the case of cobalt, more iron oxides are in contact with groundwater as the water table rises, allowing for the release of cobalt from mineral phases where it has isomorphically substituted for iron. Thus, the observed SSLs were attributed to natural variation associated with seasonal fluctuation of beryllium and cobalt concentrations in groundwater as the amount of aquifer solids that are saturated increases. For mercury, seasonal variations in groundwater at AD-33 were attributed to interactions with mercury-bearing aquifer solids or colloids.

3.2 Sampling Requirements

Because the ASD presented above supports the position that the identified SSLs are not due to a release from the Pirkey FGD Stackout Area, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters semiannually.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs of beryllium and cobalt at AD-22 and mercury at AD-33 identified during the second semiannual assessment monitoring event of 2023 were not due to a release from the FGD Stackout Area. The identified SSLs were, instead, attributed to natural variation related to desorption of beryllium and seasonal dissolution of cobalt-bearing minerals comprising the aquifer solids. The mercury SSL was attributed to natural variation associated with the aquifer solids of the uppermost aquifer. Therefore, no further action is warranted, and the Pirkey FGD Stackout Area will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment G**.

5. REFERENCES

- Akron Consulting, LLC (Akron Consulting). 2023. FGD Stackout Area CCR Removal Certification. November.
- American Electric Power (AEP). 2023. Closure Plan. FGD Stackout Area. May.
- Arcadis. 2023. Stack Out Area CCR Groundwater Monitoring Well Network Evaluation (Updated December 2023) H.W. Pirkey Power Plant. December.
- Boschi, V., and J.K. Willenbring. 2016a. "The Effect of pH, Organic Ligand Chemistry, and Mineralogy on the Sorption of Beryllium over Time." *Environmental Chemistry* 13(4): 711–722.
- Boschi, V., and J.K. Willenbring. 2016b. "Beryllium Desorption from Minerals and Organic Ligands over Time." *Chemical Geology* 439: 52–58.
- Clementi, E., and D. L. Raimdoni. 1963. "Atomic Screening Constants from SCF Functions." J. Chem. Phys. 38(11): 2686–2689.
- Dixon, J.B., L.R. Hossner, A.L. Senkayi, and K. Egashira. 1982. "Mineralogical Properties of Lignite Overburden as They Relate to Mine Spoil Reclamation." In *Acid Sulfate Weathering*, edited by J.A. Kittrick, D.S. Fanning, and L.R. Hossner, 169–191. Soil Science Society of America Special Publications.
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.
- Geosyntec. 2019. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. October.
- Geosyntec. 2020a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2021a. Statistical Analysis Plan H.W. Pirkey Power Plant. Geosyntec Consultants, Inc. November.
- Geosyntec. 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. May.
- Geosyntec. 2021c. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Plant, Stackout Area. Hallsville, Texas. Geosyntec Consultants. December.

- Geosyntec. 2022. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. June.
- Geosyntec. 2023a. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. January.
- Geosyntec. 2023b. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. January.
- Geosyntec. 2023c. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. West Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. January.
- Geosyntec. 2024. Statistical Analysis Summary Flue Gas Desulfurization (FGD) Stackout Area – Second Semiannual Event 2023. H.W. Pirkey Plant. Hallsville, Texas. Geosyntec Consultants. January.
- Gross, G.A. 1965. Geology of Iron Deposits in Canada, Volume 1: General Geology and Evaluation of Iron Deposits. Economic Geology Report No. 22. Geological Survey of Canada.
- Hao, Y., S. Wu, Y. Pan, Q. Li, J. Zhou, Y. Xu, and G. Qian. 2016. "Characterization and Leaching Toxicities of Mercury in Flue Gas Desulfurization Gypsum from Coal-Fired Power Plants in China." *Fuel* 177: 157-163. August.
- Hitzman, M.W., A.A. Bookstrom, J.F. Slack, and M.L. Zientek. 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. United States Geological Survey Open File Report 2017-1155.
- Krupka, K.M., and R.J. Serne. 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Manceau, A., M. Merkulova, M. Murdzek, V. Batanova, R. Baran, P. Glatzel, B.K. Saikia, D. Paktunc, and L. Lefticariu. 2018. "Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings." *Environmental Science & Technology* 52(18): 10286-10296.
- Senkayi, A.L., J.B. Dixon, and L.R. Hossner. 1986. "Todorokite, Goethite, and Hematite: Alteration Products of Siderite in East Texas Lignite Overburden." *Soil Science* 142(1): 36–43.
- TAC. 2016. Texas Administrative Code, Title 30, Part 1, Chapter 335: Industrial Solid Waste and Municipal Hazardous Waste. June 16.
- TAC. 2020. Texas Administrative Code, Title 30, Part 1, Chapter 352: Coal Combustion Residuals Waste Management. May 22.
- TCEQ. 2020. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality, Waste Permits Division. May.

- USEPA. 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0. Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. United States Environmental Protection Agency. Publication SW-846. September.
- USEPA. 2005. Method 245.7 Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, Revision 2.0. United States Environmental Protection Agency. EPA 821-R-05-001. February
- USEPA. 2009a. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. United States Environmental Protection Agency. USEPA 530/R-09/007. March.
- USEPA. 2009b. Characterization of Coal Combustion Residues from Electric Utilities Leaching and Characterization Data. United States Environmental Protection Agency. USEPA 600/R-09/151. December.
- You, C.-F., T. Lee, and Y.-H. Li. 1989. "The Partition of Be between Soil and Water." *Chemical Geology* 77(2): 105–118.

TABLES

Table 1. X-Ray Diffraction ResultsAlternative Source Demonstration ReportFGD Stackout Area, H. W. Pirkey Plant

Boring Location	SP-B4 AD-22			
Associated Well				
Depth (ft bgs)	6-8	18-20	28-30	
Sample Location	Within Seasonal Water Table	Below Seasonal Water Table	Within Screened Interval	
Quartz	28	47.5	95	
Plagioclase Feldspar	<0.5	<0.5	1	
K-Feldspar	1	0.5	-	
Goethite	1	-	2	
Hematite	-	-	-	
Chlorite	1	-	-	
Siderite		10	-	
Pyrite	-	2	-	
Clays	*	40	2	
Kaolinite	13			
Illite/Mica	2			
Smectite	43			
Mixed-Layered Illite/Smectite	11			

Notes:

1. Mineral constituents are reported in percentage.

2. Values shown as less than indicate the mineral constituent is present but below the quantification limit.

*: The clay fraction at SP-B4-6-8 was further analyzed to characterize the types of clays present, as listed below.

-: not detected

ft bgs: feet below ground surface

FGD: Flue gas desulfurization

Table 2. Summary of Key Analytical DataAlternative Source Demonstration ReportFGD Stackout Area, H.W. Pirkey Plant

Sample	Туре	Mercury (µg/L)	Boron (mg/L)
Pirkey Sludge FGD	SPLP	2.272	22.3
Tirkey Sludge FOD	7-Day Leaching Procedure	<5	8.44
Pirkey Sludge FGD 2	SPLP	< 0.025	26.7
Flikey Sludge FOD 2	7-Day Leaching Procedure	<5	16.4
AD-33	Historical Average	5.02	0.12
AD-33	Oct-23	6.12	0.094

Notes:

1. Average values were calculated using truncated mercury and boron data (March 2020 - October 2023).

2. Pirkey Sludge FGD samples were collected on July 17, 2019.

3. Non-detect values reported as less than (<) the detection limit.

CCR: coal combustion residuals

FGD: Flue Gas Desulfurization

mg/L: milligram per liter

SPLP: Synthetic Precipitation Leaching Procedure

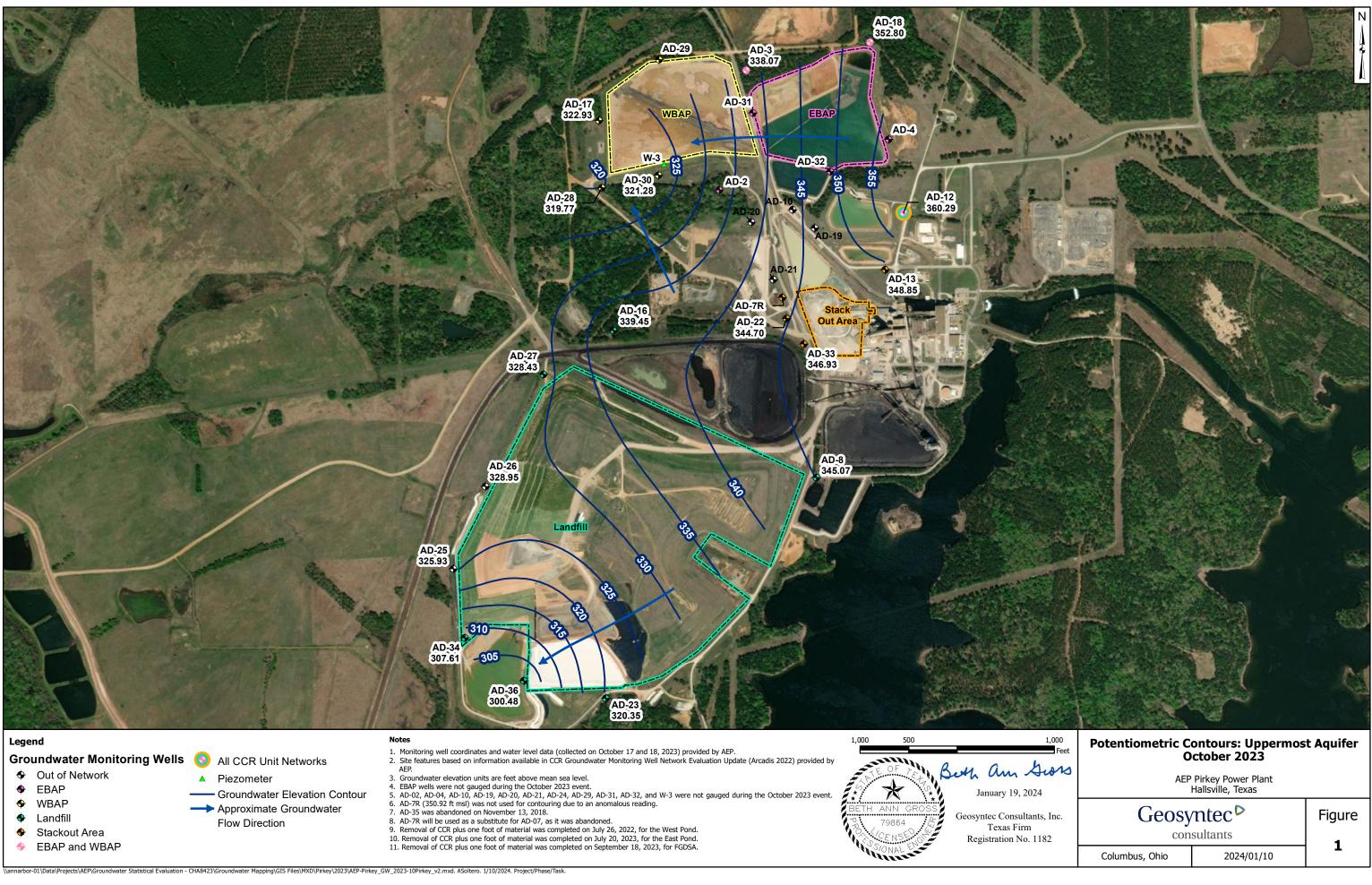
µg/L: micrograms per liter

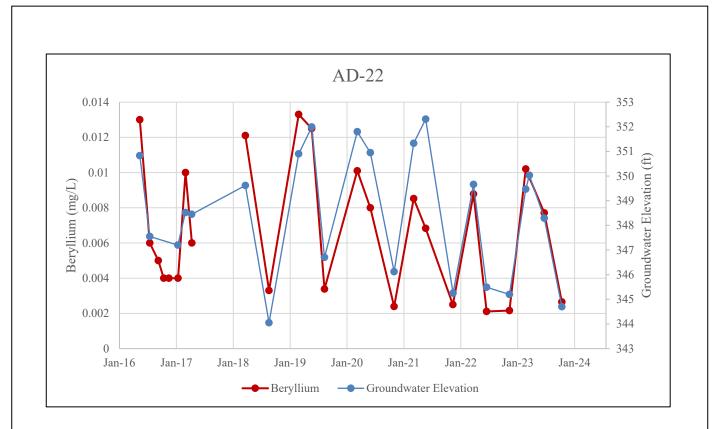
FGD Stackout Area, H.W. Firkey Flant				
Location ID	Date Sampled	Sample Depth (ft bgs)	Mercury (mg/kg)	
AD-33	4/30/2018	11	0.0026	
AD-33		21	0.0038	
Pirkey Sludge FGD	7/17/2019	N/A	0.653	
Pirkey Sludge FGD 2	7/17/2019	N/A	0.606	

Table 3. Solid Phase Mercury DataAlternative Source Demonstration ReportFGD Stackout Area, H.W. Pirkey Plant

Notes:

1. For AD-33 locations, samples were collected from additional boreholes advanced in the immediate area of AD-33. Samples were not collected from the cuttings of the borings advanced for well installation.

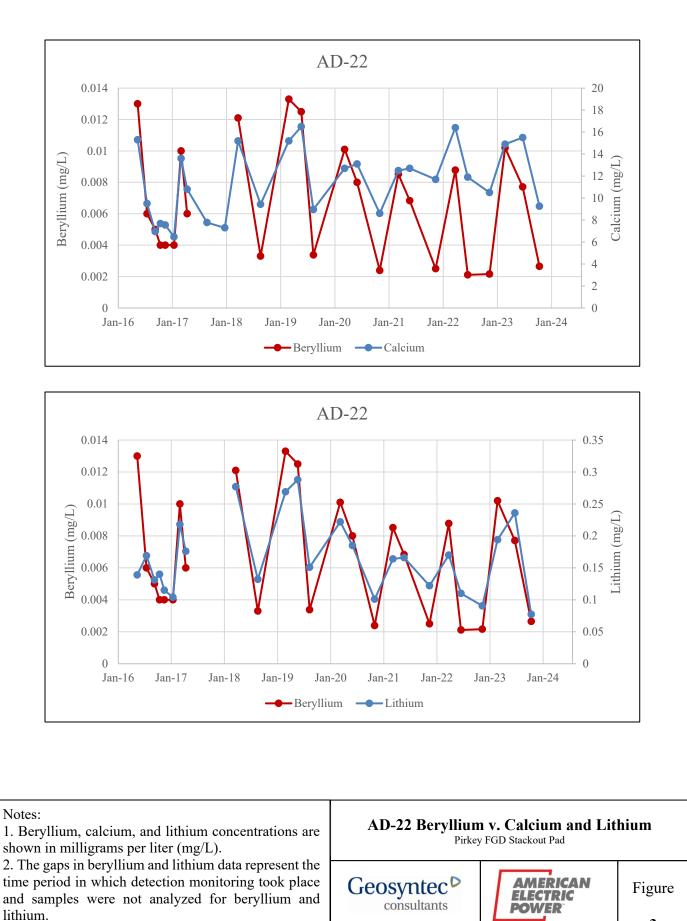

FGD: Flue Gas Desurfurization


ft bgs: feet below ground surface

mg/kg: milligram per kilogram

N/A: not applicable

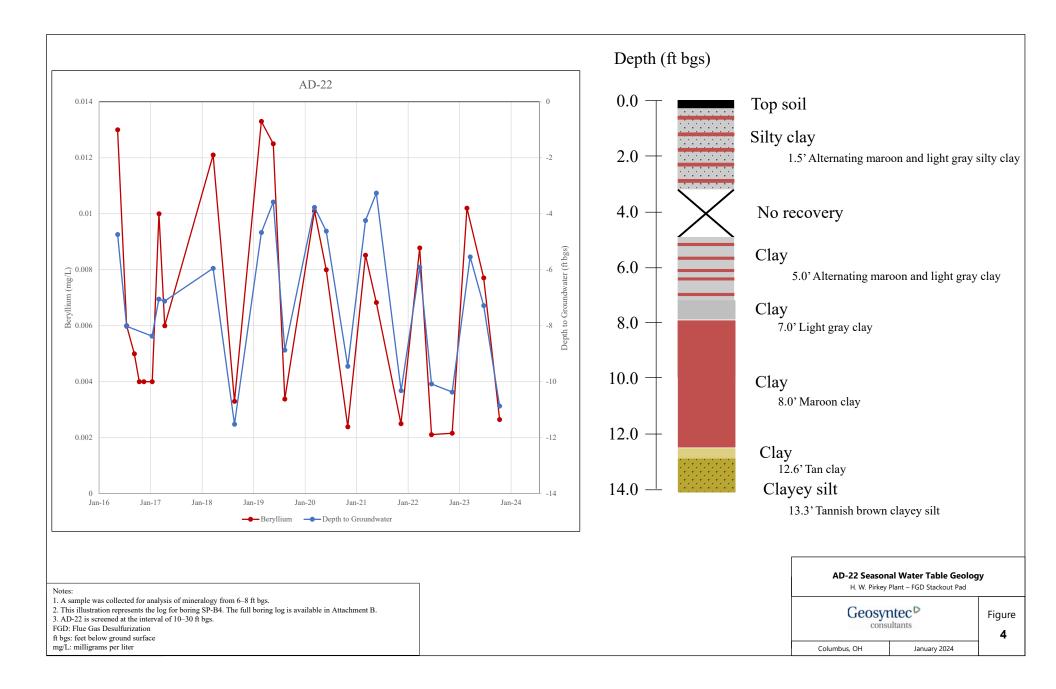
FIGURES

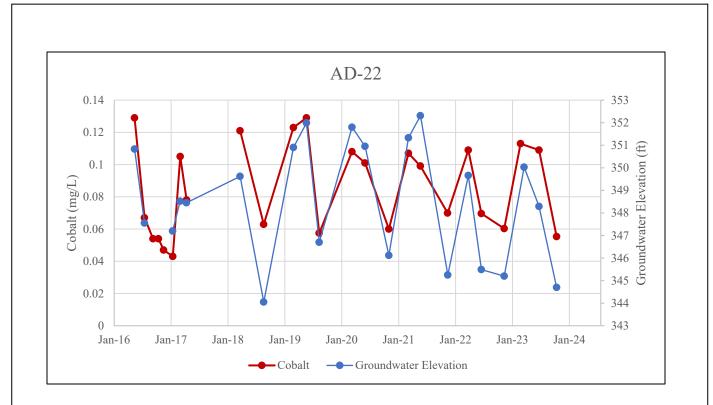


1. Beryllium concentrations are shown in milligrams per liter (mg/L).

2. Water level is shown as groundwater elevation in feet above mean sea level (ft amsl).

3. The gap in beryllium data represents the time period in which detection monitoring took place and samples were not analyzed for beryllium. FGD: Flue Gas Desulfurization

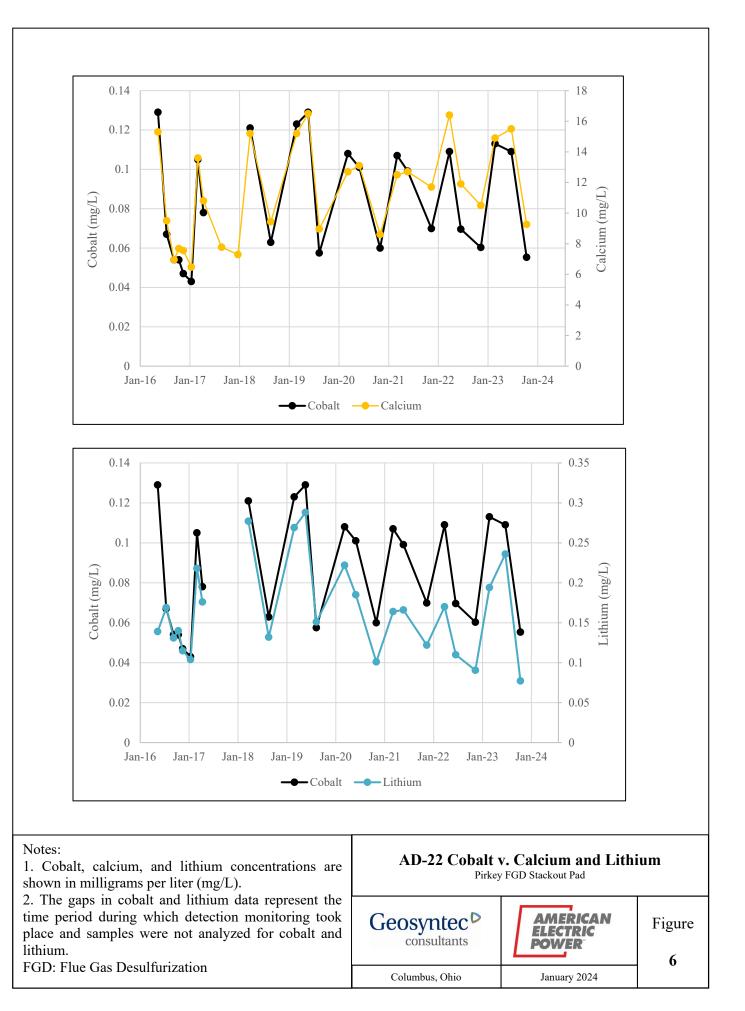


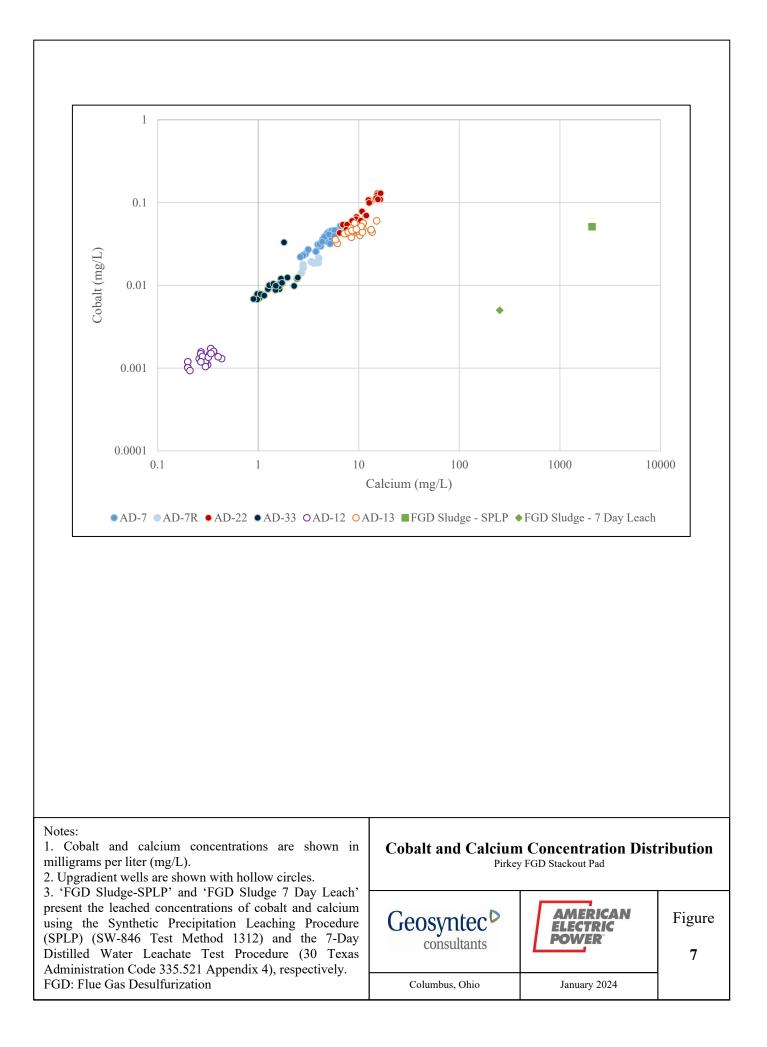


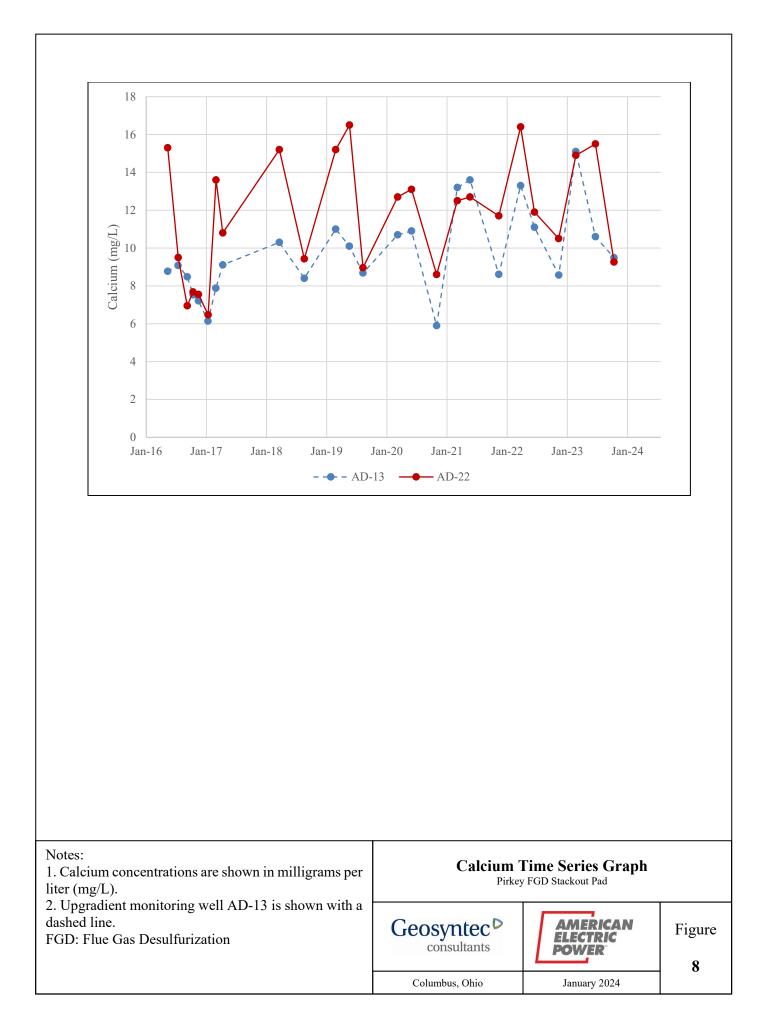
Columbus, Ohio

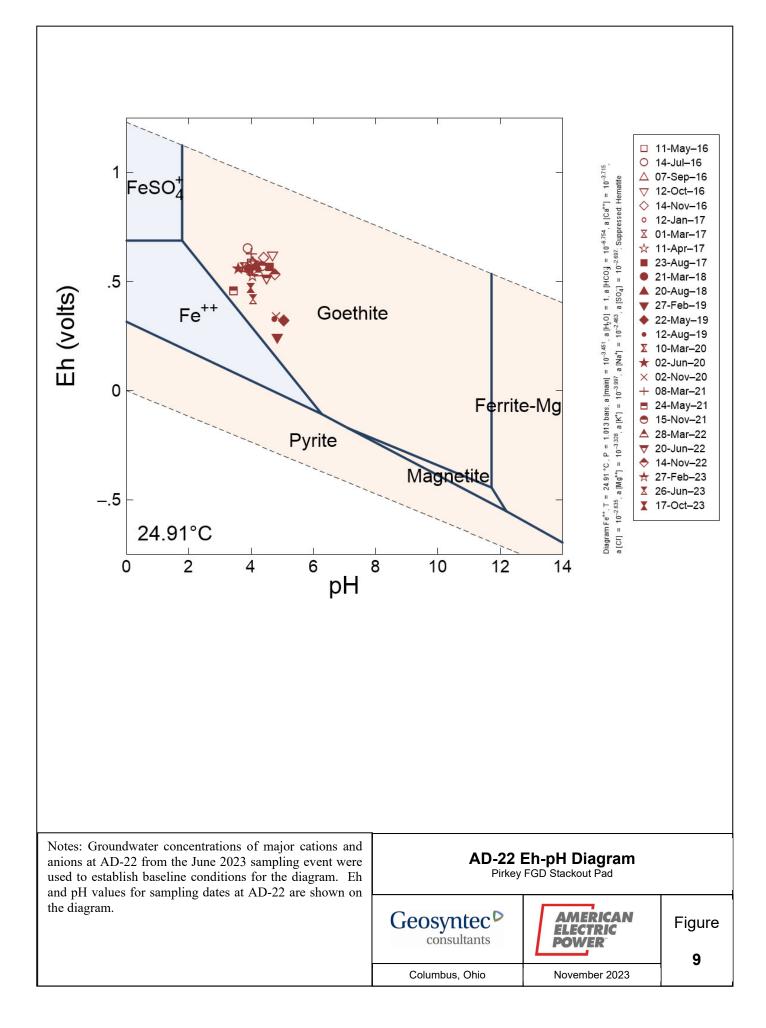
FGD: flue gas desulfurization

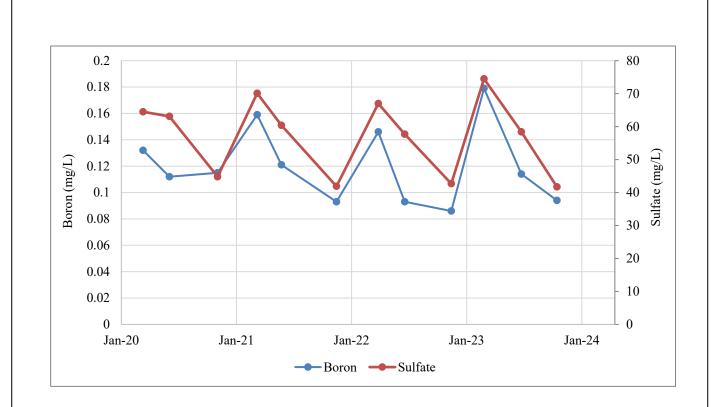
3 January 2024

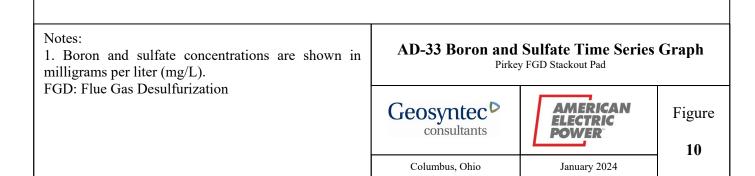


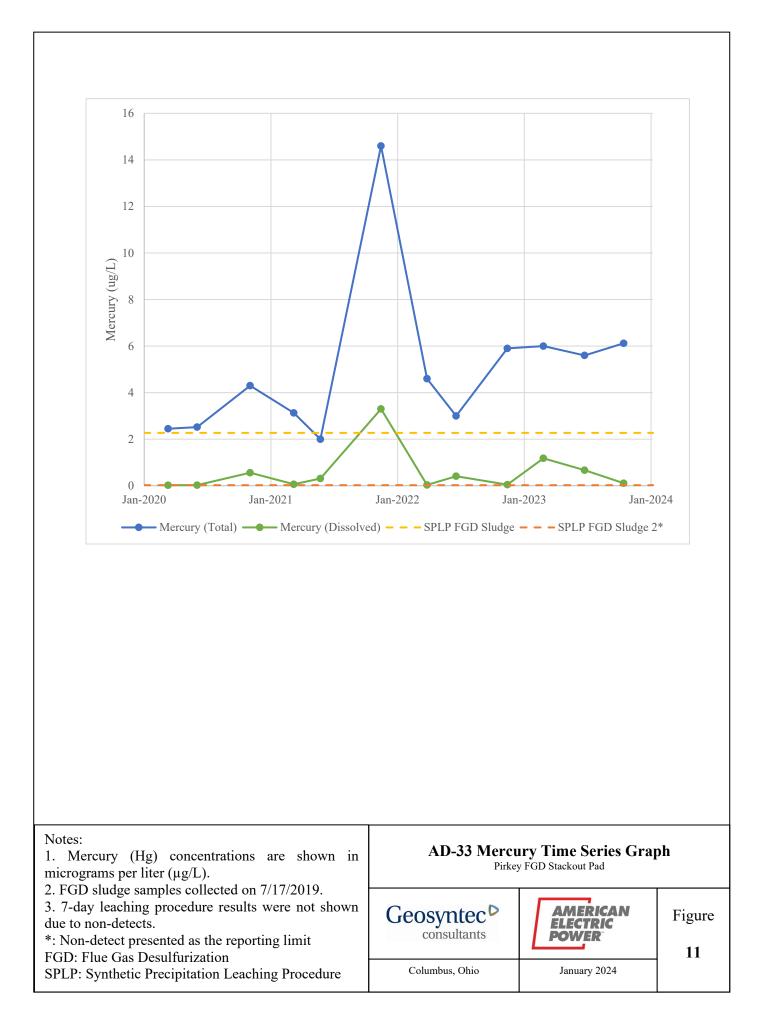

Notes:

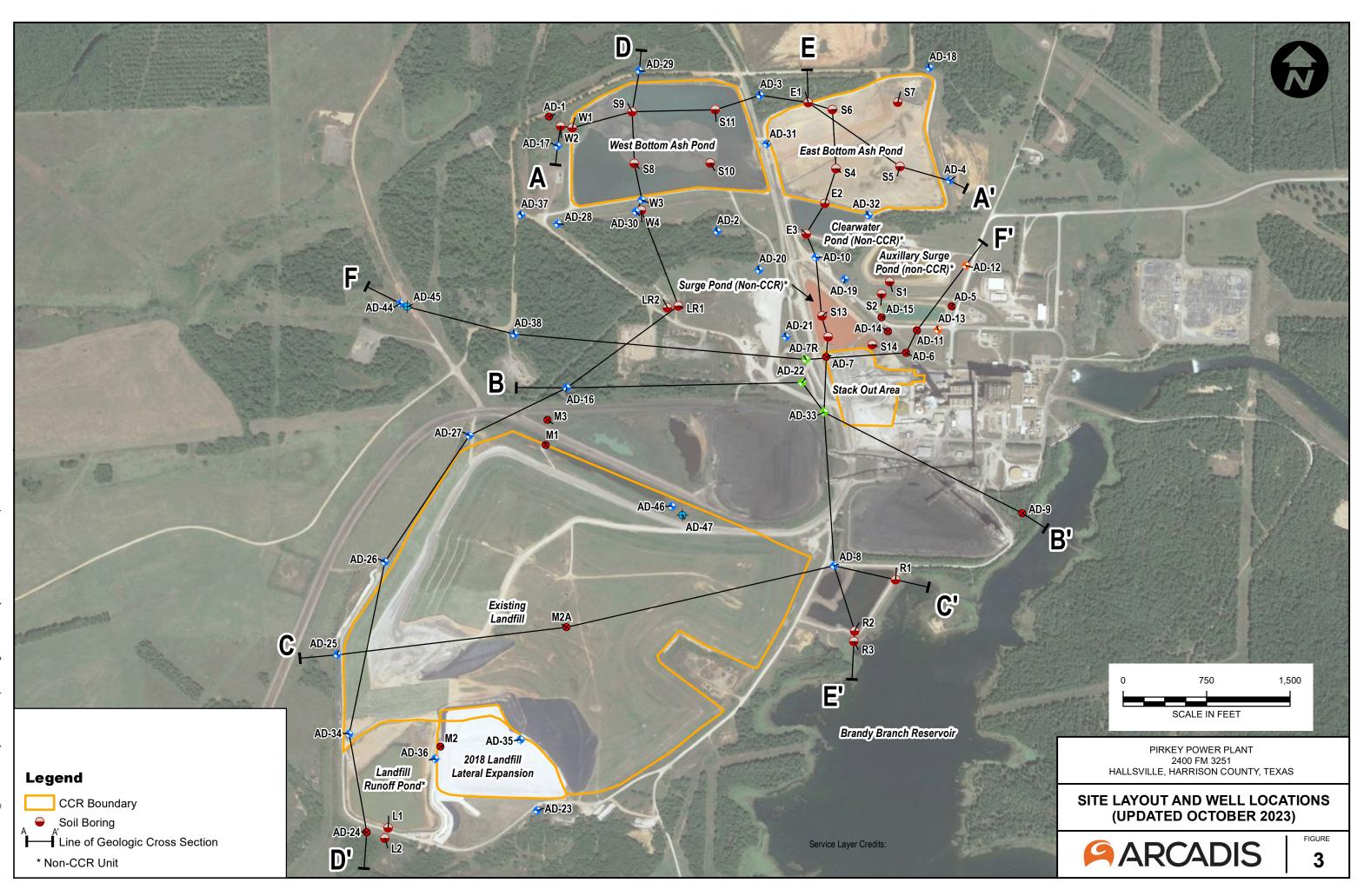

1. Cobalt concentrations are shown in milligrams per liter (mg/L).

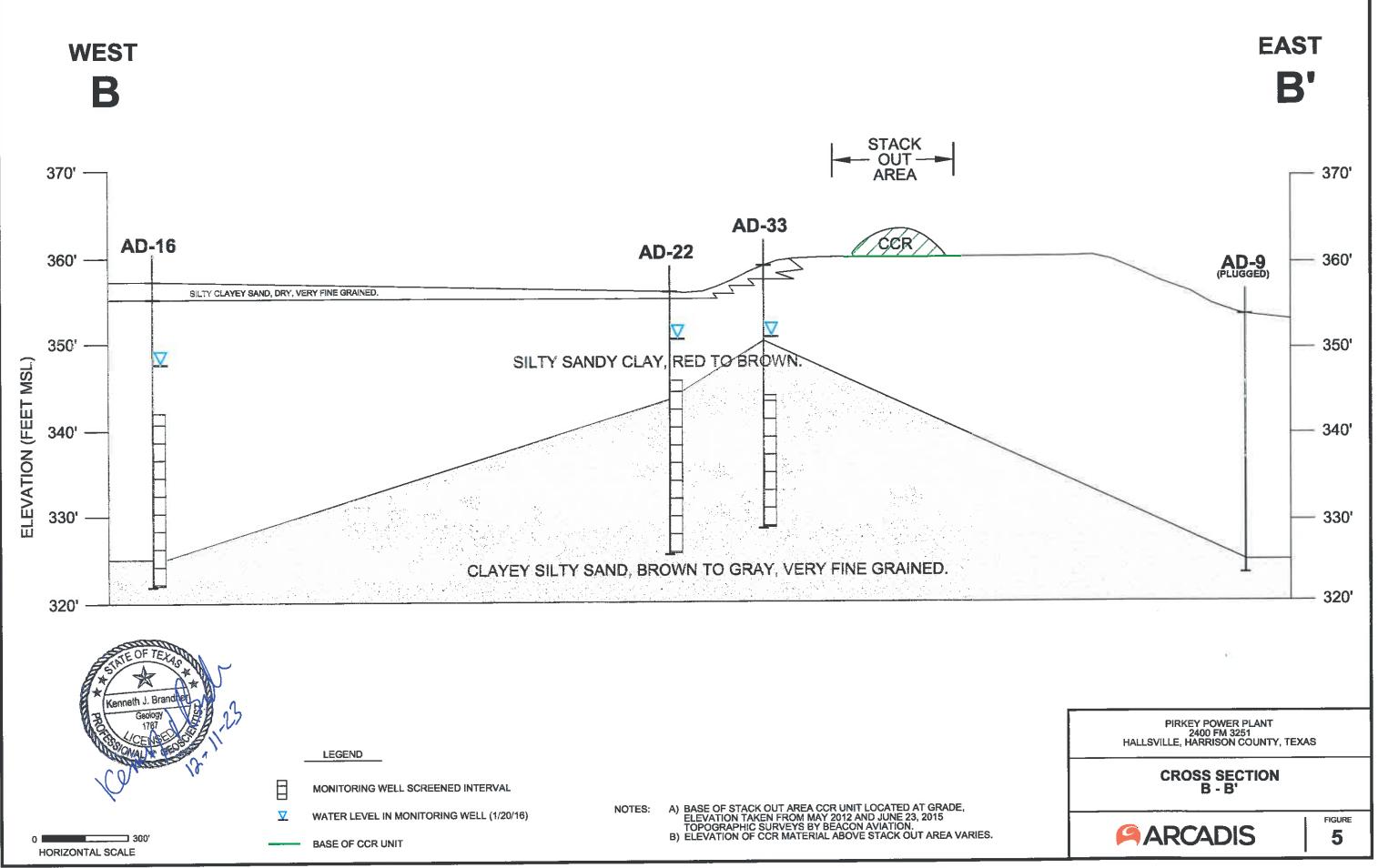

2. Water level is shown as groundwater elevation in feet above mean sea level (ft amsl).

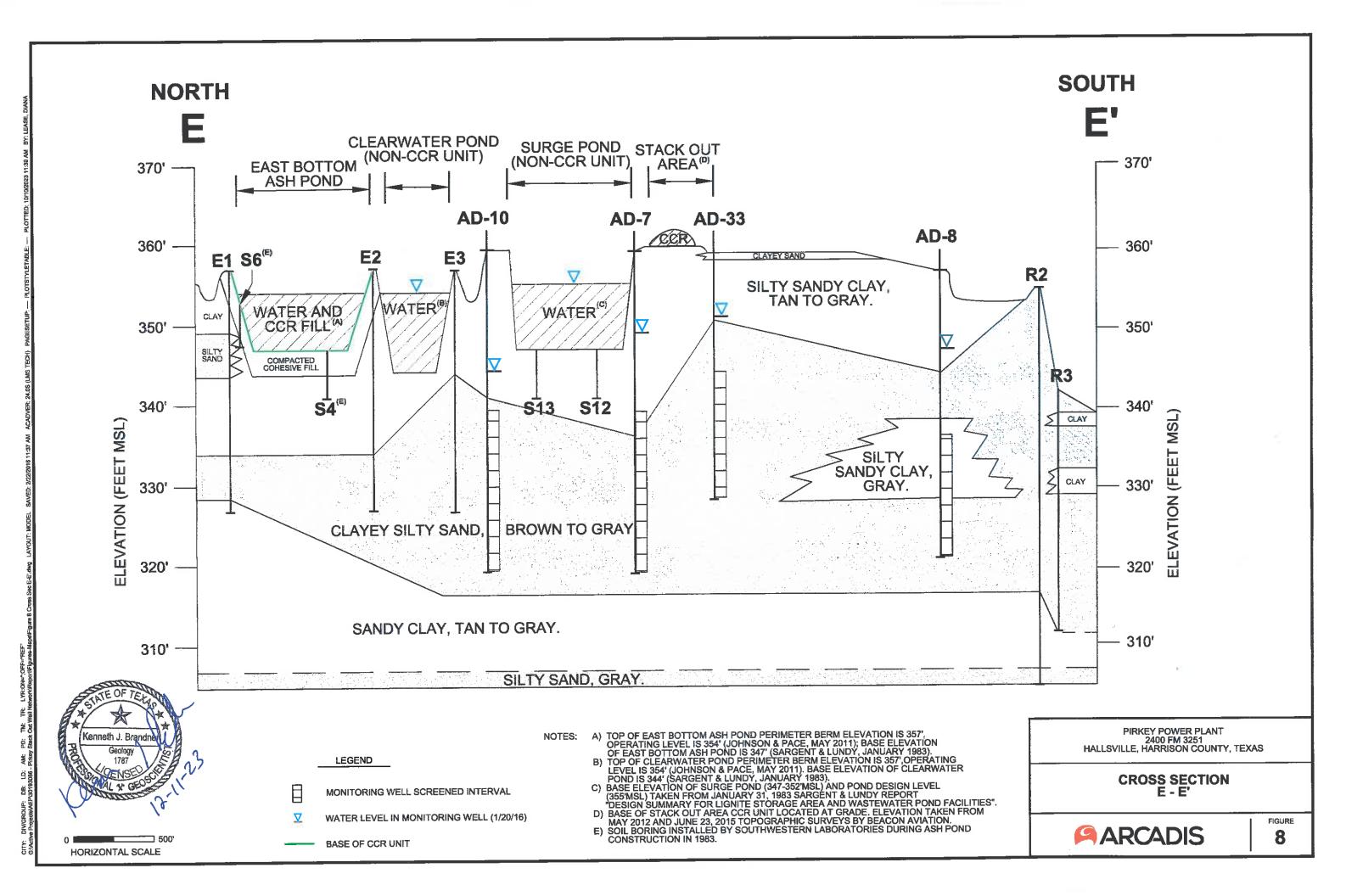

3. The gap in cobalt data represents the time period in which detection monitoring took place and samples were not analyzed for cobalt. FGD: Flue Gas Desulfurization AD-22 Cobalt v. Groundwater Elevation Pirkey FGD Stackout Pad Figure Columbus, Ohio

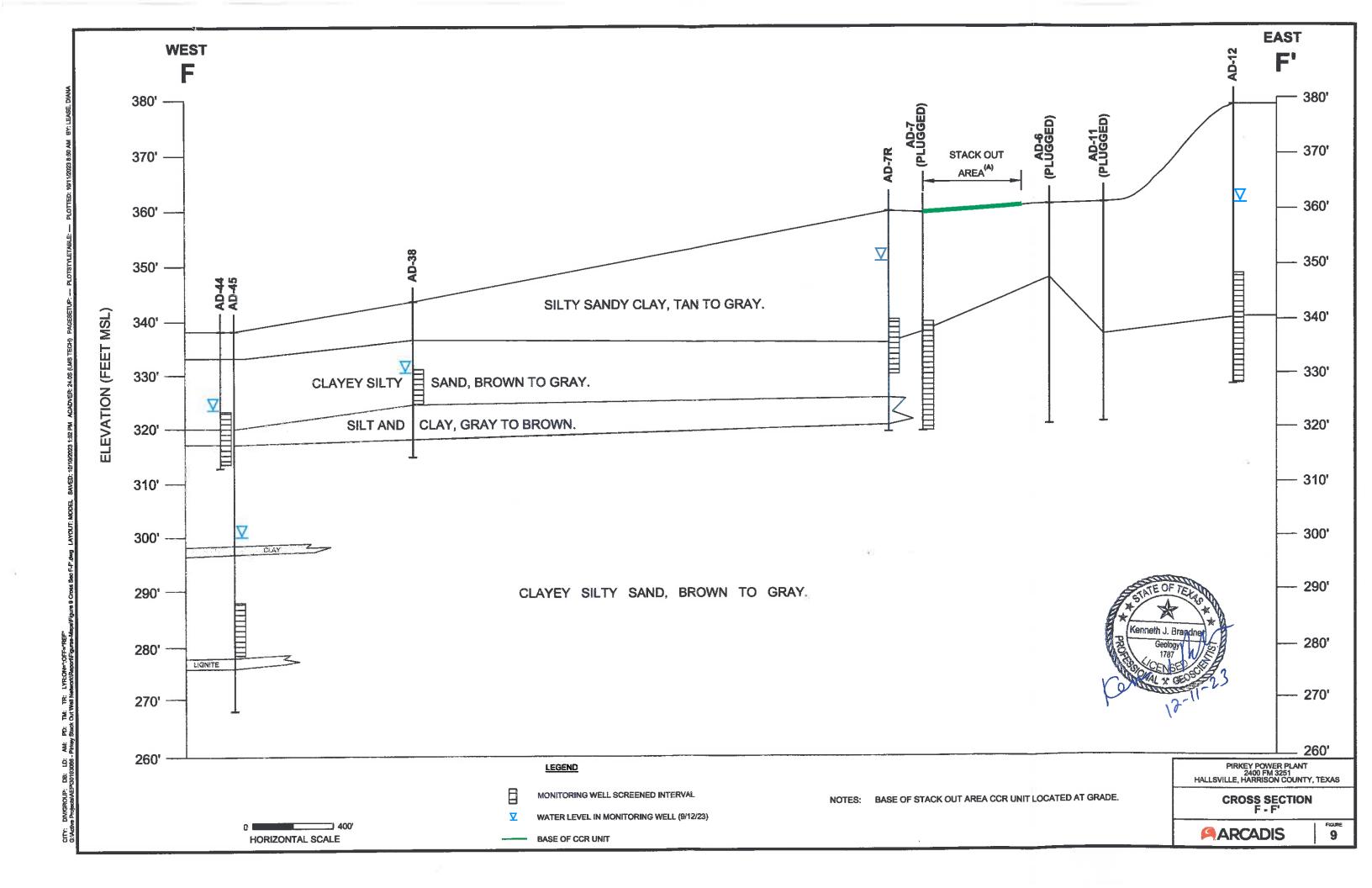











ATTACHMENT A Geologic Cross Sections

ġ

ATTACHMENT B SP-B4 Boring Log

			Soil Bo	pring Log	
Pro	ject	: AEP Pirkey		Boring/Well Name:SP-B4	
Pro	iect	Location:	Hallsville, TX	Boring Date: 3/3/2020	
	, 	Soil Profile		<u> </u>	
ale	ble				
Depth Scale Feet	Water Table		Des	cription	PID*
		pp= pocket per	etrometer		
- 0		0.0'-0.4':	Top soil, black silt, vegetation		
-		0.4'-0.7':	Brown clayey silt, good cohesion		
-		0.7'-1.5':	Red and light gray silty clay, moderate stiffnes	s (pp. 2.5), high plasticity	
-		1.5'-3.7':	Maroon and light gray clay, high stiffness (pp.	4.5-5.0), low plasticity; iron ore present 3.1'-3.7'	
-		3.7'-5.0':	NO RECOVERY		
= 5		5.0'-7.0':		4.5-5.0), low plasticity; iron ore present throughout	
-		5.0-7.0.	maroon and nght gray oldy, high sumoss (pp.		
-		7.0'-8.0':	Light gray clay with iron ore, moderate stiffnes	s (nn 2 5-3 0) moderate plasticity	
•		8.0'-10.0':	Maroon clay, moderate stiffness (pp. 3.5), mod		
-		0.0-10.0.			
1 0 ····		10.0'-12.6':	Maroon clay, moderate stiffness (pp. 3.5), mo	derate plasticity: iron ore present: wet at 12'	
-			······································	F,	
		12.6'-13.3':	Tan clay, low stiffness (pp.1.5), high plasticity;	wet	
		13.3'-18.5':	Tan and brown clayey silt, moderate cohesion		
-			5 5 7	, , ,	
• = 20 ······		18.5'-20.3': 20.3'-21.1': 21.1'-21.3': 21.9'-22.3': 22.3'-22.7': 22.7'-24.4': 24.4'-27.8': 27.8'-30.0':	Maroon silty clay, low stiffness (pp. 1.0), mode Dark gray/black clay, trace silt, low stiffness (p Dark gray silt, good cohesion; wet Dark gray silty clay, low stiffness (pp. 1.5), hig Dark gray silt, moderate cohesion; wet light brown silt; low cohesion; wet Dark gray and dark green silty clay, moderate, glauconite present Dark green/gray fine grained sand, well sorted Red and orange fine grained sand, well sorted	p. 1.5), high plasticity; wet h plasticity; wet /high stiffness (pp.3.5), moderate plasticity; wet, l; wet; glauconite present	
30			Samples collected at 6-8'; 18-20'; 28-30' TD at 30' bgs; refusal *PID readings not collected		
Drill	Ric	Geoprobe 3230 D1	г		•
		Contractor:		Geosyntec Consultants	
Drill	er:_	DJ Diduch		,	

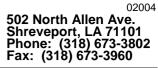
ATTACHMENT C AD-22 Boring Log and Well Installation Diagram

APEX PI	ROJEC	T NO.: _	110-08	9					BORING NUMBER:		R WELL LL NUMBER:	AD-22	-
FACILI	FY NAI	ME: _	AEP- P	irkey	Powe	er Pla	ant			FACILITY ID NO.:	N/A		-
FACILI	FY ADI	DRESS:	Hallsvi	lle, Te	xas								_
DRILLI	NG CO	MPANY/	METI	HOD/I	RIG:	4	Apex Ge	oscience Ir	ic. / Hollow-s	em Augers/ CME-55 Track Rig			_
DRILLE	R: 1	Ed Wilson	, Apex	Geos	cienc	e Ind	2.		СС	MPLETION DATE: 12/16/201	0		_
PREPAR	RED BY	': David E	Bedford	d						LOGGED BY: David Be	dford		_
		N 32°27'0 W94°29'4				I	Datum: \	WGS-84		WELL LOCATION: Triangle-	South side Quansit Hu	t	-
DEPTH (FEET)	(MPM) DIA	SAMPLE INTERVAL		VELL IPLET			ID FAILS	USCS CODE		SOIL DESCRIPTION AND CO	MMENTS	Odor	Moi
				F									
1							0-0.5	SC		light brown, very fine grained		None	М
2 3 4 5 6 7 8 9 10							0.5-12	CL		ht brown mottled with light gray (small) pebbles in clayey sandy su	reaks	None	Sli
11 12 13 14 15 16 17 18 19							12-20	SC	very fine gra Slightly wet	@ 12.5' from seepage it of iron ore 15-17'	m streaks,	None	Sli N
20 21 22 23 24 25							20-25	SC	(Dense cryst greenish bla wet @ 20'	alline rock 21-21.1'), light brown (ck, mica, black clay streaks, very f	clayey sand, ine grained,	None	,
23 26 27 28 29 30							25-30	SM	Sand, green very fine gra	sh brown (1') grading to orangish ined	brown, silty,	None	
31 32 33 34 35 36 37 38 39 40									Boring Terr	ninated at 30'			
			Ceme	nt					Bentonite	Filter San	d $ abla$ Waler	Levei	
		ex]		Filte	r Sa	nd (Size	al Depth: :/Interval)	: 8-30'	0-2'; Bentonite from 2-8'	Riser Interval: Screen Interval: Water level:	+3 (ags)-10 10-30' 12.5')'

ATTACHMENT D FGD Sludge Materials Analytical Report

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960


Report ID : 40143 Date Received: 07/18/2019	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721 Collected Date: 07/17/2019			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
AEP Sample ID : 227040 Cust Sample ID: Dirt/Sludge Sample Desc.: Pirkey Sludge Fr	Lo		17/2019 V. Pirkey Powe	er Plant	By: RF Matrix: Solid				
Metals (227040)									
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Aluminum	20500	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Antimony	0.993	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Arsenic	28.3	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Barium	142	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Beryllium	2.12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Boron	845	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB	
Cadmium	1.68	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Calcium	77500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Chromium	30.6	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Cobalt	24.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Copper	30.2	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Dry Weight, Percent	94.7	%	0.001	1		07/22/2019 15:30	T5	JDB	
Iron	36300	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB	
Lead	5.31	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Lithium	11.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47	T5	JDB	
Magnesium	7150	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Manganese	498	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Mercury	0.653	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:37		LNM	
Molybdenum	8.45	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Nickel	28.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Potassium	1370	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Selenium	36.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Silver	0.208	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	
Sodium	1230	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Strontium	382	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB	
Thallium	0.503	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 1 of 15

Analysis Report

Report ID : 40143 Date Received: 07/18/2019				(TW)	S	02 North Allen Avenue hreveport, LA 71101 318) 673-3960		
Tin	1.28	mg/Kg	0.2	1:50	EPA 6010B 1996	07/26/2019 0:47	T5	JDB
Titanium	1360	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB
Vanadium	77.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Zinc	26	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Waste Characterization (227040)			ł	•				-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
pH, Soil	8.44	pН		1	EPA 9045D 2002	07/25/2019 12:30		GB

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 Date Received: 07/18/2019	Co F	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721 Collected Date: 07/17/2019			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
AEP Sample ID : 227041 Cust Sample ID: Dirt/Sludge Sample Desc.: Pirkey Sludge F	Loc		7/2019 . Pirkey Powe	er Plant	By: RF Matrix: Solid				
SPLP (227041)	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysia Data/Tima	Codes	Tech	
Parameter Aluminum	14.2	mg/L	0.005	1	EPA 1312/6010B 1996	Analysis Date/Time 07/25/2019 23:09	Codes	JDB	
	0.018	-	0.005	1	EPA 1312/6010B 1996 EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Antimony Arsenic	0.018	mg/L	0.005	1	EPA 1312/6010B 1996 EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Barium	3.46	mg/L	0.005	1:50	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
	0.012	mg/L	0.05		EPA 1312/6010B 1996 EPA 1312/6010B 1996	07/25/2019 20:38		JDB	
Beryllium Boron	22.3	mg/L	0.001	1 1:50	EPA 1312/6010B 1996 EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Cadmium	0.002	mg/L	0.5	1.50	EPA 1312/6010B 1996 EPA 1312/6010B 1996	07/25/2019 20:38		JDB	
Calcium	2090	mg/L	0.001		EPA 1312/6010B 1996 EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Chromium		mg/L	0.5	1:50					
Cobalt	0.005	mg/L		1	EPA 1312/6010B 1996	07/25/2019 23:09 07/25/2019 23:09		JDB	
	0.051	mg/L	0.005	1	EPA 1312/6010B 1996 EPA 1312/6010B 1996			JDB JDB	
		mg/L	0.001			07/25/2019 23:09			
Iron	52.4	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB	
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Lithium	0.146	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Magnesium	62.3	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB	
Manganese	2.83	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Mercury	0.002272	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:05		LNM	
Molybdenum	0.229	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Nickel	0.054	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Potassium	9.61	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Selenium	0.93	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Sodium	35.6	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB	
Strontium	12.7	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB	
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 3 of 15

Analysis Report

Report ID : 40143 Date Received : 07/18/2019	Co	ntact: Te	P - Flint Creek rry Wehling 18) 673-2721	(TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
Titanium	0.041	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Vanadium	0.269	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Zinc	0.299	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

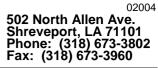
Report ID : 40143 Date Received: 07/18/2019	Co F	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721 Collected Date: 07/17/2019			Fax: (Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960			
AEP Sample ID : 227042 Cust Sample ID: Dirt/Sludge Sample Desc.: Pirkey Sludge F	Loc	Location: H.W. Pirkey Po			wer Plant By: RF Matrix: Solid				
7-Day Leachate (227042)	¥-1	1114	Det L'aut	D'1 /0		An alexa in Data (Time	0.1	T	
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes		
Aluminum	0.563	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Antimony	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Arsenic	0.011	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Barium	0.134	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Boron	8.44	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43		JDB	
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Calcium	252	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43		JDB	
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Copper	0.002	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Iron	0.211	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Lithium	0.069	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Magnesium	6.73	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Manganese	0.008	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:19		LNM	
Molybdenum	0.18	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Potassium	4.82	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Selenium	0.208	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Sodium	19.8	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43		JDB	
Strontium	1.6	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 5 of 15

Analysis Report

Report ID : 40143 Date Received: 07/18/2019	Co	ntact: Terr	P - Flint Creek y Wehling 3) 673-2721	(TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
Titanium	0.015	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Vanadium	0.03	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB


Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 Date Received: 07/18/2019	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721 Collected Date: 07/17/2019			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
AEP Sample ID : 227043 Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge F0	Lo		17/2019 V. Pirkey Powe	er Plant	By: RF Matrix: Solid				
Metals (227043)	T					1			
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Aluminum	19600	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Antimony	0.919	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Arsenic	22.8	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Barium	121	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Beryllium	1.66	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Boron	891	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25	T5	JDB	
Cadmium	1.37	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Calcium	84500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Chromium	28.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Cobalt	20.3	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Copper	26.9	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Dry Weight, Percent	97.2	%	0.001	1		07/22/2019 15:30	T5	JDB	
Iron	28800	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Lead	5.78	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Lithium	12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26	T5	JDB	
Magnesium	7070	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Manganese	388	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Mercury	0.606	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:27		LNM	
Molybdenum	11	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Nickel	25.7	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Potassium	1460	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Selenium	30.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26	<u></u>	JDB	
Silver	0.19	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Sodium	1780	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Strontium	451	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Thallium	0.562	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	

Analysis Report

Report ID : 40143 Date Received: 07/18/2019	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721			(TW)	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
Tin	1.06	mg/Kg	0.2	1:50	EPA 6010B 1996	07/26/2019 1:26	T5	JDB	
Titanium	1280	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Vanadium	68.3	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Zinc	33.8	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Waste Characterization (227043)			ł	•				-	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
pH, Soil	8.71	рΗ		1	EPA 9045D 2002	07/25/2019 12:30		GB	

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 Date Received: 07/18/2019	Co P	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721 Collected Date: 07/17/2019			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
AEP Sample ID : 227044 Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge	Loc		7/2019 7. Pirkey Powe	er Plant	By: RF Matrix: Solid				
SPLP (227044)	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysia Data/Tima	Codes	Tech	
Parameter Aluminum	10.5		0.005	DII./Conc.	EPA 1312/6010B 1996	Analysis Date/Time 07/25/2019 23:55	Codes	JDB	
		mg/L							
Antimony	0.017	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Arsenic	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Barium	2.57	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB	
Beryllium	0.009	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Boron	26.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB	
Cadmium	0.002	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Calcium	1960	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB	
Chromium	0.004	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Cobalt	0.051	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Copper	0.003	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Iron	47.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB	
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Lithium	0.136	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Magnesium	70.2	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB	
Manganese	2.87	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Mercury	< 0.000025	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:21		LNM	
Molybdenum	0.288	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Nickel	0.071	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Potassium	11.4	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Selenium	0.775	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Sodium	56.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB	
Strontium	13.2	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB	
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 9 of 15

Analysis Report

Report ID : 40143 Date Received: 07/18/2019	Co	ntact: Te	P - Flint Creek rry Wehling 8) 673-2721	(TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
Titanium	0.037	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Vanadium	0.194	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB
Zinc	0.338	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 Date Received: 07/18/2019	Co F	hone: (318	8) 673-2721	(TW)	Fax: (502 North Allen Avenue Shreveport, LA 71101 318) 673-3960		
AEP Sample ID : 227045 Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge F	Loc		7/2019 /. Pirkey Powe	er Plant	By: R Matrix: S			
7-Day Leachate (227045)			.	5				
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	
Aluminum	0.994	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Antimony	0.006	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Arsenic	0.031	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Barium	0.121	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Boron	16.4	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Calcium	633	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Copper	0.003	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Iron	0.225	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Lithium	0.1	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Magnesium	9.54	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Manganese	0.015	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:36		LNM
Molybdenum	0.448	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Potassium	9.02	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Selenium	0.201	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Sodium	48.3	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB
Strontium	3.79	mg/L	0.05	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 11 of 15

Analysis Report

Report ID : 40143 Date Received : 07/18/2019	С	mpany: SEP ontact: Terr Phone: (318	y Wehling	: (TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
Titanium	0.02	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Vanadium	0.087	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 40143 eceived: 07/18/2019	Company: Contact: Phone:		ehling/	(TW)		Ac	Sh		Ilen Avenue LA 71101 960	•	
		* Quality		uality Con	ntrol Data ne as reported	analytical	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	,
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value	* Recovery*	%	% Recovery	Difference	Tech
7/25/2019	Aluminum	226939.1	<0.005	2	2.0229733	101.1	2	2.071639	103.6		0.4	JDB
7/25/2019	Aluminum	227041.1	<0.005	2	2.0229733	101.1	2	2.2242	111.2		0.0	JDB
7/26/2019	Aluminum	227040.1	<12.5	2	2.0358232	101.8	100	132.38333	132.4		1.2	JDB
7/25/2019	Antimony	226939.1	<0.005	0.8	0.8092462	101.2	0.8	0.8159776	102.0		0.2	JDB
7/25/2019	Antimony	227041.1	<0.005	0.8	0.8092462	101.2	0.8	0.7671843	95.9		0.5	JDB
7/26/2019	Antimony	227040.1	<0.25	0.8	0.8071122	100.9	40	32.643192	81.6		1.8	JDB
7/25/2019	Arsenic	227041.1	<0.005	0.8	0.8086795	101.1	0.8	0.7758421	97.0		0.0	JDB
7/25/2019	Arsenic	226939.1	<0.005	0.8	0.8086795	101.1	0.8	0.8086275	101.1		0.1	JDB
7/26/2019	Arsenic	226915.1	<0.25	0.8	0.7906797	98.8	40	40.306278	100.8		0.8	JDB
7/26/2019	Arsenic	227040.1	<0.25	0.8	0.7940238	99.3	40	34.433917	86.1		2.3	JDB
7/25/2019	Barium	226939.1	<0.001	0.2	0.2080557	104.0	0.2	0.209543	104.8		0.1	JDB
7/25/2019	Barium	227041.1	<0.05	0.2	0.2080557	104.0	0.2	0.1829767	91.5		0.4	JDB
7/26/2019	Barium	227040.1	<2.5	0.2	0.2112650	105.6	500	543.5715	108.7		7.2	JDB
7/25/2019	Beryllium	226939.1	<0.001	0.2	0.2122779	106.1	0.2	0.2142832	107.1		0.3	JDB
7/25/2019	Beryllium	227041.1	<0.001	0.2	0.2122779	106.1	0.2	0.1992329	99.6		0.4	JDB
7/26/2019	Beryllium	227040.1	<0.05	0.2	0.2131235	106.6	10	9.40679	94.1		0.2	JDB
7/25/2019	Boron	226939.1	<0.01	0.3	0.2995651	99.9	0.3	0.2984183	99.5		0.7	JDB
7/25/2019	Boron	227041.1	<0.5	0.3	0.2995651	99.9	0.3	0.2855333	95.2		0.5	JDB
7/25/2019	Cadmium	227041.1	<0.001	0.2	0.2069934	103.5	0.2	0.1836838	91.8		0.6	JDB
7/25/2019	Cadmium	226939.1	<0.001	0.2	0.2069934	103.5	0.2	0.2061243	103.1		0.5	JDB
7/26/2019	Cadmium	226915.1	<0.05	0.2	0.1973571	98.7	10	10.058007	100.6		1.8	JDB
7/26/2019	Cadmium	227040.1	<0.05	0.2	0.2013293	100.7	10	8.0453767	80.5		1.6	JDB
7/25/2019	Calcium	226939.1	<0.01	1	1.0087505	100.9	1	1.0243667	102.4		0.9	JDB
7/26/2019	Calcium	227040.1	<25	1	0.8616568	86.2	50	113.63333	227.3		0.8	JDB
7/25/2019	Chromium	226939.1	<0.001	0.4	0.4116387	102.9	0.4	0.4125529	103.1		0.4	JDB
7/25/2019	Chromium	227041.1	<0.001	0.4	0.4116387	102.9	0.4	0.3867339	96.7		0.3	JDB
7/26/2019	Chromium	227040.1	<0.05	0.4	0.40798	102.0	20	17.692233	88.5		1.6	JDB
7/26/2019	Chromium	226915.1	<0.05	0.4	0.4059509	101.5	20	20.758823	103.8		0.8	JDB
7/25/2019	Cobalt	227041.1	<0.005	0.2	0.2043482	102.2	0.2	0.1839347	92.0	1	0.4	JDB
7/25/2019	Cobalt	226939.1	<0.005	0.2	0.2043482	102.2	0.2	0.2054714	102.7		0.4	JDB
7/26/2019	Cobalt	227040.1	<0.05	0.2	0.2032547	101.6	10	7.7614833	77.6		1.8	JDB
7/25/2019	Copper	227041.1	<0.001	0.3	0.3066399	102.2	0.3	0.2963301	98.8		0.1	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 13 of 15

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

	eceived: 07/18/2019		: Terry W : (318) 67	•	((()))	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960								
			()			100.0			,					
7/25/2019	Copper	226939.1	<0.001	0.3	0.3066399	102.2	0.3	0.3109092	103.6	0.1	JDB			
7/26/2019	Copper	227040.1	<0.05	0.3	0.3124104	104.1	15	15.003017	100.0	1.9	JDB			
7/25/2019	Iron	226939.1	<0.01	3	3.1158893	103.9	3	3.1231158	104.1	1.0	JDB			
7/25/2019	Iron	227041.1	<0.5	3	3.1158893	103.9	150	159.28837	106.2	0.8	JDB			
7/26/2019	Iron	227040.1	<12.5	3	3.0861005	102.9		_		3.1	JDB			
7/25/2019	Lead	227041.1	<0.005	1	1.0430644	104.3	1	0.9320653	93.2	0.6	JDB			
7/25/2019	Lead	226939.1	<0.005	1	1.0430644	104.3	1	1.0416574	104.2	0.4	JDB			
7/26/2019	Lead	226915.1	<0.25	1	1.0147827	101.5	50	51.881956	103.8	1.4	JDB			
7/26/2019	Lead	227040.1	<0.25	1	1.0194305	101.9	50	41.227533	82.5	1.1	JDB			
7/25/2019	Lithium	227041.1	<0.001	0.2	0.2119096	106.0	0.2	0.2353987	117.7	0.1	JDB			
7/25/2019	Lithium	226939.1	<0.001	0.2	0.2119096	106.0	0.2	0.2163799	108.2	0.4	JDB			
7/26/2019	Lithium	227040.1	<0.05	0.2	0.211291	105.6	10	11.698417	117.0	2.8	JDB			
7/25/2019	Magnesium	226939.1	<0.01	2	2.0868175	104.3	2	2.0877567	104.4	0.2	JDB			
7/25/2019	Magnesium	227041.1	<0.5	2	2.0868175	104.3	2	1.9791333	99.0	0.6	JDB			
7/26/2019	Magnesium	227040.1	<25	2	2.0570549	102.9	100	76.916667	76.9	1.4	JDB			
7/25/2019	Manganese	226939.1	<0.001	0.2	0.2072869	103.6	0.2	0.2077536	103.9	0.2	JDB			
7/25/2019	Manganese	227041.1	<0.001	0.2	0.2072869	103.6	0.2	0.16684	83.4	0.7	JDB			
7/26/2019	Manganese	227040.1	<2.5	0.2	0.2066368	103.3	500	572.398	114.5	1.1	JDB			
7/24/2019	Mercury	227041.1	<0.00002	0.001	0.00097	97.0	0.2	0.16373	81.9	7.0	LNM			
7/24/2019	Mercury	227040.1	<0.00002	0.001	0.00097	97.0	0.04	0.0496	124.0	4.4	LNM			
7/30/2019	Mercury	227042.1	<0.005	0.001	0.0009	90.0	0.2	0.156162	78.1	4.0	LNM			
7/25/2019	Molybdenum	227041.1	<0.005	0.2	0.2067657	103.4	0.2	0.197727	98.9	0.5	JDB			
7/25/2019	Molybdenum	226939.1	<0.005	0.2	0.2067657	103.4	0.2	0.2076129	103.8	0.4	JDB			
7/26/2019	Molybdenum	227040.1	<0.05	0.2	0.2073308	103.7	10	9.2486833	92.5	0.4	JDB			
7/25/2019	Nickel	227041.1	<0.025	0.5	0.5192594	103.9	0.5	0.46183	92.4	0.6	JDB			
7/25/2019	Nickel	226939.1	<0.025	0.5	0.5192594	103.9	0.5	0.5209379	104.2	0.6	JDB			
7/26/2019	Nickel	227040.1	<0.05	0.5	0.5228273	104.6	25	19.992767	80.0	1.9	JDB			
7/25/2019	Potassium	227041.1	<0.01	10	9.3692109	93.7	10	11.11754	111.2	0.3	JDB			
7/25/2019	Potassium	226939.1	<0.01	10	9.3692109	93.7	10	9.4631223	94.6	0.2	JDB			
7/26/2019	Potassium	227040.1	<25	10	9.1397018	91.4	500	428.035	85.6	2.9	JDB			
7/25/2019	Selenium	226939.1	<0.005	2	1.9998495	100.0	2	1.9816300	99.1	0.8	JDB			
7/25/2019	Selenium	227041.1	< 0.005	2	1.9998495	100.0	2	1.991203	99.6	0.7	JDB			
7/26/2019	Selenium	227040.1	<0.25	2	1.9551138	97.8	100	89.733067	89.7	3.0	JDB			
7/25/2019	Silver	227041.1	<0.001	0.075	0.0712930	95.1	0.075	0.0708639	94.5	0.2	JDB			
7/25/2019	Silver	226939.1	<0.001	0.075	0.0712930	95.1	0.075	0.0714285	95.2	0.1	JDB			
7/26/2019	Silver	227040.1	<0.05	0.075	0.0712215	95.0	3.75	3.6188628	96.5	0.5	JDB			

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 14 of 15

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 40143 ceived: 07/18/2019	Company: Contact:			(TW)		Address: 502 North Allen Avenue Shreveport, LA 71101							
		Phone:			Fax: (318) 673-3960									
7/25/2019	Sodium	227041.1	<0.5	3	3.1384831	104.6	3	2.3746333	79.2	0.0	JDB			
7/25/2019	Sodium	226939.1	<0.01	3	3.1384831	104.6	3	2.4693667	82.3	0.1	JDB			
7/26/2019	Sodium	227040.1	<25	3	3.1256605	104.2	150	120.525	80.4	1.9	JDB			
7/25/2019	Strontium	226939.1	<0.001	0.2	0.2059899	103.0	0.2	0.2081687	104.1	0.4	JDB			
7/26/2019	Strontium	227040.1	<2.5	0.2	0.2078256	103.9	500	577.76733	115.6	17.9	JDB			
7/25/2019	Thallium	227041.1	<0.005	0.4	0.4152040	103.8	0.4	0.3682771	92.1	1.2	JDB			
7/25/2019	Thallium	226939.1	<0.005	0.4	0.4152040	103.8	0.4	0.4171124	104.3	0.0	JDB			
7/26/2019	Thallium	227040.1	<0.25	0.4	0.4155052	103.9	20	15.947380	79.7	1.2	JDB			
7/25/2019	Tin	226939.1	<0.005	0.7	0.6995446	99.9	0.7	0.6930628	99.0	0.2	JDB			
7/25/2019	Tin	227041.1	<0.005	0.7	0.6995446	99.9	0.7	0.644164	92.0	0.2	JDB			
7/26/2019	Tin	227040.1	<0.2	0.7	0.6896072	98.5	35	28.438362	81.3	0.8	JDB			
7/25/2019	Titanium	227041.1	<0.005	0.2	0.2109341	105.5	0.2	0.2098874	104.9	0.2	JDB			
7/25/2019	Titanium	226939.1	<0.005	0.2	0.2109341	105.5	0.2	0.2124567	106.2	0.1	JDB			
7/26/2019	Titanium	227040.1	<2.5	0.2	0.2121079	106.1				1.6	JDB			
7/25/2019	Vanadium	226939.1	<0.001	0.3	0.3076519	102.6	0.3	0.3104754	103.5	0.4	JDB			
7/25/2019	Vanadium	227041.1	<0.001	0.3	0.3076519	102.6	0.3	0.2997157	99.9	0.6	JDB			
7/26/2019	Vanadium	227040.1	<0.05	0.3	0.30789	102.6	15	15.291667	101.9	0.0	JDB			
7/25/2019	Zinc	226939.1	<0.005	0.2	0.2091679	104.6	0.2	0.2081374	104.1	0.3	JDB			
7/25/2019	Zinc	227041.1	<0.005	0.2	0.2091679	104.6	0.2	0.1851907	92.6	0.1	JDB			
7/26/2019	Zinc	227040.1	<0.25	0.2	0.2074233	103.7	10	8.4881167	84.9	0.5	JDB			

Code Code Description

M4 The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery was acceptable.

T5 This parameter is not included in the Laboratory's LELAP Laboratory Scope of Accreditation.

Darnhill onatha

Quality Assurance Officer

05-Aug-19

Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 15 of 15

American Electric Power Analytical Chemistry Services

		CH/	AIN OF	= CU	ISTO	DY		CC	oc 40143
OPCO/PROJECT NAME H.W Pirkey	FAX NO.		1	ANALY	SIS HEC	UESTE	0	Metals	to analyze for each
Power Plant			1ª	2	~			(Totals	to analyze for each SPLP, DecionTECA) 5b, AG, Ba, Be, Cd, Cr
			<u>à</u>	R I	-2		<u> </u>	7 B.Ca.C	b. Ac Ba Be Cd. Cr
CONTACT PERSON(Please Print	(903) 927-5840			Ĕ	(car				
	(002) 007 5990			1	5			(0,76	, Li, Mg, MO, SCITE
Ron Franklin, Randy Rountree, Ben House	(903) 927-5889		A P		Ś			anda	ny other metals in
		CG	2 Z		zedwater			Colit	, Li, Hg, Mu, Sc, Te my other metals in oration
Ron Franklin			BER	$ \mathcal{P} $	2				
		MA OF		5	.977	5		Lab	REMARKS
DATE TIME SAMPLE SOURCE & D	ESCRIPTION SAMPLE ID		ONTAINERS	S S	Deion			Number	
7-17-19 1800 Pirken Slod	Se FGD DiaTSla			~		3	2704	0-42	Torry Wehling
1' 1' 1/ 1800 11 11	" Dirt Stade	24	VV		$\sqrt{}$	2	270	43-4	
						+	+-+	and the second s	
X		+++				+			
								RECEIVED BY	
TELINQUISHED BY (SIGN)	RECEIVED BY		HED BY (SIGI	*)					
IELINQUISHED BY (SIGN) DATE/TIME	HECEIVED BY	HELINOUIS	HED BY (SIGI	N)		DATE	ETTIME	HECEIVED BY	
				,					
		COMME	NTS						
Jonathan Bambill	7-18-19 1036								
0									

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX US Mail Walk in Shuttle
Other	Othe	r
	Tracking #	
Client Terry Wehling	-	Sample Matrix
Received By JOB	DGA	PCB Oil Water Oil Soil
Received Date 7-18-19	- Colid	t invite Other
Open Date <u>7-18-19</u>	Solid	Liquid Other
Container Temp Read	_	Project I.D
Correction Factor	Were sa	mples received on ice? YES NO
Corrected Temp	_	
Did container arrive in good condition?	YES	NO
Was sample documentation received?	YES	NO
Was documentation filled out properly?	YES	NO
Were samples labeled properly?	YES	<u>NO</u>
Were correct containers used?	YES	NO
Were the pH's of samples appropriately checked?	YES	NO
Total number of sample containers	_	
Was any corrective action taken?	NO	Person Contacted Date & Time
Comments		

ATTACHMENT E AD-33 Soil Samples Analytical Report

	evinits				~		
Client:	Burns & McDonnell					Date: 08	Iun-18
Project:	106665 PIRKEY				١	Work Order: 180	5081
Sample ID:	AD-33 (11')					Lab ID: 180	5081-15
Legal Location:						Matrix: SOI	
0	4/20/2010 16 05				р		
Collection Date:	4/30/2018 16:05				Perce	ent Moisture: 18.1	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Gamma Spectro	oscopy Results		SOP	713	Prep	Date: 5/17/2018	PrepBy: MRL
Ra-226		1.29 (+/- 0.3)	G	0.47	pCi/g	NA	6/7/2018 08:54
Ra-228		1.36 (+/- 0.47)	G,TI	0.7	pCi/g	NA	6/7/2018 08:54
ICPMS Metals			SW6	020	Prep	Date: 5/14/2018	PrepBy: JML
ARSENIC		4.9		0.23	MG/KG	10	5/17/2018 01:02
BARIUM		20		0.57	MG/KG	10	5/17/2018 01:02
BERYLLIUM		0.15		0.057	MG/KG	10	5/17/2018 01:02
CADMIUM		ND		0.23	MG/KG	10	5/17/2018 01:02
COBALT		0.61		0.57	MG/KG	10	5/17/2018 01:02
CHROMIUM		9.5		1.1	MG/KG	10	5/17/2018 01:02
LITHIUM		0.25	J	2.3	MG/KG	10	5/17/2018 01:02
MOLYBDENUM		0.18	J	0.23	MG/KG	10	5/17/2018 01:02
LEAD		3.2		0.23	MG/KG	10	5/17/2018 01:02
ANTIMONY		0.086	J	0.11	MG/KG	10	5/17/2018 01:02
SELENIUM		0.81	J	1.1	MG/KG	10	5/17/2018 01:02
THALLIUM		0.044		0.011	MG/KG	10	5/17/2018 01:02
Ion Chromatogr	aphy		EPA	300.0	Prep	Date: 5/10/2018	PrepBy: HMA
FLUORIDE		ND		1	MG/KG	1	5/11/2018 21:43
Mercury			SW7	471	Prep	Date: 5/11/2018	PrepBy: AJL2
MERCURY		0.0026	J	0.039	MG/KG	1	5/11/2018 16:07

ALS -- Fort Collins

SAMPLE SUMMARY REPORT

ALS Fort	t Collins		SAMPLE SUMMARY REPOR									
Client:	Burns & McDonnell					Date: 08-J	Jun-18					
Project:	106665 PIRKEY				,	Work Order: 180	5081					
Sample ID:	AD-33 (21')					Lab ID: 180	5081-16					
Legal Location:	× /					Matrix: SOI						
0					D							
Collection Date:	: 4/30/2018 16:05				Perce	ent Moisture: 20.0						
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed					
Gamma Spectro	oscopy Results		SOP	713	Prep	Date: 5/17/2018	PrepBy: MRL					
Ra-226	.,	0.7 (+/- 0.22)	LT	0.37	pCi/g	NA	6/7/2018 08:16					
Ra-228		0.72 (+/- 0.5)	NQ	0.67	pCi/g	NA	6/7/2018 08:16					
ICPMS Metals			SW6	020	Prep	Date: 5/14/2018	PrepBy: JML					
ARSENIC		12		0.25	MG/KG	10	5/17/2018 01:05					
BARIUM		9.1		0.62	MG/KG	10	5/17/2018 01:05					
BERYLLIUM		0.09		0.062	MG/KG	10	5/17/2018 01:05					
CADMIUM		ND		0.25	MG/KG	10	5/17/2018 01:05					
COBALT		0.64		0.62	MG/KG	10	5/17/2018 01:05					
CHROMIUM		4.6		1.2	MG/KG	10	5/17/2018 01:05					
LITHIUM		0.24	J	2.5	MG/KG	10	5/17/2018 01:05					
MOLYBDENUM		0.061	J	0.25	MG/KG	10	5/17/2018 01:05					
LEAD		1.5		0.25	MG/KG	10	5/17/2018 01:05					
ANTIMONY		0.19		0.12	MG/KG	10	5/17/2018 01:05					
SELENIUM		0.42	J	1.2	MG/KG	10	5/17/2018 01:05					
THALLIUM		0.03		0.012	MG/KG	10	5/17/2018 01:05					
Ion Chromatog	raphy		EPA	300.0	Prep	Date: 5/10/2018	PrepBy: HMA					
FLUORIDE		ND		1	MG/KG	1	5/11/2018 22:29					
Mercury			SW7	471	Prep	Date: 5/11/2018	PrepBy: AJL2					
MERCURY		0.0038	J	0.04	MG/KG	1	5/11/2018 16:09					

ATTACHMENT F AD-33 Boring Log and Well Installation Diagram

HUGIGX ENVIRONMENTAL, INC.	-		A	M onito								STATE OF LEVEL
PROJECT INFORMATION PROJECT: Ptrkey Power Plant PROJECT NO.: I-04-1921 LOGGED BY: Jeffrey D. Sammons, P.G. SUPERVISING PG: Jeffrey D. Sammons, P.G. COMPLETION: 12/11/2016 DEVELOPMENT: 12/16/2016 SITE LOCATION: 2400 PM 3251, Hallsville, Texas WELL OWNER: AEP	RIG TYF METHO SAMPLII SURFAC HOLE DI LATITUD	R: R'S LIC D OF D VG ME E ELEV AMETE E 32	THODS: VATION ER: 27' 38.7	 	Bufor 50089 Geopi follow Split C 82.37 .25	obe 3 v Sten ore (Top	ier 230D7 n Augu of Cas	r er sing)	.82*	"Thumas	* JEFFREYD SAMMONS GEOLOGY #10070	
Water Level Upon Installation	Z Water L	evel at Tir	ne of L	Drilling			Geo	techn	ical L	ab Sa	mple	TBPG No. 50027
DESCRIPTION	uscs	SOIL	DEPTH	WATER		% MOISTURE	% FINES	н	ي ل	ā		WELL CONSTRUCTION
CLAYEY SAND: very fine to fine sand, some slit, dark brownish black and brown, very moist FAT CLAY: trace sand and silt, reddish brown and light gray - some iron ore gravel at 2.0' - some slit and ironstone in thin seams at 2.5', light gray, yellowish brown, and reddish brown,					29		93	74	32	42		Cover Locking Well Cap Protective Well Casing Concrete Pad Ground Surface Cement Bentonite 2" Sch. 40 PVC
CLAYEY SAND: Interbedded clays and fine to very fine sand and slit, some iron ore gravel, light reddish brown and light gray some clay and trace of iron ore gravel at 11', light ray and reddish brown, moist trace clay at 13', thin saturated ironstone and navel seams at 13' to 16', reddish brown, light ddish brown, and light gray dark reddish brown at 15' Say lense at 15.5' to 16.5', light reddish brown and ht gray	SC			₹	21	34	5 3	5 2	13 1	2		2" Sch. 40 PVC Riser
MLTY CLAYEY SAND: very fine to fine sand, eddish brown, very moist to saturated oma clay lenses and iron ore gravel at 20' layey at 20.5' to 21' ace clay at 21', light gray, saturated me iron ore gravel at 28', reddish brown, very st AYEY SAND: very fine to fine sand, dark gray 1 gray, moist			- 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 56 - 77 - 8 - 8 - 9 - 0	2	23	19	27	18	9			20/40 Silica Sand 0.010° Siotted Sch. 40 PVC Well Screen

ATTACHMENT G Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey FGD Stackout Area CCR management area and that the requirements of 30 TAC §352.951(e) have been met.

Beth Ann Gross Printed Name of Licensed Professional Engineer

Beth am Giors

Signature

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308

Texas Registered Engineering Firm No. F-1182

79864 License Number Texas Licensing State February 6, 2024 Date